SlideShare a Scribd company logo
1 of 38
Download to read offline
Complex Numbers &
Trig Identities
(i) Express cos 2 and sin 2 in terms of cos  and sin 
Complex Numbers &
Trig Identities
(i) Express cos 2 and sin 2 in terms of cos  and sin 
cos 2  i sin 2  cos  i sin  

2
Complex Numbers &
Trig Identities
(i) Express cos 2 and sin 2 in terms of cos  and sin 
cos 2  i sin 2  cos  i sin  
 cos 2   2i sin  cos  sin 2 
2
Complex Numbers &
Trig Identities
(i) Express cos 2 and sin 2 in terms of cos  and sin 
cos 2  i sin 2  cos  i sin  
 cos 2   2i sin  cos  sin 2 
By equating real and imaginary parts
2
Complex Numbers &
Trig Identities
(i) Express cos 2 and sin 2 in terms of cos  and sin 
cos 2  i sin 2  cos  i sin  
 cos 2   2i sin  cos  sin 2 
By equating real and imaginary parts
2

cos 2  cos 2   sin 2 

sin 2  2 sin  cos
(ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan 
(ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan 
cos3  i sin 3   cos   i sin  

3
(ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan 
cos3  i sin 3   cos   i sin  
 cos3   3i sin  cos 2   3sin 2  cos   i sin 3 
3
(ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan 
cos3  i sin 3   cos   i sin  

3
(ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan 
cos3  i sin 3   cos   i sin  
 cos3   3i sin  cos 2   3sin 2  cos   i sin 3 
By equating real and imaginary parts
3

sin 3  3sin  cos 2   sin 3 
(ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan 
cos3  i sin 3   cos   i sin  
 cos3   3i sin  cos 2   3sin 2  cos   i sin 3 
By equating real and imaginary parts
3

sin 3  3sin  cos 2   sin 3 
 3sin  1  sin 2    sin 3 
 3sin   3sin 3   sin 3 
 3sin   4sin 3 
(ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan 
cos3  i sin 3   cos   i sin  
 cos3   3i sin  cos 2   3sin 2  cos   i sin 3 
By equating real and imaginary parts
3

sin 3  3sin  cos 2   sin 3 
 3sin  1  sin 2    sin 3 
 3sin   3sin 3   sin 3 
 3sin   4sin 3 

cos3  cos3   3sin 2  cos 
(ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan 
cos3  i sin 3   cos   i sin  
 cos3   3i sin  cos 2   3sin 2  cos   i sin 3 
By equating real and imaginary parts
3

sin 3  3sin  cos 2   sin 3 
 3sin  1  sin 2    sin 3 
 3sin   3sin 3   sin 3 
 3sin   4sin 3 

cos3  cos3   3sin 2  cos 

 cos3   3 1  cos 2   cos 
 cos3   3cos   3cos3 
 4cos3   3cos 
(ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan 
cos3  i sin 3   cos   i sin  
 cos3   3i sin  cos 2   3sin 2  cos   i sin 3 
By equating real and imaginary parts
sin 3
tan 3 
sin 3  3sin  cos 2   sin 3 
cos3
 3sin  1  sin 2    sin 3 
3sin  cos 2   sin 3 

3
3
cos3   3sin 2  cos 
 3sin   3sin   sin 
3

 3sin   4sin 3 

cos3  cos3   3sin 2  cos 

 cos3   3 1  cos 2   cos 
 cos3   3cos   3cos3 
 4cos3   3cos 
(ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan 
cos3  i sin 3   cos   i sin  
 cos3   3i sin  cos 2   3sin 2  cos   i sin 3 
By equating real and imaginary parts
sin 3
tan 3 
sin 3  3sin  cos 2   sin 3 
cos3
 3sin  1  sin 2    sin 3 
3sin  cos 2   sin 3 

3
3
cos3   3sin 2  cos 
 3sin   3sin   sin 
3
3sin  cos 2   sin 3 
 3sin   4sin 
cos3 

3
2
cos3   3sin 2  cos 
cos3  cos   3sin  cos 
cos3 
3
2
 cos   3 1  cos   cos 
3sin  sin 3 

 cos3   3cos   3cos3 
cos  cos3 

3
cos3  3sin 2 
 4cos   3cos 

3
cos  cos 2 
3
(ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan 
cos3  i sin 3   cos   i sin  
 cos3   3i sin  cos 2   3sin 2  cos   i sin 3 
By equating real and imaginary parts
sin 3
tan 3 
sin 3  3sin  cos 2   sin 3 
cos3
 3sin  1  sin 2    sin 3 
3sin  cos 2   sin 3 

3
3
cos3   3sin 2  cos 
 3sin   3sin   sin 
3
3sin  cos 2   sin 3 
 3sin   4sin 
cos3 

3
2
cos3   3sin 2  cos 
cos3  cos   3sin  cos 
cos3 
3
2
 cos   3 1  cos   cos 
3sin  sin 3 

3
 cos3   3cos   3cos3 
cos  cos3   3tan   tan 

3
cos3  3sin 2 
1  3tan 2 
 4cos   3cos 

3
cos  cos 2 
3
(iii) Show that x  cos


9

is a solution to 8 x 3  6 x  1  0
(iii) Show that x  cos
8 x3  6 x  1  0
2(4 x 3  3 x)  1  0


9

is a solution to 8 x 3  6 x  1  0
(iii) Show that x  cos
8 x3  6 x  1  0
2(4 x 3  3 x)  1  0
let x  cos 


9

is a solution to 8 x 3  6 x  1  0
(iii) Show that x  cos


9

is a solution to 8 x 3  6 x  1  0

8 x3  6 x  1  0
2(4 x 3  3 x)  1  0
let x  cos 
2(4cos3   3cos  )  1  0
2cos3  1  0
1
cos3 
2
(iii) Show that x  cos


9

is a solution to 8 x 3  6 x  1  0

8 x3  6 x  1  0
2(4 x 3  3 x)  1  0
let x  cos 
2(4cos3   3cos  )  1  0
2cos3  1  0
1
cos3 
2
 5 7
3  , ,
3 3 3
 5 7
 , ,
9 9 9
(iii) Show that x  cos


9

is a solution to 8 x 3  6 x  1  0

8 x3  6 x  1  0
2(4 x 3  3 x)  1  0
let x  cos 
2(4cos3   3cos  )  1  0
2cos3  1  0
1
cos3 
2
 5 7
3  , ,
3 3 3
 5 7
 , ,
9 9 9

5
7
x  cos ,cos ,sin
9
9
9
(iii) Show that x  cos


9

is a solution to 8 x 3  6 x  1  0

8 x3  6 x  1  0
2(4 x 3  3 x)  1  0
let x  cos 
2(4cos3   3cos  )  1  0
2cos3  1  0
1
cos3 
2
 5 7
3  , ,
3 3 3
 5 7
 , ,
9 9 9

5
7
x  cos ,cos ,sin
9
9
9

 x  cos


9

is a solution
(iii) Evaluate cos


9

cos

2
5
cos
9
9
(iii) Evaluate cos




9

cos

2
5
cos
9
9

5
7
x  cos ,cos ,sin
are the roots of 8x 3  6 x  1  0
9
9
9
(iii) Evaluate cos


9

cos

2
5
cos
9
9



5
7
x  cos ,cos ,sin
are the roots of 8x 3  6 x  1  0
9
9
9
1
 
8



5
7 1
cos cos cos

9
9
9 8

product of roots
(iii) Evaluate cos


9

cos

2
5
cos
9
9



5
7
x  cos ,cos ,sin
are the roots of 8x 3  6 x  1  0
9
9
9
1
 
8



5
7 1
cos cos cos

9
9
9 8
but cos

7
2
  cos
9
9

product of roots
(iii) Evaluate cos


9

cos

2
5
cos
9
9



5
7
x  cos ,cos ,sin
are the roots of 8x 3  6 x  1  0
9
9
9
1
 
8



5
7 1
cos cos cos

9
9
9 8
but cos



7
2
  cos
9
9

2
5
1
cos
 cos cos

9
9
9
8

product of roots
 iv 

1
1
n
If z  cos   i sin  , find z  n and z  n
z
z
n
 iv 

1
1
n
If z  cos   i sin  , find z  n and z  n
z
z

z n  cos n  i sin n

n
 iv 

1
1
n
If z  cos   i sin  , find z  n and z  n
z
z
n

z n  cos n  i sin n
1
 z n  cos n   i sin  n 
zn
 iv 

1
1
n
If z  cos   i sin  , find z  n and z  n
z
z
n

z n  cos n  i sin n
1
 z n  cos n   i sin  n 
zn
 cos n  i sin n
cos is even function  cos x   cos x 


sin is odd function  sin  x    sin x 
 iv 

1
1
n
If z  cos   i sin  , find z  n and z  n
z
z
n

z n  cos n  i sin n
1
 z n  cos n   i sin  n 
zn
 cos n  i sin n
cos is even function  cos x   cos x 


sin is odd function  sin  x    sin x 
1
z  n  2 cos n
z
n

zn 

1
 2i sin n
n
z
 iv 

1
1
n
If z  cos   i sin  , find z  n and z  n
z
z
n

z n  cos n  i sin n
1
 z n  cos n   i sin  n 
zn
 cos n  i sin n
cos is even function  cos x   cos x 


sin is odd function  sin  x    sin x 
1
z  n  2 cos n
z
n

v

Express cos3  in terms of cos n

zn 

1
 2i sin n
n
z
 iv 

1
1
n
If z  cos   i sin  , find z  n and z  n
z
z
n

z n  cos n  i sin n
1
 z n  cos n   i sin  n 
zn
 cos n  i sin n
cos is even function  cos x   cos x 


sin is odd function  sin  x    sin x 
1
z  n  2 cos n
z
n

v

Express cos3  in terms of cos n
3

3
z  1
2 cos   

z

3 1
3
3
8 cos   z  3 z   3
z z

zn 

1
 2i sin n
n
z
 iv 

1
1
n
If z  cos   i sin  , find z  n and z  n
z
z
n

z n  cos n  i sin n
1
 z n  cos n   i sin  n 
zn
 cos n  i sin n
cos is even function  cos x   cos x 


sin is odd function  sin  x    sin x 
1
z  n  2 cos n
z
n

v

Express cos3  in terms of cos n
3

3
z  1
2 cos   

z

3 1
3
3
8 cos   z  3 z   3
z z
1
1
  z 3  3   3 z  

 

z  
z


zn 

1
 2i sin n
n
z
 iv 

1
1
n
If z  cos   i sin  , find z  n and z  n
z
z
n

z n  cos n  i sin n
1
 z n  cos n   i sin  n 
zn
 cos n  i sin n
cos is even function  cos x   cos x 


sin is odd function  sin  x    sin x 
1
z  n  2 cos n
z
n

v

zn 

1
 2i sin n
n
z

Express cos3  in terms of cos n
3

3
z  1
2 cos   

z

3 1
3
3
8 cos   z  3 z   3
z z
1
1
  z 3  3   3 z  

 

z  
z


8cos3   2cos3  6cos 
1
3
 cos   cos 3  cos
4
4
3
Cambridge: Exercise 7B; 2 to 5, 7 to 12

More Related Content

Viewers also liked

11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)Nigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)Nigel Simmons
 

Viewers also liked (7)

11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
Sequencias e series
Sequencias e series Sequencias e series
Sequencias e series
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)Nigel Simmons
 

More from Nigel Simmons (19)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
 

X2 t01 10 complex & trig (2013)

  • 1. Complex Numbers & Trig Identities (i) Express cos 2 and sin 2 in terms of cos  and sin 
  • 2. Complex Numbers & Trig Identities (i) Express cos 2 and sin 2 in terms of cos  and sin  cos 2  i sin 2  cos  i sin   2
  • 3. Complex Numbers & Trig Identities (i) Express cos 2 and sin 2 in terms of cos  and sin  cos 2  i sin 2  cos  i sin    cos 2   2i sin  cos  sin 2  2
  • 4. Complex Numbers & Trig Identities (i) Express cos 2 and sin 2 in terms of cos  and sin  cos 2  i sin 2  cos  i sin    cos 2   2i sin  cos  sin 2  By equating real and imaginary parts 2
  • 5. Complex Numbers & Trig Identities (i) Express cos 2 and sin 2 in terms of cos  and sin  cos 2  i sin 2  cos  i sin    cos 2   2i sin  cos  sin 2  By equating real and imaginary parts 2 cos 2  cos 2   sin 2  sin 2  2 sin  cos
  • 6. (ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan 
  • 7. (ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan  cos3  i sin 3   cos   i sin   3
  • 8. (ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan  cos3  i sin 3   cos   i sin    cos3   3i sin  cos 2   3sin 2  cos   i sin 3  3
  • 9. (ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan  cos3  i sin 3   cos   i sin   3
  • 10. (ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan  cos3  i sin 3   cos   i sin    cos3   3i sin  cos 2   3sin 2  cos   i sin 3  By equating real and imaginary parts 3 sin 3  3sin  cos 2   sin 3 
  • 11. (ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan  cos3  i sin 3   cos   i sin    cos3   3i sin  cos 2   3sin 2  cos   i sin 3  By equating real and imaginary parts 3 sin 3  3sin  cos 2   sin 3   3sin  1  sin 2    sin 3   3sin   3sin 3   sin 3   3sin   4sin 3 
  • 12. (ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan  cos3  i sin 3   cos   i sin    cos3   3i sin  cos 2   3sin 2  cos   i sin 3  By equating real and imaginary parts 3 sin 3  3sin  cos 2   sin 3   3sin  1  sin 2    sin 3   3sin   3sin 3   sin 3   3sin   4sin 3  cos3  cos3   3sin 2  cos 
  • 13. (ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan  cos3  i sin 3   cos   i sin    cos3   3i sin  cos 2   3sin 2  cos   i sin 3  By equating real and imaginary parts 3 sin 3  3sin  cos 2   sin 3   3sin  1  sin 2    sin 3   3sin   3sin 3   sin 3   3sin   4sin 3  cos3  cos3   3sin 2  cos   cos3   3 1  cos 2   cos   cos3   3cos   3cos3   4cos3   3cos 
  • 14. (ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan  cos3  i sin 3   cos   i sin    cos3   3i sin  cos 2   3sin 2  cos   i sin 3  By equating real and imaginary parts sin 3 tan 3  sin 3  3sin  cos 2   sin 3  cos3  3sin  1  sin 2    sin 3  3sin  cos 2   sin 3   3 3 cos3   3sin 2  cos   3sin   3sin   sin  3  3sin   4sin 3  cos3  cos3   3sin 2  cos   cos3   3 1  cos 2   cos   cos3   3cos   3cos3   4cos3   3cos 
  • 15. (ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan  cos3  i sin 3   cos   i sin    cos3   3i sin  cos 2   3sin 2  cos   i sin 3  By equating real and imaginary parts sin 3 tan 3  sin 3  3sin  cos 2   sin 3  cos3  3sin  1  sin 2    sin 3  3sin  cos 2   sin 3   3 3 cos3   3sin 2  cos   3sin   3sin   sin  3 3sin  cos 2   sin 3   3sin   4sin  cos3   3 2 cos3   3sin 2  cos  cos3  cos   3sin  cos  cos3  3 2  cos   3 1  cos   cos  3sin  sin 3    cos3   3cos   3cos3  cos  cos3   3 cos3  3sin 2   4cos   3cos   3 cos  cos 2  3
  • 16. (ii) Express sin3 ,cos3 and tan 3 in terms of sin ,cos  and tan  cos3  i sin 3   cos   i sin    cos3   3i sin  cos 2   3sin 2  cos   i sin 3  By equating real and imaginary parts sin 3 tan 3  sin 3  3sin  cos 2   sin 3  cos3  3sin  1  sin 2    sin 3  3sin  cos 2   sin 3   3 3 cos3   3sin 2  cos   3sin   3sin   sin  3 3sin  cos 2   sin 3   3sin   4sin  cos3   3 2 cos3   3sin 2  cos  cos3  cos   3sin  cos  cos3  3 2  cos   3 1  cos   cos  3sin  sin 3   3  cos3   3cos   3cos3  cos  cos3   3tan   tan   3 cos3  3sin 2  1  3tan 2   4cos   3cos   3 cos  cos 2  3
  • 17. (iii) Show that x  cos  9 is a solution to 8 x 3  6 x  1  0
  • 18. (iii) Show that x  cos 8 x3  6 x  1  0 2(4 x 3  3 x)  1  0  9 is a solution to 8 x 3  6 x  1  0
  • 19. (iii) Show that x  cos 8 x3  6 x  1  0 2(4 x 3  3 x)  1  0 let x  cos   9 is a solution to 8 x 3  6 x  1  0
  • 20. (iii) Show that x  cos  9 is a solution to 8 x 3  6 x  1  0 8 x3  6 x  1  0 2(4 x 3  3 x)  1  0 let x  cos  2(4cos3   3cos  )  1  0 2cos3  1  0 1 cos3  2
  • 21. (iii) Show that x  cos  9 is a solution to 8 x 3  6 x  1  0 8 x3  6 x  1  0 2(4 x 3  3 x)  1  0 let x  cos  2(4cos3   3cos  )  1  0 2cos3  1  0 1 cos3  2  5 7 3  , , 3 3 3  5 7  , , 9 9 9
  • 22. (iii) Show that x  cos  9 is a solution to 8 x 3  6 x  1  0 8 x3  6 x  1  0 2(4 x 3  3 x)  1  0 let x  cos  2(4cos3   3cos  )  1  0 2cos3  1  0 1 cos3  2  5 7 3  , , 3 3 3  5 7  , , 9 9 9  5 7 x  cos ,cos ,sin 9 9 9
  • 23. (iii) Show that x  cos  9 is a solution to 8 x 3  6 x  1  0 8 x3  6 x  1  0 2(4 x 3  3 x)  1  0 let x  cos  2(4cos3   3cos  )  1  0 2cos3  1  0 1 cos3  2  5 7 3  , , 3 3 3  5 7  , , 9 9 9  5 7 x  cos ,cos ,sin 9 9 9  x  cos  9 is a solution
  • 25. (iii) Evaluate cos   9 cos 2 5 cos 9 9 5 7 x  cos ,cos ,sin are the roots of 8x 3  6 x  1  0 9 9 9
  • 26. (iii) Evaluate cos  9 cos 2 5 cos 9 9  5 7 x  cos ,cos ,sin are the roots of 8x 3  6 x  1  0 9 9 9 1   8  5 7 1 cos cos cos  9 9 9 8 product of roots
  • 27. (iii) Evaluate cos  9 cos 2 5 cos 9 9  5 7 x  cos ,cos ,sin are the roots of 8x 3  6 x  1  0 9 9 9 1   8  5 7 1 cos cos cos  9 9 9 8 but cos 7 2   cos 9 9 product of roots
  • 28. (iii) Evaluate cos  9 cos 2 5 cos 9 9  5 7 x  cos ,cos ,sin are the roots of 8x 3  6 x  1  0 9 9 9 1   8  5 7 1 cos cos cos  9 9 9 8 but cos  7 2   cos 9 9 2 5 1 cos  cos cos  9 9 9 8 product of roots
  • 29.  iv  1 1 n If z  cos   i sin  , find z  n and z  n z z n
  • 30.  iv  1 1 n If z  cos   i sin  , find z  n and z  n z z z n  cos n  i sin n n
  • 31.  iv  1 1 n If z  cos   i sin  , find z  n and z  n z z n z n  cos n  i sin n 1  z n  cos n   i sin  n  zn
  • 32.  iv  1 1 n If z  cos   i sin  , find z  n and z  n z z n z n  cos n  i sin n 1  z n  cos n   i sin  n  zn  cos n  i sin n cos is even function  cos x   cos x    sin is odd function  sin  x    sin x 
  • 33.  iv  1 1 n If z  cos   i sin  , find z  n and z  n z z n z n  cos n  i sin n 1  z n  cos n   i sin  n  zn  cos n  i sin n cos is even function  cos x   cos x    sin is odd function  sin  x    sin x  1 z  n  2 cos n z n zn  1  2i sin n n z
  • 34.  iv  1 1 n If z  cos   i sin  , find z  n and z  n z z n z n  cos n  i sin n 1  z n  cos n   i sin  n  zn  cos n  i sin n cos is even function  cos x   cos x    sin is odd function  sin  x    sin x  1 z  n  2 cos n z n v Express cos3  in terms of cos n zn  1  2i sin n n z
  • 35.  iv  1 1 n If z  cos   i sin  , find z  n and z  n z z n z n  cos n  i sin n 1  z n  cos n   i sin  n  zn  cos n  i sin n cos is even function  cos x   cos x    sin is odd function  sin  x    sin x  1 z  n  2 cos n z n v Express cos3  in terms of cos n 3 3 z  1 2 cos     z  3 1 3 3 8 cos   z  3 z   3 z z zn  1  2i sin n n z
  • 36.  iv  1 1 n If z  cos   i sin  , find z  n and z  n z z n z n  cos n  i sin n 1  z n  cos n   i sin  n  zn  cos n  i sin n cos is even function  cos x   cos x    sin is odd function  sin  x    sin x  1 z  n  2 cos n z n v Express cos3  in terms of cos n 3 3 z  1 2 cos     z  3 1 3 3 8 cos   z  3 z   3 z z 1 1   z 3  3   3 z       z   z  zn  1  2i sin n n z
  • 37.  iv  1 1 n If z  cos   i sin  , find z  n and z  n z z n z n  cos n  i sin n 1  z n  cos n   i sin  n  zn  cos n  i sin n cos is even function  cos x   cos x    sin is odd function  sin  x    sin x  1 z  n  2 cos n z n v zn  1  2i sin n n z Express cos3  in terms of cos n 3 3 z  1 2 cos     z  3 1 3 3 8 cos   z  3 z   3 z z 1 1   z 3  3   3 z       z   z  8cos3   2cos3  6cos  1 3  cos   cos 3  cos 4 4 3
  • 38. Cambridge: Exercise 7B; 2 to 5, 7 to 12