SlideShare a Scribd company logo
(1) Area Below x axis
                        Areas
           y
                                    y = f(x)




                                x
(1) Area Below x axis
                             Areas
           y
                                         y = f(x)


                        A1


                    a        b       x
(1) Area Below x axis
                             Areas
           y
                                         y = f(x)


                        A1


                    a        b       x


 f  x dx  0
 b

a
(1) Area Below x axis
                               Areas
             y
                                           y = f(x)


                          A1


                      a        b       x


   f  x dx  0
   b

   a

 A1   f  x dx
         b

        a
(1) Area Below x axis
                               Areas
             y
                                                y = f(x)


                          A1

                                        c   x
                      a        b   A2

   f  x dx  0
   b

   a

 A1   f  x dx
         b

        a
(1) Area Below x axis
                                   Areas
             y
                                                         y = f(x)


                              A1

                                            c        x
                          a        b   A2

                                                 f  x dx  0
                                                 c
          f  x dx  0
      b
  a                                            b


 A1   f  x dx
              b

             a
(1) Area Below x axis
                                   Areas
             y
                                                         y = f(x)


                              A1

                                            c        x
                          a        b   A2

                                                 f  x dx  0
                                                 c
          f  x dx  0
      b
  a                                            b

                                             A2    f  x dx
                                                         c
 A1   f  x dx
              b

             a                                           b
Area below x axis is given by;
Area below x axis is given by;

                 A    f  x dx
                        c

                        b
Area below x axis is given by;

                 A    f  x dx
                         c

                         b

                        OR

                         f  x dx
                         c
                    
                        b
Area below x axis is given by;

                 A    f  x dx
                            c

                         b

                        OR

                         f  x dx
                            c
                    
                        b


                            OR
                      f  x dx
                        b

                        c
e.g. (i)        y       y  x3




           -1       1   x
e.g. (i)        y       y  x3          0        1
                                 A    x dx   x 3 dx
                                            3
                                       1        0




           -1       1   x
e.g. (i)        y       y  x3          0         1
                                 A    x dx   x 3 dx
                                            3
                                       1         0


                                  
                                       4
                                         x 1  4 x 0
                                       1 40 1 41

           -1       1   x
e.g. (i)        y       y  x3          0        1
                                 A    x dx   x 3 dx
                                            3
                                       1        0


                                  
                                      4
                                        x 1  4 x 0
                                      1 40 1 41

           -1       1   x             1
                                      4
                                                 4
                                                     
                                    0   1   4  0
                                                      1
                                                      4
                                                         1

                                    1 1
                                   
                                    4 4
                                    1
                                   units 2
                                    2
e.g. (i)        y             y  x3          0        1
                                       A    x dx   x 3 dx
                                                  3
                                             1        0


                                        
                                            4
                                              x 1  4 x 0
                                            1 40 1 41

           -1             1   x             1
                                            4
                                                       4
                                                           
                                          0   1   4  0
                                                            1
                                                            4
                                                               1

                                          1 1
                                         
OR using symmetry of odd function         4 4
                                          1
                                         units 2
                                          2
e.g. (i)         y            y  x3          0        1
                                       A    x dx   x 3 dx
                                                  3
                                             1        0


                                        
                                            4
                                              x 1  4 x 0
                                            1 40 1 41

           -1             1   x             1
                                            4
                                                       4
                                                           
                                          0   1   4  0
                                                            1
                                                            4
                                                               1

                                          1 1
                                         
OR using symmetry of odd function         4 4
                                          1
       1
A  2  x 3 dx                           units 2
       0                                  2
e.g. (i)         y            y  x3          0        1
                                       A    x dx   x 3 dx
                                                  3
                                             1        0


                                        
                                            4
                                              x 1  4 x 0
                                            1 40 1 41

           -1             1   x             1
                                            4
                                                       4
                                                           
                                          0   1   4  0
                                                            1
                                                            4
                                                               1

                                          1 1
                                         
OR using symmetry of odd function         4 4
                                          1
       1
A  2  x 3 dx                           units 2
       0                                  2
   x 0
   1 41
   2
e.g. (i)         y            y  x3          0        1
                                       A    x dx   x 3 dx
                                                  3
                                             1        0


                                        
                                            4
                                              x 1  4 x 0
                                            1 40 1 41

           -1             1   x             1
                                            4
                                                       4
                                                           
                                          0   1   4  0
                                                            1
                                                            4
                                                               1

                                          1 1
                                         
OR using symmetry of odd function         4 4
                                          1
       1
A  2  x 3 dx                           units 2
       0                                  2
   x 0
   1 41
   2
    4  0
   1
     1
   2
   1
   units 2
   2
(ii)             y   y  x x  1 x  2 




       -2   -1         x
(ii)                           y    y  x x  1 x  2 




        -2            -1              x




       A   x  3 x  2 x dx   x 3  3 x 2  2 x dx
             1                      0
                  3        2
             2                      1
(ii)                           y        y  x x  1 x  2 




        -2            -1                  x




       A   x  3 x  2 x dx   x 3  3 x 2  2 x dx
             1                          0
                  3        2
             2                         1
                                   1                    1

           x 4  x3  x 2    x 4  x3  x 2 
             1                     1
           4
                            2  4
                                               0
                                                 
(ii)                           y        y  x x  1 x  2 




        -2            -1                  x




       A   x  3 x  2 x dx   x 3  3 x 2  2 x dx
             1                          0
                  3        2
             2                         1
                                   1                    1

           x 4  x3  x 2    x 4  x3  x 2 
             1                        1
           4
                             2  4
                                                    0
                                                      
          2 1  14   13   12    1  2 4   2 3   2 2   0
                                                                            
              4                              4                             
           1
          units 2
           2
(2) Area On The y axis
 y
     y = f(x)
           (b,d)


                   (a,c)

                           x
(2) Area On The y axis         (1) Make x the subject
 y                                  i.e. x = g(y)
     y = f(x)
           (b,d)


                   (a,c)

                           x
(2) Area On The y axis         (1) Make x the subject
 y                                  i.e. x = g(y)
     y = f(x)                  (2) Substitute the y coordinates
           (b,d)


                   (a,c)

                           x
(2) Area On The y axis         (1) Make x the subject
 y                                  i.e. x = g(y)
     y = f(x)                  (2) Substitute the y coordinates
           (b,d)                        d
                               3 A   g  y dy
                                        c
                   (a,c)

                           x
(2) Area On The y axis                (1) Make x the subject
  y                                        i.e. x = g(y)
       y = f(x)                       (2) Substitute the y coordinates
             (b,d)                             d
                                      3 A   g  y dy
                                               c
                     (a,c)
                               x

e.g.        y                y  x4




                     1   2     x
(2) Area On The y axis                  (1) Make x the subject
  y                                          i.e. x = g(y)
       y = f(x)                         (2) Substitute the y coordinates
             (b,d)                               d
                                        3 A   g  y dy
                                                 c
                     (a,c)
                               x

e.g.        y                y  x4
                                    1
                             x y   4




                     1   2     x
(2) Area On The y axis                  (1) Make x the subject
  y                                          i.e. x = g(y)
       y = f(x)                         (2) Substitute the y coordinates
             (b,d)                                d
                                        3 A   g  y dy
                                                      c
                     (a,c)
                                             16   1
                               x         A   y dy
                                                  4

                                             1

e.g.        y                y  x4
                                    1
                             x y   4




                     1   2     x
(2) Area On The y axis                  (1) Make x the subject
  y                                          i.e. x = g(y)
       y = f(x)                         (2) Substitute the y coordinates
             (b,d)                                d
                                        3 A   g  y dy
                                                      c
                     (a,c)
                                             16   1
                              x          A   y dy
                                                  4

                                             1
                                                      5 16
e.g.        y                yx    4
                                            4 
                                    1       y      4
                                            5  1
                             x y   4




                     1   2     x
(2) Area On The y axis                  (1) Make x the subject
  y                                          i.e. x = g(y)
       y = f(x)                         (2) Substitute the y coordinates
             (b,d)                                d
                                        3 A   g  y dy
                                                      c
                     (a,c)
                                             16   1
                              x          A   y dy
                                                  4

                                             1
                                                      5 16
e.g.        y                yx    4
                                            4 
                                    1       y      4
                                            5  1
                             x y   4

                                             4  5 5
                                            16 4  14 
                                             5          
                     1   2     x             124
                                                units 2
                                              5
(3) Area Between Two Curves
 y




                              x
(3) Area Between Two Curves
 y                                y = f(x)…(1)




                              x
(3) Area Between Two Curves
 y                    y = g(x)…(2)       y = f(x)…(1)




                                     x
(3) Area Between Two Curves
 y                    y = g(x)…(2)       y = f(x)…(1)




     a          b                    x
(3) Area Between Two Curves
 y                       y = g(x)…(2)         y = f(x)…(1)




      a           b                      x

     Area = Area under (1) – Area under (2)
(3) Area Between Two Curves
 y                            y = g(x)…(2)       y = f(x)…(1)




      a              b                       x

     Area = Area under (1) – Area under (2)
            b             b
            f  x dx   g  x dx
            a             a
(3) Area Between Two Curves
 y                             y = g(x)…(2)       y = f(x)…(1)




      a               b                       x

     Area = Area under (1) – Area under (2)
            b              b
            f  x dx   g  x dx
            a              a
            b
             f  x   g  x dx
            a
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5    yx




                         x
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5    yx




                         x
             x x
              5
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5      yx




                          x
             x x
              5

             x5  x  0
             xx 4  1  0
             x  0 or x  1
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5      yx



                                           A   x  x 5 dx
                                                1

                          x                     0
             x x
              5

             x5  x  0
             xx 4  1  0
             x  0 or x  1
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5      yx



                                           A   x  x 5 dx
                                                1

                          x                     0
             x x
              5
                                                                1
                                               1    1 
             x5  x  0                        x2  x6 
                                               2    6 0
             xx 4  1  0
             x  0 or x  1
e.g. Find the area enclosed between the curves y  x 5 and y  x
     in the positive quadrant.
        y
              y  x5      yx



                                           A   x  x 5 dx
                                                1

                          x                     0
             x x
              5
                                                                1
                                               1    1 
             x5  x  0                        x2  x6 
                                               2    6 0
             xx 4  1  0
                                              1 1 2  1 1 6   0
                                               
             x  0 or x  1                             
                                              2       6     
                                              1
                                              unit 2
                                              3
2002 HSC Question 4d)




The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
                         x2  5x  4  0
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
                          x2  5x  4  0
                       x  4  x  1  0
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
                          x2  5x  4  0
                       x  4  x  1  0
                     x  1 or x  4
2002 HSC Question 4d)




 The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A                                               (2)
  To find points of intersection, solve simultaneously
                        x  4  x2  4x
                          x2  5x  4  0
                       x  4  x  1  0
                     x  1 or x  4
                        A is (1, 3)
(ii) Find the area of the shaded region bounded by y  x 2  4 x and   (3)
   y  x  4.
(ii) Find the area of the shaded region bounded by y  x 2  4 x and   (3)
   y  x  4.          4
                  A    x  4   x 2  4 x  dx
                       1
(ii) Find the area of the shaded region bounded by y  x 2  4 x and   (3)
   y  x  4.          4
                  A    x  4   x 2  4 x  dx
                       1
                       4
                        x 2  5 x  4 dx
                       1
(ii) Find the area of the shaded region bounded by y  x 2  4 x and   (3)
   y  x  4.          4
                  A    x  4   x 2  4 x  dx
                       1
                       4
                        x 2  5 x  4 dx
                       1
                                                4
                       1 x3  5 x 2  4 x 
                    
                      3        2           1
                                            
(ii) Find the area of the shaded region bounded by y  x 2  4 x and    (3)
   y  x  4.          4
                  A    x  4   x 2  4 x  dx
                       1
                       4
                        x 2  5 x  4 dx
                       1
                                                4

                      1 x3  5 x 2  4 x 
                       3        2           1
                                             
                        1 3 5 2
                                                      
                                                   1 3 5 2
                       4    4   4  4    1  1  4 1
                        3         2                3     2             
(ii) Find the area of the shaded region bounded by y  x 2  4 x and    (3)
     y  x  4.         4
                   A    x  4   x 2  4 x  dx
                        1
                        4
                        x 2  5 x  4 dx
                        1
                                                4

                      1 x3  5 x 2  4 x 
                       3        2           1
                                             
                        1 3 5 2
                                                    
                                                   1 3 5 2
                       4    4   4  4    1  1  4 1
                        3         2                3     2             
                        9
                         units 2
                        2
2005 HSC Question 8b)                                              (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.
2005 HSC Question 8b)                                                (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.

 Note: area must be broken up into two areas, due to the different
 boundaries.
2005 HSC Question 8b)                                                (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.

 Note: area must be broken up into two areas, due to the different
 boundaries.
2005 HSC Question 8b)                                                (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.

 Note: area must be broken up into two areas, due to the different
 boundaries.

 Area between circle and parabola
2005 HSC Question 8b)                                                (3)




The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.

 Note: area must be broken up into two areas, due to the different
 boundaries.

 Area between circle and parabola and area between circle and x axis
It is easier to subtract the area under the parabola from the quadrant.
It is easier to subtract the area under the parabola from the quadrant.
                                   1
                    A    2     x 2  3 x  2 dx
                         1      2

                         4         0
It is easier to subtract the area under the parabola from the quadrant.
                                   1
                    A    2     x 2  3 x  2 dx
                         1      2

                         4         0
                                                 1

                          x  x  2x
                               1 3 3 2
                             3
                                    2          0
                                                
It is easier to subtract the area under the parabola from the quadrant.
                                   1
                    A    2     x 2  3 x  2 dx
                         1      2

                         4         0
                                                 1

                          x  x  2x
                               1 3 3 2
                             3
                                    2          0
                                                

                             1 3 3 2
                         1  1  2 1  0
                              3       2            
It is easier to subtract the area under the parabola from the quadrant.
                                     1
                    A    2     x 2  3 x  2 dx
                         1       2

                         4           0
                                                 1

                          x  x  2x
                               1 3 3 2
                             3
                                      2        0
                                                

                             1 3 3 2
                         1  1  2 1  0
                              3         2          
                          5  units 2
                                 
                              6
Exercise 11E; 2bceh, 3bd, 4bd, 5bd, 7begj, 8d, 9a, 11, 18*


     Exercise 11F; 1bdeh, 4bd, 7d, 10, 11b, 13, 15*

More Related Content

What's hot

X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)Nigel Simmons
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and divisionNigel Simmons
 
Figures
FiguresFigures
Figures
Drradz Maths
 
Cg
CgCg
Formula List Math 1230
Formula List Math 1230Formula List Math 1230
Formula List Math 1230
samhui48
 
X2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsX2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsNigel Simmons
 

What's hot (9)

Exercise #10 notes
Exercise #10 notesExercise #10 notes
Exercise #10 notes
 
X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
Mat 128 11 3
Mat 128 11 3Mat 128 11 3
Mat 128 11 3
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
 
Figures
FiguresFigures
Figures
 
Cg
CgCg
Cg
 
Formula List Math 1230
Formula List Math 1230Formula List Math 1230
Formula List Math 1230
 
X2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsX2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functions
 

Similar to 11X1 T14 04 areas

11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)Nigel Simmons
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integralsUrbanX4
 
X2 t07 02 transformations (2012)
X2 t07 02 transformations (2012)X2 t07 02 transformations (2012)
X2 t07 02 transformations (2012)Nigel Simmons
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt project
cea0001
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
Kyro Fitkry
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite IntegralSilvius
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculusgoldenratio618
 
Dsp U Lec07 Realization Of Discrete Time Systems
Dsp U   Lec07 Realization Of Discrete Time SystemsDsp U   Lec07 Realization Of Discrete Time Systems
Dsp U Lec07 Realization Of Discrete Time Systems
taha25
 
Derivadas
DerivadasDerivadas
Derivadas
romgarcia
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guideakabaka12
 
[4] num integration
[4] num integration[4] num integration
[4] num integrationikhulsys
 
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Mohd Paub
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)Nigel Simmons
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)Nigel Simmons
 
Areas of bounded regions
Areas of bounded regionsAreas of bounded regions
Areas of bounded regionsHimani Asija
 

Similar to 11X1 T14 04 areas (20)

11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)
 
Integration. area undera curve
Integration. area undera curveIntegration. area undera curve
Integration. area undera curve
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
 
X2 t07 02 transformations (2012)
X2 t07 02 transformations (2012)X2 t07 02 transformations (2012)
X2 t07 02 transformations (2012)
 
Business math
Business mathBusiness math
Business math
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt project
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite Integral
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
 
Dsp U Lec07 Realization Of Discrete Time Systems
Dsp U   Lec07 Realization Of Discrete Time SystemsDsp U   Lec07 Realization Of Discrete Time Systems
Dsp U Lec07 Realization Of Discrete Time Systems
 
Derivadas
DerivadasDerivadas
Derivadas
 
Exercise #8 notes
Exercise #8 notesExercise #8 notes
Exercise #8 notes
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guide
 
[4] num integration
[4] num integration[4] num integration
[4] num integration
 
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
Comparison Of Dengue Cases Between Chosen District In Selangor By Using Fouri...
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)
 
Cs 601
Cs 601Cs 601
Cs 601
 
Exercise #11 notes
Exercise #11 notesExercise #11 notes
Exercise #11 notes
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)
 
Areas of bounded regions
Areas of bounded regionsAreas of bounded regions
Areas of bounded regions
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Atul Kumar Singh
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
Digital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion DesignsDigital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion Designs
chanes7
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
thanhdowork
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Marketing internship report file for MBA
Marketing internship report file for MBAMarketing internship report file for MBA
Marketing internship report file for MBA
gb193092
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
Normal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of LabourNormal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of Labour
Wasim Ak
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Dr. Vinod Kumar Kanvaria
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
EduSkills OECD
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
Scholarhat
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 

Recently uploaded (20)

The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
Digital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion DesignsDigital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion Designs
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Marketing internship report file for MBA
Marketing internship report file for MBAMarketing internship report file for MBA
Marketing internship report file for MBA
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
Normal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of LabourNormal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of Labour
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 

11X1 T14 04 areas

  • 1. (1) Area Below x axis Areas y y = f(x) x
  • 2. (1) Area Below x axis Areas y y = f(x) A1 a b x
  • 3. (1) Area Below x axis Areas y y = f(x) A1 a b x  f  x dx  0 b a
  • 4. (1) Area Below x axis Areas y y = f(x) A1 a b x  f  x dx  0 b a  A1   f  x dx b a
  • 5. (1) Area Below x axis Areas y y = f(x) A1 c x a b A2  f  x dx  0 b a  A1   f  x dx b a
  • 6. (1) Area Below x axis Areas y y = f(x) A1 c x a b A2  f  x dx  0 c f  x dx  0 b a b  A1   f  x dx b a
  • 7. (1) Area Below x axis Areas y y = f(x) A1 c x a b A2  f  x dx  0 c f  x dx  0 b a b  A2    f  x dx c  A1   f  x dx b a b
  • 8. Area below x axis is given by;
  • 9. Area below x axis is given by; A    f  x dx c b
  • 10. Area below x axis is given by; A    f  x dx c b OR  f  x dx c  b
  • 11. Area below x axis is given by; A    f  x dx c b OR  f  x dx c  b OR   f  x dx b c
  • 12. e.g. (i) y y  x3 -1 1 x
  • 13. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0 -1 1 x
  • 14. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x
  • 15. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x 1 4  4    0   1   4  0 1 4 1 1 1   4 4 1  units 2 2
  • 16. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x 1 4  4    0   1   4  0 1 4 1 1 1   OR using symmetry of odd function 4 4 1  units 2 2
  • 17. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x 1 4  4    0   1   4  0 1 4 1 1 1   OR using symmetry of odd function 4 4 1 1 A  2  x 3 dx  units 2 0 2
  • 18. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x 1 4  4    0   1   4  0 1 4 1 1 1   OR using symmetry of odd function 4 4 1 1 A  2  x 3 dx  units 2 0 2  x 0 1 41 2
  • 19. e.g. (i) y y  x3 0 1 A    x dx   x 3 dx 3 1 0  4 x 1  4 x 0 1 40 1 41 -1 1 x 1 4  4    0   1   4  0 1 4 1 1 1   OR using symmetry of odd function 4 4 1 1 A  2  x 3 dx  units 2 0 2  x 0 1 41 2   4  0 1 1 2 1  units 2 2
  • 20. (ii) y y  x x  1 x  2  -2 -1 x
  • 21. (ii) y y  x x  1 x  2  -2 -1 x A   x  3 x  2 x dx   x 3  3 x 2  2 x dx 1 0 3 2 2 1
  • 22. (ii) y y  x x  1 x  2  -2 -1 x A   x  3 x  2 x dx   x 3  3 x 2  2 x dx 1 0 3 2 2 1 1 1   x 4  x3  x 2    x 4  x3  x 2  1 1 4   2  4   0 
  • 23. (ii) y y  x x  1 x  2  -2 -1 x A   x  3 x  2 x dx   x 3  3 x 2  2 x dx 1 0 3 2 2 1 1 1   x 4  x3  x 2    x 4  x3  x 2  1 1 4   2  4   0   2 1  14   13   12    1  2 4   2 3   2 2   0     4   4  1  units 2 2
  • 24. (2) Area On The y axis y y = f(x) (b,d) (a,c) x
  • 25. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (b,d) (a,c) x
  • 26. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) (a,c) x
  • 27. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) x
  • 28. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) x e.g. y y  x4 1 2 x
  • 29. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) x e.g. y y  x4 1 x y 4 1 2 x
  • 30. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) 16 1 x A   y dy 4 1 e.g. y y  x4 1 x y 4 1 2 x
  • 31. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) 16 1 x A   y dy 4 1 5 16 e.g. y yx 4 4  1  y  4 5  1 x y 4 1 2 x
  • 32. (2) Area On The y axis (1) Make x the subject y i.e. x = g(y) y = f(x) (2) Substitute the y coordinates (b,d) d 3 A   g  y dy c (a,c) 16 1 x A   y dy 4 1 5 16 e.g. y yx 4 4  1  y  4 5  1 x y 4 4  5 5  16 4  14  5  1 2 x 124  units 2 5
  • 33. (3) Area Between Two Curves y x
  • 34. (3) Area Between Two Curves y y = f(x)…(1) x
  • 35. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) x
  • 36. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) a b x
  • 37. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) a b x Area = Area under (1) – Area under (2)
  • 38. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) a b x Area = Area under (1) – Area under (2) b b   f  x dx   g  x dx a a
  • 39. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) a b x Area = Area under (1) – Area under (2) b b   f  x dx   g  x dx a a b    f  x   g  x dx a
  • 40. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant.
  • 41. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx x
  • 42. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx x x x 5
  • 43. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx x x x 5 x5  x  0 xx 4  1  0 x  0 or x  1
  • 44. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx A   x  x 5 dx 1 x 0 x x 5 x5  x  0 xx 4  1  0 x  0 or x  1
  • 45. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx A   x  x 5 dx 1 x 0 x x 5 1 1 1  x5  x  0   x2  x6  2 6 0 xx 4  1  0 x  0 or x  1
  • 46. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx A   x  x 5 dx 1 x 0 x x 5 1 1 1  x5  x  0   x2  x6  2 6 0 xx 4  1  0 1 1 2  1 1 6   0    x  0 or x  1  2 6  1  unit 2 3
  • 47. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
  • 48. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2)
  • 49. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously
  • 50. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x
  • 51. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0
  • 52. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0  x  4  x  1  0
  • 53. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0  x  4  x  1  0 x  1 or x  4
  • 54. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2) To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0  x  4  x  1  0 x  1 or x  4  A is (1, 3)
  • 55. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4.
  • 56. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1
  • 57. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1
  • 58. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1 4   1 x3  5 x 2  4 x    3 2 1 
  • 59. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1 4   1 x3  5 x 2  4 x   3 2 1  1 3 5 2  1 3 5 2    4    4   4  4    1  1  4 1 3 2 3 2 
  • 60. (ii) Find the area of the shaded region bounded by y  x 2  4 x and (3) y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1 4   1 x3  5 x 2  4 x   3 2 1  1 3 5 2  1 3 5 2    4    4   4  4    1  1  4 1 3 2 3 2  9  units 2 2
  • 61. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region.
  • 62. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries.
  • 63. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries.
  • 64. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries. Area between circle and parabola
  • 65. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries. Area between circle and parabola and area between circle and x axis
  • 66.
  • 67. It is easier to subtract the area under the parabola from the quadrant.
  • 68. It is easier to subtract the area under the parabola from the quadrant. 1 A    2     x 2  3 x  2 dx 1 2 4 0
  • 69. It is easier to subtract the area under the parabola from the quadrant. 1 A    2     x 2  3 x  2 dx 1 2 4 0 1     x  x  2x 1 3 3 2 3  2 0 
  • 70. It is easier to subtract the area under the parabola from the quadrant. 1 A    2     x 2  3 x  2 dx 1 2 4 0 1     x  x  2x 1 3 3 2 3  2 0   1 3 3 2    1  1  2 1  0 3 2 
  • 71. It is easier to subtract the area under the parabola from the quadrant. 1 A    2     x 2  3 x  2 dx 1 2 4 0 1     x  x  2x 1 3 3 2 3  2 0   1 3 3 2    1  1  2 1  0 3 2     5  units 2   6
  • 72. Exercise 11E; 2bceh, 3bd, 4bd, 5bd, 7begj, 8d, 9a, 11, 18* Exercise 11F; 1bdeh, 4bd, 7d, 10, 11b, 13, 15*