SlideShare a Scribd company logo
Pertemuan 9
APLIKASI INTEGRAL
Areas in the Plane
Gateway Arch, St. Louis, Missouri
Greg Kelly, Hanford High School, Richland, Washington
Photo by Vickie Kelly, 2003
2
1 2
y x
 
2
y x
 
How can we find the area
between these two curves?
We could split the area into
several sections, use
subtraction and figure it out,
but there is an easier way.

2
1 2
y x
 
2
y x
 
Consider a very thin vertical
strip.
The length of the strip is:
1 2
y y
 or    
2
2 x x
  
Since the width of the strip is
a very small change in x, we
could call it dx.

2
1 2
y x
 
2
y x
 
1
y
2
y
1 2
y y

dx
Since the strip is a long thin
rectangle, the area of the strip is:
 
2
length width 2 x x dx
   
If we add all the strips, we get:
2
2
1
2 x x dx

 


2
1 2
y x
 
2
y x
 
2
2
1
2 x x dx

 

2
3 2
1
1 1
2
3 2
x x x

 
8 1 1
4 2 2
3 3 2
   
     
   
   
8 1 1
6 2
3 3 2
   
36 16 12 2 3
6
    27
6

9
2


The formula for the area between curves is:
   
1 2
Area
b
a
f x f x dx
 
 
 

We will use this so much, that you won’t need to
“memorize” the formula!

y x

2
y x
 
y x

2
y x
 
If we try vertical strips, we
have to integrate in two parts:
dx
dx
 
2 4
0 2
2
x dx x x dx
  
 
We can find the same area
using a horizontal strip.
dy
Since the width of the strip
is dy, we find the length of
the strip by solving for x in
terms of y.
y x

2
y x

2
y x
 
2
y x
 

y x

2
y x
 
We can find the same area
using a horizontal strip.
dy
Since the width of the strip
is dy, we find the length of
the strip by solving for x in
terms of y.
y x

2
y x

2
y x
 
2
y x
 
 
2
2
0
2
y y dy
 

length of strip
width of strip
2
2 3
0
1 1
2
2 3
y y y
 
8
2 4
3
 
10
3


General Strategy for Area Between Curves:
1
Decide on vertical or horizontal strips. (Pick
whichever is easier to write formulas for the length of
the strip, and/or whichever will let you integrate fewer
times.)
Sketch the curves.
2
3 Write an expression for the area of the strip.
(If the width is dx, the length must be in terms of x.
If the width is dy, the length must be in terms of y.
4 Find the limits of integration. (If using dx, the limits
are x values; if using dy, the limits are y values.)
5 Integrate to find area.
p
Volumes by Slicing
Greg Kelly, Hanford High School, Richland, Washington
Photo by Vickie Kelly, 2001
Little Rock Central High School,
Little Rock, Arkansas
3
3
3
Find the volume of the pyramid:
Consider a horizontal slice through
the pyramid.
s
dh
The volume of the slice is s2dh.
If we put zero at the top of the
pyramid and make down the
positive direction, then s=h.
0
3
h
2
slice
V h dh

3
2
0
V h dh
 
3
3
0
1
3
h
 9

This correlates with the formula:
1
3
V Bh

1
9 3
3
   9


Method of Slicing:
1
Find a formula for V(x).
(Note that I used V(x) instead of A(x).)
Sketch the solid and a typical cross section.
2
3 Find the limits of integration.
4 Integrate V(x) to find volume.

x
y
A 45o wedge is cut from a cylinder of radius 3 as shown.
Find the volume of the wedge.
You could slice this
wedge shape several
ways, but the simplest
cross section is a
rectangle.
If we let h equal the height of the slice then the volume of
the slice is:
  2
V x y h dx
  
Since the wedge is cut at a 45o angle:
x
h
45o h x

Since
2 2
9
x y
 
2
9
y x
 

x
y
  2
V x y h dx
  
h x

2
9
y x
 
  2
2 9
V x x x dx
   
3
2
0
2 9
V x x dx
 

2
9
u x
 
2
du x dx
 
 
0 9
u 
 
3 0
u 
1
0
2
9
V u du
 
9
3
2
0
2
3
u

2
27
3
  18

Even though we
started with a
cylinder, p does not
enter the
calculation!

Cavalieri’s Theorem:
Two solids with equal altitudes and identical parallel cross
sections have the same volume.
Identical Cross Sections
p
Greg Kelly, Hanford High School, Richland, Washington
Photo by Vickie Kelly, 2003
Disk and Washer Methods
Limerick Nuclear Generating Station, Pottstown, Pennsylvania
0
1
2
1 2 3 4
y x
 Suppose I start with this curve.
My boss at the ACME Rocket
Company has assigned me to
build a nose cone in this shape.
So I put a piece of wood in a
lathe and turn it to a shape to
match the curve.

0
1
2
1 2 3 4
y x

How could we find the volume
of the cone?
One way would be to cut it into a
series of thin slices (flat cylinders)
and add their volumes.
The volume of each flat
cylinder (disk) is:
2
the thickness
r
p 
In this case:
r= the y value of the function
thickness = a small change
in x = dx
p  
2
x dx

0
1
2
1 2 3 4
y x

The volume of each flat
cylinder (disk) is:
2
the thickness
r
p 
If we add the volumes, we get:
 
2
4
0
x dx
p

4
0
x dx
p
 
4
2
0
2
x
p
 8p

p  
2
x dx

This application of the method of slicing is called the
disk method. The shape of the slice is a disk, so we
use the formula for the area of a circle to find the
volume of the disk.
If the shape is rotated about the x-axis, then the formula is:
2
b
a
V y dx
p
 
Since we will be using the disk method to rotate shapes
about other lines besides the x-axis, we will not have this
formula on the formula quizzes.
2
b
a
V x dy
p
 
A shape rotated about the y-axis would be:

The region between the curve , and the
y-axis is revolved about the y-axis. Find the volume.
1
x
y
 1 4
y
 
0
1
2
3
4
1
y x
1 1
2
3
4
1
.707
2

1
.577
3

1
2
We use a horizontal disk.
dy
The thickness is dy.
The radius is the x value of the
function .
1
y

2
4
1
1
V dy
y
p
 
  
 
 

volume of disk
4
1
1
dy
y
p
 
4
1
ln y
p
  
ln4 ln1
p
 
0 2
ln 2
p
 2 ln2
p


The natural draft cooling tower
shown at left is about 500 feet
high and its shape can be
approximated by the graph of
this equation revolved about
the y-axis:
2
.000574 .439 185
x y y
  
x
y
500 ft
 
500 2
2
0
.000574 .439 185
y y dy
p  

The volume can be calculated using the disk method with
a horizontal disk.
3
24,700,000 ft


0
1
2
3
4
1 2
The region bounded by
and is
revolved about the y-axis.
Find the volume.
2
y x
 2
y x

The “disk” now has a hole in
it, making it a “washer”.
If we use a horizontal slice:
The volume of the washer is:  
2 2
thickness
R r
p p
 
 
2 2
R r dy
p 
outer
radius
inner
radius
2
y x

2
y
x

2
y x

y x

2
y x

2
y x

 
2
2
4
0 2
y
V y dy
p
 
 
 
 
 
 
 
 

4
2
0
1
4
V y y dy
p
 
 
 
 

4
2
0
1
4
V y y dy
p
 

4
2 3
0
1 1
2 12
y y
p
 
 
 
 
16
8
3
p
 
 
 
 
8
3
p


This application of the method of slicing is called the
washer method. The shape of the slice is a circle
with a hole in it, so we subtract the area of the inner
circle from the area of the outer circle.
The washer method formula is: 2 2
b
a
V R r dx
p
 

Like the disk method, this formula will not be on the
formula quizzes. I want you to understand the formula.

0
1
2
3
4
1 2
2
y x

If the same region is
rotated about the line x=2:
2
y x

The outer radius is:
2
2
y
R  
R
The inner radius is:
2
r y
 
r
2
y x

2
y
x

2
y x

y x

4
2 2
0
V R r dy
p
 

 
2
2
4
0
2 2
2
y
y dy
p
 
   
 
 

 
2
4
0
4 2 4 4
4
y
y y y dy
p
 
     
 
 

2
4
0
4 2 4 4
4
y
y y y dy
p
     

1
4
2 2
0
1
3 4
4
y y y dy
p
   

4
3
2 3 2
0
3 1 8
2 12 3
y y y
p
 
    
 
 
16 64
24
3 3
p
 
    
 
 
8
3
p

p
Find the volume of the region
bounded by , ,
and revolved about the y-
axis.
2
1
y x
  2
x 
0
y 
0
1
2
3
4
5
1 2
2
1
y x
 
We can use the washer method if we split it into two parts:
 
2
5
2 2
1
2 1 2 1
y dy
p p
    

2
1
y x
  1
x y
 
outer
radius
inner
radius
thickness
of slice
cylinder
 
5
1
4 1 4
y dy
p p
  

5
1
5 4
y dy
p p
 

5
2
1
1
5 4
2
y y
p p
 
 
 
 
25 1
25 5 4
2 2
p p
 
   
   
   
 
   
 
25 9
4
2 2
p p
 
 
 
 
16
4
2
p p
 
8 4
p p
 12p


Japanese Spider Crab
Georgia Aquarium, Atlanta
0
1
2
3
4
5
1 2
If we take a vertical slice and revolve it about the y-axis
we get a cylinder.
cross section
If we add all of the cylinders together, we can reconstruct
the original object.
2
1
y x
 
Here is another
way we could
approach this
problem:

0
1
2
3
4
5
1 2
cross section
The volume of a thin, hollow cylinder is given by:
Lateral surface area of cylinder thickness

=2 thickness
r h
p   r is the x value of the function.
circumference height thickness
  
h is the y value of the function.
thickness is dx.
 
2
=2 1
x x dx
p 
r h
thickness
circumference
2
1
y x
 

0
1
2
3
4
5
1 2
cross section
=2 thickness
r h
p  
 
2
=2 1
x x dx
p 
r h
thickness
circumference
If we add all the cylinders from the
smallest to the largest:
 
2
2
0
2 1
x x dx
p 

2
3
0
2 x x dx
p 

2
4 2
0
1 1
2
4 2
x x
p
 

 
 
 
2 4 2
p 
12p
This is called the
shell method
because we use
cylindrical shells.
2
1
y x
 

0
1
2
3
4
1 2 3 4 5 6 7 8
 
2
4
10 16
9
y x x
   
Find the volume generated
when this shape is revolved
about the y axis.
We can’t solve for x,
so we can’t use a
horizontal slice
directly.

0
1
2
3
4
1 2 3 4 5 6 7 8
 
2
4
10 16
9
y x x
   
Shell method:
Lateral surface area of cylinder
=circumference height

=2 r h
p 
Volume of thin cylinder 2 r h dx
p
  
If we take a
vertical slice
and revolve it
about the y-axis
we get a cylinder.

0
1
2
3
4
1 2 3 4 5 6 7 8
 
2
4
10 16
9
y x x
   
Volume of thin cylinder 2 r h dx
p
  
 
8
2
2
4
2 10 16
9
x x x dx
p
 
  
 
 

r
h thickness
160p

3
502.655 cm

Note: When entering this into the calculator, be sure to enter
the multiplication symbol before the parenthesis.
circumference

When the strip is parallel to the axis of rotation, use the
shell method.
When the strip is perpendicular to the axis of rotation,
use the washer method.
p
Golden Spike National Historic Site, Promontory, Utah
Greg Kelly, Hanford High School, Richland, Washington
Photo by Vickie Kelly, 1999
Lengths of Curves
If we want to approximate the
length of a curve, over a short
distance we could measure a
straight line.
ds
dx
dy
By the pythagorean theorem:
2 2 2
ds dx dy
 
2 2
ds dx dy
 
2 2
ds dx dy
 
  We need to get dx out from
under the radical.
2 2
2
2 2
dx dy
S dx
dx dx
 
 
 
 

2
2
1
dy
L dx
dx
 
 
 
 

2
1
b
a
dy
L dx
dx
 
   
 

Length of Curve (Cartesian)
Lengths of Curves:

0
1
2
3
4
5
6
7
8
9
1 2 3
2
9
y x
  
0 3
x
 
Example: 2
9
y x
  
2
dy
x
dx
 
2
3
0
1
dy
L dx
dx
 
   
 

 
3 2
0
1 2
L x dx
  

3
2
0
1 4
L x dx
 

Now what? This doesn’t fit any formula, and
we started with a pretty simple example!
 
ln 37 6 3 37
4 2
L

  9.74708875861


The TI-89 gets:
0
1
2
3
4
5
6
7
8
9
1 2 3
2
9
y x
  
0 3
x
 
Example:
 
ln 37 6 3 37
4 2
L

  9.74708875861

2 2 2
9 3 C
 
2
81 9 C
 
2
90 C

9.49
C 
The curve should be
a little longer than
the straight line, so
our answer seems
reasonable.
If we check the length of a straight line:

0
1
2
3
4
5
6
7
8
9
1 2 3
2
9
y x
  
0 3
x
 
Example:
You may want to let the calculator find the
derivative too:
( ) ^ 2 9
x
 
( (1 ( , ) ^ 2), ,0,3)
d y x x


 
2
3
0
1
d
y dx
dx
 
  
 

Important:
You must delete
the variable y
when you are
done!

ENTER
ENTER
ENTER
F4 4
Y
STO
Y
9.74708875861

Example:
0
1
-1 1
2 2
1
x y
 
2 2
1
y x
 
2
1
y x
 
2
1
1
1
dy
L dx
dx

 
   
 

3.1415926536

p


If you have an equation that is easier to solve for x than
for y, the length of the curve can be found the same way.
0
1
2
3
1 2 3 4 5 6 7 8 9
2
x y
 0 3
y
 
^ 2
y
2
3
0
1
dx
L dy
dy
 
   
 

( (1 ( , ) ^ 2), ,0,3)
d x y y

 9.74708875861

Notice that x and y are reversed.
ENTER
X
STO

Surface Area
Greg Kelly, Hanford High School, Richland, Washington
(Photo not taken by Vickie Kelly)
Surface Area:
ds
r
Consider a curve rotated about the x-axis:
The surface area of this band is: 2 r ds
p 
The radius is the y-value of the
function, so the whole area is given by: 2
b
a
y ds
p

This is the same ds that we had in the “length
of curve” formula, so the formula becomes:
Surface Area about x-axis (Cartesian):
2
2 1
b
a
dy
S y dx
dx
p
 
   
 

To rotate about
the y-axis, just
reverse x and y
in the formula!

0
1
2
3
4
1 2 3
4
4
3
y x
  
Example:
Rotate
about the
y-axis.
4
4
3
y x
  
3
3
4
y x
  
3
3
4
x y
  
3
4
dx
dy
 

0
1
2
3
4
1 2 3
Example:
Rotate
about the
y-axis.
3
4
dx
dy
 
2
4
0
3 3
2 3 1
4 4
S y dy
p
   
   
   
   

4
0
3 25
2 3
4 16
y dy
p
 
  
 
 

4
0
3 5
2 3
4 4
y dy
p
 
  
 
 

4
2
0
5 3
3
2 8
y y
p
 
  
 
 
 
5
6 12
2
p
  
5
6
2
p
  15p

3
3
4
x y
  

0
1
2
3
4
1 2 3
4
4
3
y x
  
Example:
Rotate
about the
y-axis.
3
4
dx
dy
 
15p

s . .
S A rs
p

3 5
p
  
15p

From geometry:

Example:
0
1
2
3
1 2 3 4 5 6 7 8 9
y x
 rotated about x-axis.
2
9
0
2 1
dy
S y dx
dx
p
 
   
 

2 ( (1 ( , ) ^ 2), ,0,9)
y d y x x
p 

117.319
 
ENTER
( )
x ENTER
Y
STO
Example:
0
1
-1 1
2 2
1
y x
  2
1
y x
 
12.5663706144

rotated about x-axis.
2 2
1
x y
 
2
1
1
2 1
dy
S y dx
dx
p

 
   
 

2 ( (1 ( , ) ^ 2), , 1,1)
y d y x x
p  

2
. . 4
S A r
p

4p

12.5663706144


ENTER
(1 ^ 2)
x
 ENTER
Y
STO
PERTEMUAN 9B APLIKASI  INTEGRAL.ppt

More Related Content

Similar to PERTEMUAN 9B APLIKASI INTEGRAL.ppt

7.2 volumes by slicing disks and washers
7.2 volumes by slicing disks and washers7.2 volumes by slicing disks and washers
7.2 volumes by slicing disks and washersdicosmo178
 
with soln LEC 11- Solids of revolution (Part 3_ Shell Method).pptx
with soln LEC 11- Solids of revolution (Part 3_ Shell Method).pptxwith soln LEC 11- Solids of revolution (Part 3_ Shell Method).pptx
with soln LEC 11- Solids of revolution (Part 3_ Shell Method).pptxRueGustilo2
 
Section 6.3.pdf
Section 6.3.pdfSection 6.3.pdf
Section 6.3.pdfCalculusII
 
Solids-of-revolution-Disk-and-Ring-Method.pptx
Solids-of-revolution-Disk-and-Ring-Method.pptxSolids-of-revolution-Disk-and-Ring-Method.pptx
Solids-of-revolution-Disk-and-Ring-Method.pptxRueGustilo2
 
Lesson 13 volume of solids of revolution
Lesson 13 volume of solids of revolutionLesson 13 volume of solids of revolution
Lesson 13 volume of solids of revolutionLawrence De Vera
 
Calculas IMPROPER INTEGRALS AND APPLICATION OF INTEGRATION ppt
Calculas IMPROPER  INTEGRALS AND  APPLICATION  OF INTEGRATION pptCalculas IMPROPER  INTEGRALS AND  APPLICATION  OF INTEGRATION ppt
Calculas IMPROPER INTEGRALS AND APPLICATION OF INTEGRATION pptDrazzer_Dhruv
 
Math 2 Application of integration
Math 2 Application of integrationMath 2 Application of integration
Math 2 Application of integrationlightspeed2
 
Class9 surface areas & volumes
Class9  surface areas & volumesClass9  surface areas & volumes
Class9 surface areas & volumesanantababu
 
Volume using cylindrical shells ppt
Volume using cylindrical shells pptVolume using cylindrical shells ppt
Volume using cylindrical shells pptlovizabasharat
 
Calculus Application of Integration
Calculus Application of IntegrationCalculus Application of Integration
Calculus Application of Integrationsagar maniya
 
IMPROPER INTEGRALS AND APPLICATION OF INTEGRATION
IMPROPER  INTEGRALS AND  APPLICATION  OF INTEGRATIONIMPROPER  INTEGRALS AND  APPLICATION  OF INTEGRATION
IMPROPER INTEGRALS AND APPLICATION OF INTEGRATIONDrazzer_Dhruv
 
Area and volume practice
Area and volume practiceArea and volume practice
Area and volume practicetschmucker
 
My pp tno sound
My pp tno soundMy pp tno sound
My pp tno sounddicosmo178
 
Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)MariaFaithDalay2
 
Calculus notes ch 6
Calculus notes ch 6Calculus notes ch 6
Calculus notes ch 6debukks6
 
Surface area and volume
Surface area and volumeSurface area and volume
Surface area and volumeSwaraj Routray
 

Similar to PERTEMUAN 9B APLIKASI INTEGRAL.ppt (20)

7.2 volumes by slicing disks and washers
7.2 volumes by slicing disks and washers7.2 volumes by slicing disks and washers
7.2 volumes by slicing disks and washers
 
with soln LEC 11- Solids of revolution (Part 3_ Shell Method).pptx
with soln LEC 11- Solids of revolution (Part 3_ Shell Method).pptxwith soln LEC 11- Solids of revolution (Part 3_ Shell Method).pptx
with soln LEC 11- Solids of revolution (Part 3_ Shell Method).pptx
 
Section 6.3.pdf
Section 6.3.pdfSection 6.3.pdf
Section 6.3.pdf
 
Solids-of-revolution-Disk-and-Ring-Method.pptx
Solids-of-revolution-Disk-and-Ring-Method.pptxSolids-of-revolution-Disk-and-Ring-Method.pptx
Solids-of-revolution-Disk-and-Ring-Method.pptx
 
Lesson 13 volume of solids of revolution
Lesson 13 volume of solids of revolutionLesson 13 volume of solids of revolution
Lesson 13 volume of solids of revolution
 
Calculas IMPROPER INTEGRALS AND APPLICATION OF INTEGRATION ppt
Calculas IMPROPER  INTEGRALS AND  APPLICATION  OF INTEGRATION pptCalculas IMPROPER  INTEGRALS AND  APPLICATION  OF INTEGRATION ppt
Calculas IMPROPER INTEGRALS AND APPLICATION OF INTEGRATION ppt
 
Math 2 Application of integration
Math 2 Application of integrationMath 2 Application of integration
Math 2 Application of integration
 
Class9 surface areas & volumes
Class9  surface areas & volumesClass9  surface areas & volumes
Class9 surface areas & volumes
 
Volume using cylindrical shells ppt
Volume using cylindrical shells pptVolume using cylindrical shells ppt
Volume using cylindrical shells ppt
 
Calculus Application of Integration
Calculus Application of IntegrationCalculus Application of Integration
Calculus Application of Integration
 
IMPROPER INTEGRALS AND APPLICATION OF INTEGRATION
IMPROPER  INTEGRALS AND  APPLICATION  OF INTEGRATIONIMPROPER  INTEGRALS AND  APPLICATION  OF INTEGRATION
IMPROPER INTEGRALS AND APPLICATION OF INTEGRATION
 
Section 8.2
Section 8.2Section 8.2
Section 8.2
 
Area and volume practice
Area and volume practiceArea and volume practice
Area and volume practice
 
My pp tno sound
My pp tno soundMy pp tno sound
My pp tno sound
 
Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)
 
Maths slides
Maths slidesMaths slides
Maths slides
 
Calculus notes ch 6
Calculus notes ch 6Calculus notes ch 6
Calculus notes ch 6
 
Maths slides
Maths slidesMaths slides
Maths slides
 
Surface area and volume
Surface area and volumeSurface area and volume
Surface area and volume
 
Calc 7.3a
Calc 7.3aCalc 7.3a
Calc 7.3a
 

Recently uploaded

Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...muralinath2
 
FAIRSpectra - Towards a common data file format for SIMS images
FAIRSpectra - Towards a common data file format for SIMS imagesFAIRSpectra - Towards a common data file format for SIMS images
FAIRSpectra - Towards a common data file format for SIMS imagesAlex Henderson
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard Gill
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayAADYARAJPANDEY1
 
Predicting property prices with machine learning algorithms.pdf
Predicting property prices with machine learning algorithms.pdfPredicting property prices with machine learning algorithms.pdf
Predicting property prices with machine learning algorithms.pdfbinhminhvu04
 
GEOLOGICAL FIELD REPORT On Kaptai Rangamati Road-Cut Section.pdf
GEOLOGICAL FIELD REPORT  On  Kaptai Rangamati Road-Cut Section.pdfGEOLOGICAL FIELD REPORT  On  Kaptai Rangamati Road-Cut Section.pdf
GEOLOGICAL FIELD REPORT On Kaptai Rangamati Road-Cut Section.pdfUniversity of Barishal
 
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiologyBLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiologyNoelManyise1
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...Health Advances
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxmuralinath2
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxmuralinath2
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingAreesha Ahmad
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard Gill
 
Viksit bharat till 2047 India@2047.pptx
Viksit bharat till 2047  India@2047.pptxViksit bharat till 2047  India@2047.pptx
Viksit bharat till 2047 India@2047.pptxrakeshsharma20142015
 
Large scale production of streptomycin.pptx
Large scale production of streptomycin.pptxLarge scale production of streptomycin.pptx
Large scale production of streptomycin.pptxCherry
 
FAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable PredictionsFAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable PredictionsMichel Dumontier
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsAreesha Ahmad
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionpablovgd
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.Sérgio Sacani
 
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSELF-EXPLANATORY
 
Citrus Greening Disease and its Management
Citrus Greening Disease and its ManagementCitrus Greening Disease and its Management
Citrus Greening Disease and its Managementsubedisuryaofficial
 

Recently uploaded (20)

Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
 
FAIRSpectra - Towards a common data file format for SIMS images
FAIRSpectra - Towards a common data file format for SIMS imagesFAIRSpectra - Towards a common data file format for SIMS images
FAIRSpectra - Towards a common data file format for SIMS images
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
 
Predicting property prices with machine learning algorithms.pdf
Predicting property prices with machine learning algorithms.pdfPredicting property prices with machine learning algorithms.pdf
Predicting property prices with machine learning algorithms.pdf
 
GEOLOGICAL FIELD REPORT On Kaptai Rangamati Road-Cut Section.pdf
GEOLOGICAL FIELD REPORT  On  Kaptai Rangamati Road-Cut Section.pdfGEOLOGICAL FIELD REPORT  On  Kaptai Rangamati Road-Cut Section.pdf
GEOLOGICAL FIELD REPORT On Kaptai Rangamati Road-Cut Section.pdf
 
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiologyBLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
 
Viksit bharat till 2047 India@2047.pptx
Viksit bharat till 2047  India@2047.pptxViksit bharat till 2047  India@2047.pptx
Viksit bharat till 2047 India@2047.pptx
 
Large scale production of streptomycin.pptx
Large scale production of streptomycin.pptxLarge scale production of streptomycin.pptx
Large scale production of streptomycin.pptx
 
FAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable PredictionsFAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable Predictions
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
 
Citrus Greening Disease and its Management
Citrus Greening Disease and its ManagementCitrus Greening Disease and its Management
Citrus Greening Disease and its Management
 

PERTEMUAN 9B APLIKASI INTEGRAL.ppt

  • 2. Areas in the Plane Gateway Arch, St. Louis, Missouri Greg Kelly, Hanford High School, Richland, Washington Photo by Vickie Kelly, 2003
  • 3. 2 1 2 y x   2 y x   How can we find the area between these two curves? We could split the area into several sections, use subtraction and figure it out, but there is an easier way. 
  • 4. 2 1 2 y x   2 y x   Consider a very thin vertical strip. The length of the strip is: 1 2 y y  or     2 2 x x    Since the width of the strip is a very small change in x, we could call it dx. 
  • 5. 2 1 2 y x   2 y x   1 y 2 y 1 2 y y  dx Since the strip is a long thin rectangle, the area of the strip is:   2 length width 2 x x dx     If we add all the strips, we get: 2 2 1 2 x x dx     
  • 6. 2 1 2 y x   2 y x   2 2 1 2 x x dx     2 3 2 1 1 1 2 3 2 x x x    8 1 1 4 2 2 3 3 2                   8 1 1 6 2 3 3 2     36 16 12 2 3 6     27 6  9 2  
  • 7. The formula for the area between curves is:     1 2 Area b a f x f x dx        We will use this so much, that you won’t need to “memorize” the formula! 
  • 8. y x  2 y x   y x  2 y x   If we try vertical strips, we have to integrate in two parts: dx dx   2 4 0 2 2 x dx x x dx      We can find the same area using a horizontal strip. dy Since the width of the strip is dy, we find the length of the strip by solving for x in terms of y. y x  2 y x  2 y x   2 y x   
  • 9. y x  2 y x   We can find the same area using a horizontal strip. dy Since the width of the strip is dy, we find the length of the strip by solving for x in terms of y. y x  2 y x  2 y x   2 y x     2 2 0 2 y y dy    length of strip width of strip 2 2 3 0 1 1 2 2 3 y y y   8 2 4 3   10 3  
  • 10. General Strategy for Area Between Curves: 1 Decide on vertical or horizontal strips. (Pick whichever is easier to write formulas for the length of the strip, and/or whichever will let you integrate fewer times.) Sketch the curves. 2 3 Write an expression for the area of the strip. (If the width is dx, the length must be in terms of x. If the width is dy, the length must be in terms of y. 4 Find the limits of integration. (If using dx, the limits are x values; if using dy, the limits are y values.) 5 Integrate to find area. p
  • 11. Volumes by Slicing Greg Kelly, Hanford High School, Richland, Washington Photo by Vickie Kelly, 2001 Little Rock Central High School, Little Rock, Arkansas
  • 12. 3 3 3 Find the volume of the pyramid: Consider a horizontal slice through the pyramid. s dh The volume of the slice is s2dh. If we put zero at the top of the pyramid and make down the positive direction, then s=h. 0 3 h 2 slice V h dh  3 2 0 V h dh   3 3 0 1 3 h  9  This correlates with the formula: 1 3 V Bh  1 9 3 3    9  
  • 13. Method of Slicing: 1 Find a formula for V(x). (Note that I used V(x) instead of A(x).) Sketch the solid and a typical cross section. 2 3 Find the limits of integration. 4 Integrate V(x) to find volume. 
  • 14. x y A 45o wedge is cut from a cylinder of radius 3 as shown. Find the volume of the wedge. You could slice this wedge shape several ways, but the simplest cross section is a rectangle. If we let h equal the height of the slice then the volume of the slice is:   2 V x y h dx    Since the wedge is cut at a 45o angle: x h 45o h x  Since 2 2 9 x y   2 9 y x   
  • 15. x y   2 V x y h dx    h x  2 9 y x     2 2 9 V x x x dx     3 2 0 2 9 V x x dx    2 9 u x   2 du x dx     0 9 u    3 0 u  1 0 2 9 V u du   9 3 2 0 2 3 u  2 27 3   18  Even though we started with a cylinder, p does not enter the calculation! 
  • 16. Cavalieri’s Theorem: Two solids with equal altitudes and identical parallel cross sections have the same volume. Identical Cross Sections p
  • 17. Greg Kelly, Hanford High School, Richland, Washington Photo by Vickie Kelly, 2003 Disk and Washer Methods Limerick Nuclear Generating Station, Pottstown, Pennsylvania
  • 18. 0 1 2 1 2 3 4 y x  Suppose I start with this curve. My boss at the ACME Rocket Company has assigned me to build a nose cone in this shape. So I put a piece of wood in a lathe and turn it to a shape to match the curve. 
  • 19. 0 1 2 1 2 3 4 y x  How could we find the volume of the cone? One way would be to cut it into a series of thin slices (flat cylinders) and add their volumes. The volume of each flat cylinder (disk) is: 2 the thickness r p  In this case: r= the y value of the function thickness = a small change in x = dx p   2 x dx 
  • 20. 0 1 2 1 2 3 4 y x  The volume of each flat cylinder (disk) is: 2 the thickness r p  If we add the volumes, we get:   2 4 0 x dx p  4 0 x dx p   4 2 0 2 x p  8p  p   2 x dx 
  • 21. This application of the method of slicing is called the disk method. The shape of the slice is a disk, so we use the formula for the area of a circle to find the volume of the disk. If the shape is rotated about the x-axis, then the formula is: 2 b a V y dx p   Since we will be using the disk method to rotate shapes about other lines besides the x-axis, we will not have this formula on the formula quizzes. 2 b a V x dy p   A shape rotated about the y-axis would be: 
  • 22. The region between the curve , and the y-axis is revolved about the y-axis. Find the volume. 1 x y  1 4 y   0 1 2 3 4 1 y x 1 1 2 3 4 1 .707 2  1 .577 3  1 2 We use a horizontal disk. dy The thickness is dy. The radius is the x value of the function . 1 y  2 4 1 1 V dy y p           volume of disk 4 1 1 dy y p   4 1 ln y p    ln4 ln1 p   0 2 ln 2 p  2 ln2 p  
  • 23. The natural draft cooling tower shown at left is about 500 feet high and its shape can be approximated by the graph of this equation revolved about the y-axis: 2 .000574 .439 185 x y y    x y 500 ft   500 2 2 0 .000574 .439 185 y y dy p    The volume can be calculated using the disk method with a horizontal disk. 3 24,700,000 ft  
  • 24. 0 1 2 3 4 1 2 The region bounded by and is revolved about the y-axis. Find the volume. 2 y x  2 y x  The “disk” now has a hole in it, making it a “washer”. If we use a horizontal slice: The volume of the washer is:   2 2 thickness R r p p     2 2 R r dy p  outer radius inner radius 2 y x  2 y x  2 y x  y x  2 y x  2 y x    2 2 4 0 2 y V y dy p                  4 2 0 1 4 V y y dy p          4 2 0 1 4 V y y dy p    4 2 3 0 1 1 2 12 y y p         16 8 3 p         8 3 p  
  • 25. This application of the method of slicing is called the washer method. The shape of the slice is a circle with a hole in it, so we subtract the area of the inner circle from the area of the outer circle. The washer method formula is: 2 2 b a V R r dx p    Like the disk method, this formula will not be on the formula quizzes. I want you to understand the formula. 
  • 26. 0 1 2 3 4 1 2 2 y x  If the same region is rotated about the line x=2: 2 y x  The outer radius is: 2 2 y R   R The inner radius is: 2 r y   r 2 y x  2 y x  2 y x  y x  4 2 2 0 V R r dy p      2 2 4 0 2 2 2 y y dy p              2 4 0 4 2 4 4 4 y y y y dy p              2 4 0 4 2 4 4 4 y y y y dy p        1 4 2 2 0 1 3 4 4 y y y dy p      4 3 2 3 2 0 3 1 8 2 12 3 y y y p            16 64 24 3 3 p            8 3 p  p
  • 27. Find the volume of the region bounded by , , and revolved about the y- axis. 2 1 y x   2 x  0 y  0 1 2 3 4 5 1 2 2 1 y x   We can use the washer method if we split it into two parts:   2 5 2 2 1 2 1 2 1 y dy p p       2 1 y x   1 x y   outer radius inner radius thickness of slice cylinder   5 1 4 1 4 y dy p p     5 1 5 4 y dy p p    5 2 1 1 5 4 2 y y p p         25 1 25 5 4 2 2 p p                       25 9 4 2 2 p p         16 4 2 p p   8 4 p p  12p   Japanese Spider Crab Georgia Aquarium, Atlanta
  • 28. 0 1 2 3 4 5 1 2 If we take a vertical slice and revolve it about the y-axis we get a cylinder. cross section If we add all of the cylinders together, we can reconstruct the original object. 2 1 y x   Here is another way we could approach this problem: 
  • 29. 0 1 2 3 4 5 1 2 cross section The volume of a thin, hollow cylinder is given by: Lateral surface area of cylinder thickness  =2 thickness r h p   r is the x value of the function. circumference height thickness    h is the y value of the function. thickness is dx.   2 =2 1 x x dx p  r h thickness circumference 2 1 y x   
  • 30. 0 1 2 3 4 5 1 2 cross section =2 thickness r h p     2 =2 1 x x dx p  r h thickness circumference If we add all the cylinders from the smallest to the largest:   2 2 0 2 1 x x dx p   2 3 0 2 x x dx p   2 4 2 0 1 1 2 4 2 x x p          2 4 2 p  12p This is called the shell method because we use cylindrical shells. 2 1 y x   
  • 31. 0 1 2 3 4 1 2 3 4 5 6 7 8   2 4 10 16 9 y x x     Find the volume generated when this shape is revolved about the y axis. We can’t solve for x, so we can’t use a horizontal slice directly. 
  • 32. 0 1 2 3 4 1 2 3 4 5 6 7 8   2 4 10 16 9 y x x     Shell method: Lateral surface area of cylinder =circumference height  =2 r h p  Volume of thin cylinder 2 r h dx p    If we take a vertical slice and revolve it about the y-axis we get a cylinder. 
  • 33. 0 1 2 3 4 1 2 3 4 5 6 7 8   2 4 10 16 9 y x x     Volume of thin cylinder 2 r h dx p      8 2 2 4 2 10 16 9 x x x dx p           r h thickness 160p  3 502.655 cm  Note: When entering this into the calculator, be sure to enter the multiplication symbol before the parenthesis. circumference 
  • 34. When the strip is parallel to the axis of rotation, use the shell method. When the strip is perpendicular to the axis of rotation, use the washer method. p
  • 35. Golden Spike National Historic Site, Promontory, Utah Greg Kelly, Hanford High School, Richland, Washington Photo by Vickie Kelly, 1999 Lengths of Curves
  • 36. If we want to approximate the length of a curve, over a short distance we could measure a straight line. ds dx dy By the pythagorean theorem: 2 2 2 ds dx dy   2 2 ds dx dy   2 2 ds dx dy     We need to get dx out from under the radical. 2 2 2 2 2 dx dy S dx dx dx          2 2 1 dy L dx dx          2 1 b a dy L dx dx          Length of Curve (Cartesian) Lengths of Curves: 
  • 37. 0 1 2 3 4 5 6 7 8 9 1 2 3 2 9 y x    0 3 x   Example: 2 9 y x    2 dy x dx   2 3 0 1 dy L dx dx            3 2 0 1 2 L x dx     3 2 0 1 4 L x dx    Now what? This doesn’t fit any formula, and we started with a pretty simple example!   ln 37 6 3 37 4 2 L    9.74708875861   The TI-89 gets:
  • 38. 0 1 2 3 4 5 6 7 8 9 1 2 3 2 9 y x    0 3 x   Example:   ln 37 6 3 37 4 2 L    9.74708875861  2 2 2 9 3 C   2 81 9 C   2 90 C  9.49 C  The curve should be a little longer than the straight line, so our answer seems reasonable. If we check the length of a straight line: 
  • 39. 0 1 2 3 4 5 6 7 8 9 1 2 3 2 9 y x    0 3 x   Example: You may want to let the calculator find the derivative too: ( ) ^ 2 9 x   ( (1 ( , ) ^ 2), ,0,3) d y x x     2 3 0 1 d y dx dx         Important: You must delete the variable y when you are done!  ENTER ENTER ENTER F4 4 Y STO Y 9.74708875861 
  • 40. Example: 0 1 -1 1 2 2 1 x y   2 2 1 y x   2 1 y x   2 1 1 1 dy L dx dx           3.1415926536  p  
  • 41. If you have an equation that is easier to solve for x than for y, the length of the curve can be found the same way. 0 1 2 3 1 2 3 4 5 6 7 8 9 2 x y  0 3 y   ^ 2 y 2 3 0 1 dx L dy dy          ( (1 ( , ) ^ 2), ,0,3) d x y y   9.74708875861  Notice that x and y are reversed. ENTER X STO 
  • 42. Surface Area Greg Kelly, Hanford High School, Richland, Washington (Photo not taken by Vickie Kelly)
  • 43. Surface Area: ds r Consider a curve rotated about the x-axis: The surface area of this band is: 2 r ds p  The radius is the y-value of the function, so the whole area is given by: 2 b a y ds p  This is the same ds that we had in the “length of curve” formula, so the formula becomes: Surface Area about x-axis (Cartesian): 2 2 1 b a dy S y dx dx p          To rotate about the y-axis, just reverse x and y in the formula! 
  • 44. 0 1 2 3 4 1 2 3 4 4 3 y x    Example: Rotate about the y-axis. 4 4 3 y x    3 3 4 y x    3 3 4 x y    3 4 dx dy   
  • 45. 0 1 2 3 4 1 2 3 Example: Rotate about the y-axis. 3 4 dx dy   2 4 0 3 3 2 3 1 4 4 S y dy p                  4 0 3 25 2 3 4 16 y dy p           4 0 3 5 2 3 4 4 y dy p           4 2 0 5 3 3 2 8 y y p            5 6 12 2 p    5 6 2 p   15p  3 3 4 x y    
  • 46. 0 1 2 3 4 1 2 3 4 4 3 y x    Example: Rotate about the y-axis. 3 4 dx dy   15p  s . . S A rs p  3 5 p    15p  From geometry: 
  • 47. Example: 0 1 2 3 1 2 3 4 5 6 7 8 9 y x  rotated about x-axis. 2 9 0 2 1 dy S y dx dx p          2 ( (1 ( , ) ^ 2), ,0,9) y d y x x p   117.319   ENTER ( ) x ENTER Y STO
  • 48. Example: 0 1 -1 1 2 2 1 y x   2 1 y x   12.5663706144  rotated about x-axis. 2 2 1 x y   2 1 1 2 1 dy S y dx dx p           2 ( (1 ( , ) ^ 2), , 1,1) y d y x x p    2 . . 4 S A r p  4p  12.5663706144   ENTER (1 ^ 2) x  ENTER Y STO