SlideShare a Scribd company logo
UV-Vis spectroscopy 
Spectroscopyis the study of the interaction betweenmatterandradiated energy. 
By: Bijaya Kumar Uprety
Introduction 
•Lightissupposedtohavedualcharacteristics,wavesandparticlenature. 
•Thus,abeamoflightmaybeunderstoodas“anelectromagneticwave-formdisturbanceorphotonofenergypropagatedat3x108m/sec,i.e.atthespeedoflight. 
•Awaveofenergyconsistingofelectricandmagneticfields, oscillatingatrightanglestoeachotheriscalledelectromagneticwave(radiation). 
•Infigure1,themagnitudeofelectricalvectorisdenotedbythesymbolEandthatofmagneticvectorisdenotedbythesymbolB. 
Note:Allelectromagnetic(EM)wavesareradiation,butnotallradiationisanEMwave.Theradioactivedecayprocessesknownasalphadecayandbetadecay,inwhichaheliumnucleusandanelectronareemittedfromanatomicnucleus,respectively,aretwoadditionalformsofradiation,andtheyarenotEMradiation.Moregenerally,radiationreferstoanythingthathasbeen,orisbeing,emittedoutwardfromsomething.
Electromagnetic Energy-Wave theory 
•Energytransferredbetweenthingsaslightenergyarecarriedthroughthespaceormatterbymeansofwavelikeoscillationsconsistingofbothelectricandmagneticfieldswhichoscillatesatrightanglestoeachother. 
•Aseriesoftheseoscillationsthattravelthroughthespaceiscalledelectromagneticradiation. 
•Thisisthewavetheoryoflight. 
•Similartoallwavephenomena,electromagneticradiationischaracterizedbyitswavelength(λ)anditsfrequency(c)andpropagatesatthevelocityoflight.
•Frequency: The number of complete cycles of a periodic process occurring per unit time. Its unit is Hertz (Hz). 
•Wavelength: Distance between two consecutive crest or trough is called wavelength. It can be measured in cm, μm, nm or angstrom (Å). 
Where, 1 nm= 10-3μm =10-6=10-7cm =10-9m and 1 Å = 10-8cm. 
•Amplitude: The maximum extent of a vibration or oscillation, measured from the position of equilibrium. It is the intensity of wave. Its unit is meter.
•Frequency shares an inverse relationship with the wavelength so that; 
v = c/λ 
Where; v= frequency 
c= speed of light (3 x 108m/s) 
λ= wavelength 
•Sometimes radiation, mostly in the infrared region is characterized by another term known as the wave number and is given as; 
•Wave number means the number of complete cycles occurring per centimeter.
Energy of Electromagnetic radiation- Particle theory 
•Electromagnetic energy/radiation is emitted only in tiny packets or quanta of energy that were later known as photons. 
•Each photon pulses with a frequency and travels with the speed of light. 
•The energy of the photon of electromagnetic radiation is proportional to its frequency. 
•Energy of photon= E = hv 
Where, h= proportionality constant=planck’sconstant= 6.63 x 10-34J.s 
& v= frequency
•Energy = Planck’s constant x frequency 
or, E = h x v 
or, J = Js x s-1 
•Most chemical energies are quoted in Jmol-1or KJmol-1rather than in Joules for an individual atom. 
•We therefore need to multiply our value of h x v by the Avogadro constant to obtain Jmol-1 
•Avogadro constant = NA= 6.02 x 1023mol-1 
•Energy = Avogadro constant x Planck’s constant x frequency 
E = NAx h x v 
Jmol-1= mol-1x J s x s-1
Electromagnetic spectrum 
•Theelectromagnetic spectrumis therangeof all possible frequencies ofelectromagnetic radiation. 
•Theelectromagneticspectrumextendsfrombelowthelowfrequenciesusedformodernradiocommunicationtogammaradiationattheshort-wavelength(high- frequency)end,therebycoveringwavelengthsfromthousandsofkilometersdowntoafractionofthesizeofanatom.
Light comparison 
Name 
Wavelength 
Frequency (Hz) 
PhotonEnergy(eV) 
Gamma ray 
less than 0.01nm 
more than 15EHz 
more than 62.1keVX-Ray 
0.01nm –10nm 
30 EHz –30PHz 
124 keV–124 eV 
Ultraviolet 
10nm –400nm 
30 PHz –750 THz 
124 eV–3 eV 
Visible 
390nm –750nm 
770 THz –400 THz 
3.2 eV–1.7 eV 
Infrared 
750nm –1mm 
400 THz –300GHz 
1.7 eV–1.24meV 
Microwave 
1mm –1 meter 
300GHz –300MHz 
1.24 meV–1.24μeV 
Radio 
1mm –1,000km 
300 GHz–3 Hz 
1.24 meV–12.4feV
Numerical
Laws of Absorption 
•Theabsorptionoflightbyanyabsorbingmaterialisgovernedbytwolaws 
•ThefirstoftheselawsisknownastheBouger-Lambertlaw. 
•Bouger-lambertlaw:Itstatesthattheamountoflightabsorbedisproportionaltothethicknessoftheabsorbingmaterialandisindependentoftheintensityoftheincidentlight. 
•Tounderstandtheabovestatementletusassumethatathicknessbhastheabilitytoabsorb50%oftheincidentintensityofthelightpassingthroughit.Iftheintensityoftheradiationincidentuponsuchathicknessisassignedavalueof1.0, theoutcomingi.e.thetransmittedbeamwillhaveavalueof0.5.Ifwenowplaceasecondequalthicknessb,itwillabsorb50%ofthetransmittedbeam,i.e.50%of0.5.Thesecondtransmitttedbeamwillthenhaveavalueof0.25. 
i.e100%50%25%12.5%6.25%3.125%
•Thesuccessivelightintensitiesarethesequence(0.5)1,(0.5)2, (0.5)3etc.Thisisclearlyanexponentialfunctionandmaybeexpressedas; 
I/I0=e–kb-----(1) 
Where, I = the intensity of the transmitted light, 
I0= the intensity of the incident light. 
b= the absorbing thickness, better known by the term path-length. 
k= the linear absorption coefficient of the absorbing material. The power term in the above relationship can be removed by converting to the logarithmic form. Thus, 
ln I/I0 = -kb, 
or, ln I0/ I =kb------------(2) 
Changing to common logarithms we get, 
2.303 log10( I0/I) = kb ---------------(3)
•ThesecondlawofabsorptionisknownastheBeer’slaw.Thisstatesthattheamountoflightabsorbedbyamaterialisproportionaltothenumberofabsorbingmoleculesi.e.theconcentrationofabsorbingsolution. 
•Thiscanbemathematicallyexpressedintheformoftheequationsimilartotheoneabove. 
2.303log10(I0/I)=k’C-----------(4) 
Where,k’=absorptivityconstantand 
C=theconcentrationoftheabsorbingmaterial 
•WecannowcombinethetwoequationsfortheBouger- lambertlawandtheBeer’slaw.Here,kandk’mergetobecomeasingleconstant‘a‘.Thecombineequationiswrittenas,
log10(I0/I)=abC-------(5) 
OrA=abc-------(6) 
where,A=absorbanceisadimensionless 
b=pathlength(cm) 
c=concentration(M) 
a=Molarabsorptivityconstant(M-1cm-1)ormolarextinctioncoefficientorspecificabsorptioncoefficient(gL-1cm-1) 
Foramixture,Atotal=A1+A2+A3….+An 
•Molarabsorptivityisthecharacteristicofasubstancethattellshowmuchoflightisabsorbedataparticularwavelength. 
•ThisequationhasbeenalternatelyreferedtoastheBeer-Lambertlaw,theBouger-Beerlaw,ormoresimply,Beer’slaw.Thiscombinedlawstatesthattheamountoflightabsorbed(absorbanceorextinction)isproportionaltotheconcentrationoftheabsorbingsubstanceandtothethicknessoftheabsorbingmaterial(path– length).
•Absorbancesharesalinearrelationshipwithsampleconcentration.Ontheotherhand,therelationshipbetweentransmittanceandsampleconcentrationisanon-linearone.Itisthereforeeasiertouseabsorbanceasanindexofsampleconcentration. 
•ThequantityI/I0isknownastransmittanceandisdenotedbyT(amountoflightwhichescapesabsorptionandistransmitted). 
•Thus,therelationshipbetweenAbsorbanceandtransmittanceisgivenby; 
A=-log(I/I0)=-logT 
Standardcurve: 
Forquantitativeanalysis,astandardcurveorcalibrationcurveispreparedinwhichabsorbance(A)ataspecificwavelength(λ)isplottedagainsttheconcentrationinaseriesofstandards[sameanalyte,knownconcentration(c)]. 
As‘A’isproportionaltotheC,itshouldbeastraightlinepassingthroughtheorigin.
A = abc + 0 Beer lambert law 
Y = mx + c Equation of straight line 
It allows us to calculate the concentration of unknown analyte.
Analysis of Mixtures of Absorbing Substances 
•When the sample solution contains more than one absorbing species, the absorbance of the solution will be the sum of allabsorbances: 
•At= A1+ A2+ A3+ …. 
•The different constituents can be determined if we build equations equal to the number of unknowns. However, this procedure, if manually performed, is impractical due to lengthy and difficult math involved. When only two absorbing species are present, the solution is formidable and is executed by finding the absorbance of the solution at twowavelength(wavelength maximum for eachanalyte): 
•Al’=ex’bcx+ey’bcy(1) 
•Al”=ex”bcx+ey”bcy(2) 
•ex’,ex”,ey’,ey” can be determined from standards ofanalytesx and y atl’,l” and values obtained are inserted in equations 1 and 2 where two equations in two unknowns can be easily solved.
Limitations of the Beer-Lambert law 
ThelinearityoftheBeer-Lambertlawislimitedbychemicalandinstrumentalfactors.Causesofnonlinearityinclude: 
•DeviationsfromBeer-lambertslawusuallyoccurathighsampleconcentrationduetochangeinabsorptivitycoefficientsathighconcentrations(>0.01M)becauseoftheelectrostaticinteractionsbetweenmoleculesincloseproximity.(i.e.athighconcentrationdimersofamoleculesmightformwhichcangiverisetospectradifferentfromthatofamonomers.Duetothistheabsorptioncoefficientwillalsoundergoachangeleadingtopositiveornegativedeviation.) 
Highconcentrationscanalsoleadtochemicalreactionswhichwillleadtoachangeinthechemicalcompositionofthesolution.Naturally,adeviationfromlinearitywillresult.
•Deviationmayalsooccuratlowconcentrations.E.gproteinsareknowntodenatureatlowconcentrationsandthedenaturedproteinhasanabsorptionspectrumthatisdifferentfromthenativeprotein. 
•InstrumentationlimitationsmayalsoresultindeviationsfromBeer’slaw. Theseincludestrayradiationreachingthedetector,sensitivitychangesinthedetector,andpowerfluctuationsoftheradiationsourceandamplificationsystem. 
•Temperature:Changeintemperatureresultsinchangeinthedegreeofsolubility,dissociation/associationpropertiesofthesolute,hydration,andseveralotherfactors.Thischangeisalsoreflectedintheabsorbance.Thusabsorbancemeasurementsmustalwaysbedoneataconstanttemperature. 
•Sampleinstability:Absorbancemeasurementofsomesubstanceswhichinvolvescolordevelopmentisinsistedtobedoneatveryshorttime.Thereasonforthisthatsomecoloredcompoundsareunstableandundergochangeswithinquiteshorttimes.Insuchcasescolorcouldincreaseordecreaseandhavedifferentλmax.
•Fluorescence:Somesolutefluoresce.Forsuchsubstances, deviationoccurbecauseapartfromthetransmittedintensity, fluorescentintensityalsoreachesthedetector. 
•Turbidity:Turbidsolutionalwaysendupgivinghigherabsorbancethanwhatisdeterminedbycolor.
Q.1 
Q.2
Q.2 (a) and 2 (b) 
2 (a) 
2 (b)
Q. 2 continued…..
Q. 2 (c) and (d) solution
Q.3
Solution of Q.3
Electronic transition 
•Therearegenerallythreetypesoforbitalsfoundinthegroundstateoforganicmolecules. 
1.Bondingσ–orbitals:Theseareextremelystrongandconstitutesinglebondsbetweenatoms.Theelectronsarenotatalldelocalizedandthedistributionofelectronsiscylindricallysymmetricalabouttheaxis. 
2.Bondingπ–orbitals:Theseconstitutemultiplebondsbetweenatomsandarebasedonacombinationofatomicp-orbitals.Theelectronsarestronglydelocalizedandinteractwiththesurroundingenvironmentwithrelativeease. 
3.n–orbitals:Certainmoleculescontainsheteroatoms(i.e.heteroatomisanyatomthatisnotcarbonorhydrogene.g.oxygen,nitrogen,sulfur,etc). Theoccupiedorbitalswithhighestenergyinsuchmoleculesarethoseoflonepairs.Theselonepairsarenotinvolvedinbondsandthusretaintheiratomiccharacters.
•Whenanincidentbeamofradiationhavingasuitablewavelengthhitsamolecule,absorptionofaphotonsbytheelectronspresentinthegroundstatetakeplaceandthemoleculebecomesexcited.Excitedmoleculeswillloseexcitationenergyasheatorphotons(luminescence).Theamountofenergyabsorbedinthistransitionisexactlyequaltotheenergydifferencebetweenthestates.Thisenergydifferencebetweenthestatesisalsorelatedtothefrequencyorwavelengthoftheadsorbedenergy. 
•AbsorptionofUV-Visradiationiscapableofaffectingtheexcitationofbondingelectronsandothervalenceelectrons.Therefore,excitationofelectronsinchemicalbonds(πandσ)ornonbondingelectrons(n)istheresultofabsorptionofUV-Visradiationofasuitablewavelength. Absorptionwillthusbedependentontheavailabilityofpiandsigmabondsornelectronsthatcanabsorbincidentradiation. 
•Singleatomshaveonlyafewpossibleenergystatesandthereforeabsorbonlyafewdiscretewavelengthsofradiation. 
•Morecomplexmoleculescanhavemanypossiblestatesandcanadsorbmanydifferentwavelengths.Thewavelengthsadsorbedbyamoleculeisthereforeacharacteristicofthatmoleculeandisthebasisofspectroscopy.
1.TherearefourdifferenttypesofelectronictransitionswhichcantakeplaceinmoleculeswhentheyabsorbUV-Visradiation.ThemajorelectronictransitionswithintheUV-visregionsalongwiththeenergiesassociatedwiththetransitionaregivenbelow: 
σσ*>nσ*>ππ*>nπ* 
•Aσσ*arenotusefulforfollowingreasons: 
Theσσ*transitionrequiresveryhighenergywhichoccursinvacuumUV.AndItisnotwisetothinkofdoingUVmeasurementsonmolecularspeciesinthevacuumUVregion(125-185nm)forfiveimportantreasons: 
•Thehighenergyrequiredcancauseruptureoftheσbondsandbreakdownofthemolecule. 
•AircomponentssuchasoxygenabsorbstronglyinvacuumUVwhichlimitstheapplicationofthemethod. 
•WorkinginvacuumUVrequiresspecialtrainingandprecautionswhichlimitwideapplicationofthemethod. 
•Specialsourcesanddetectorsmustbeused. 
•Allsolventscontainσbonds.
Thenσ*transitionrequireslowerenergythanthatrequiredforσσ*transition.Thistypeoftransitionusuallytakesplaceinsaturatedcompoundscontainingoneheteroatomwithunsharedpairofelectrons.Moleculessuchaswater,ether,andaminesshowabsorptionattributedtothistypeoftransitions. 
•Theabsorptionwavelengthforanσ*transitionoccursatabout185nmwhere,unfortunately,mostsolventsabsorb.Forexample, themostimportantsolventis,undoubtedly,waterwhichhastwopairsofnonbondingelectronsthatwillstronglyabsorbasaresultofthenσ*transitions;whichprecludestheuseofthistransitionforstudiesinaqueousandothersolventswithnonbondingelectrons.Insummary,itisalsoimpracticaltothinkofusingUV- Visabsorptionspectroscopytodetermineanalytesbasedonan σ*transition.
Absorptionofradiationbyanalkene,alkyne,carbonylcomounds,cyanidesandazocompoundscontainingadoublebond,canresultinσσ*orπ π*transitions.Wehaveseenthataσσ*transitionisnotusefulbutontheotherhand,theππ*turnedouttobeveryusefulsinceitrequiresreasonableenergyandhasgoodabsorptivity.Amoleculehavingσ,π,andnelectronscanshowalltypesoftransitionspossibleinUV- Visspectroscopy. 
Themostfrequentlyusedtransitionistheππ*transitionforthefollowingreasons: 
a.Themolarabsorptivityfortheππ*transitionishighallowingsensitivedeterminations. 
b.Theenergyrequiredismoderate,farlessthandissociationenergy. 
c.Inpresenceofthemostconvenientsolvent(water),theenergyrequiredforaππ*transitionisusuallysmaller. 
•ItisthereforeprimitivethatananalytetobedeterminedbyUV- Visabsorptionspectroscopybeofunsaturatednature.
•Thenπ*transitionrequiresverylittleenergyandseemtobepotentiallyuseful. 
•BywayofgeneralizingitmaybesaidthattheabsorptionbandsofalmostallorganicmoleculesnormallyfoundinthenearUVandvisibleregionsareduetoeitherππ*orn π*.Onecandistinguishbetweenππ*ornπ*transitionbylookingattheextinctionco-efficientsofthepeaksatλmax. 
•Thenπ*transitionhaveextinctioncoefficientoftheorderofmagnitudeofjust10whereasforππ*transitionisoftheorderofmagnitude103-104. 
•Compoundssuchasacetaldehydeandnitrosobutanegiveabsorbanceandundergoesthistypeoftransition. 
•However,unfortunately,theabsorptivityofthistransitionisverysmallwhichprecludesitsuseforsensitivequantitativeanalysis.
•Therearemanycompoundsthatabsorbvisible(380-780nm)orultraviolet(UV) light(10–380nm).ThemostcommonlyusedpartoftheUVspectrumisfrom200–380nmbecausebelowabout200nm,airabsorbstheUVlightandinstrumentsmustbeoperatedunderavacuum.ManysolventsalsoabsorbradiationattheshorterwavelengthsofUVlight.Absorptionofultravioletandvisiblelightonlytakesplaceinmoleculeswithvalenceelectronsoflowexcitationenergy.Theelectronictransitionsassociatedwiththeseenergystatesisdepictedinfigurebelow.Thehighestenergytransition(σ-σ*generallyrequireswavelengthsbelow200nmandthereforearenotseenintypicalUVspectra.Then–π*transitions,andπ-π*transitionscommonlytakeplaceintheuseful200– 700nmrange.
Instrumentation 
•InstrumentsformeasuringtheabsorptionofU.V.orvisibleradiationaremadeupofthefollowingcomponents; 
1.RadiationSources(UVandvisible) 
2.Wavelengthselector(monochromator) 
3.Samplecontainers 
4.Detector 
5.Signalprocessorandreadout 
1.Radiationsources: 
Sourcesofultravioletradiation:MostcommonlyusedsourcesofUVradiationarehydrogenlampanddeuteriumlamp.Boththesystemsconsistofapairofelectrodeenclosedinaglasstubeprovidedwithaquartzwindow.Theglasstubeisfilledwithhydrogenordeuteriumgasatlowpressure.Whenastabilizedhighvoltageisappliedtheyemitradiationwhichiscontinuousintheregionroughlybetween180and350nanometer.
SourcesofVisibleradiation:Tungstenfilamentlampismostcommonlyusedsourceforvisibleradiation.Itisinexpensiveandemitscontinuousradiationintheregionbetween350and2500nm.Carbonarc,whichprovidesmoreintenseradiationisusedinsmallnumberofcommerciallyavailableinstrument.Nowadayssomeinstrumentsusetungsten- halogenlampsthatcontainasmallamountofiodineinthequartzbulbhousingthetungstenfilament.Thepresenceofiodineextendstheoutputwavelengthrangeofthelampfrom240-2500nm. 
2.WavelengthSelectors: 
•Inspectrophotometricmeasurementsweneedtouseanarrowbandofwavelengthsoflight.Thisenhancestheselectivityandsensitivityoftheinstrument.Lessexpensiveinstrumentsuseafiltertoisolatetheradiantenergyandprovideabroadbandofthewavelengths.Inmanyapplicationsweneedtocontinuouslyvarythewavelengthoveradefinedrange.Thiscanbeachievedbyusingmonochromators.Mostmoderninstrumentsusemonochromatorsthatemployaprismordiffractiongratingasthedispersingmedium.
•Twotypesofwavelengthselectorsaregenerallyused:filtersandmonochromators. 
Filters: 
•Filtersoperatebyabsorbinglightinallotherregionsexceptforone, whichtheyreflect. 
•Gelatinfiltersaremadeofalayerofgelatin,coloredwithorganicdyesandsealedbetweenglassplates. 
•Mostmodernfiltersinstruments,however,usetinted-glassfilters. 
•Filtersresolvepolychromaticlightintoarelativelywidebandwidthofabout40nmandareusedonlyincolorimeters.Onedisadvantageofglassfiltersistheirlowtransmittance(5-20%). 
Monochromators: 
•Monochromatorsresolvespolychromaticradiationintoitsindividualwavelengthsandisolatesthesewavelengthsintoaverynarrowbands.
•Theessentialcomponentsofmonochromatorsare(i)andentranceslitwhichadmitspolychromaticlightfromthesource.(ii)acollimatingdevicesuchaslensormirrorwhichcollimatesthepolychromaticlightontothedispersiondevice.(iii)awavelengthresolvingdevicelikeaprismoragratingwhichbreakstheradiationintocomponentwavelengths(iv)afocussinglensoramirrorand(v)anexitslitwhichallowsthemonochromaticbeamtoescape.Theentireassemblyismountedinalight-tightbox. 
•Twotypesofmonochromatorsaregenerallyused. 
Prismmonochromators:Aprismdispersespolychromaticlightfromthesourceintoitsconstituentwavelengthsbyvirtueofitsabilitytorefractdifferentwavelengthstoadifferentextent;theshorterwavelengthsarediffractedthemost.Sinceitdispersestheshortwavelengthsmoreandlongwavelengthsless,thewavelengthsattheredendofthespectrumarenotfullyresolved.600Cornuquarttzprismand300Littrowprismareusuallyemployedincommercialinstruments.DifferenttypesofprismareusedindifferentregionofUV-visspectrum.
•Simpleglassprismareusedforvisiblerange. 
•Foruvregionsilica,fusedsilicaorquartzareused.FlouriteisusedinvacuumUltravioletrange. 
Gratings:Gratingsareoftenusedinthemonochromatorsofspectrophotometersoperatinginultraviolet,VisandIRregions.Thegratingpossessesahighlyaluminizedsurfaceetchedwithlargenumberofparallelgrooveswhichareequallyspaced.Thesegroovesarealsoknownaslines.Agratingmayhaveanywerebetween600to2000linespermmonthesurfacedependingontheregaionofthespectruminwhichitisintendedtooperateit. 
Inrealpractice,themonochromatorconsistofboth,prismandagrating. Theprismplacedbeforethegratingisknownastheforeprism.Itpreselectsaportionofthespectrumwhichisthenallowedtobediffractedbythegrating.
Sample container: 
•Samples to be studied in the UV-Vis region are usually gas or solution and are put in cells known as cuvette. 
•Spectra of gases are taken using enclosed cells, with an evacuated cell as a reference. Standard path-length of gas cells is usually 1 mm but cells with path length of 0.1 to 100 mm are available for special cases. 
•Most of the spectrophotometric studies are made in solution. The solutions are dispensed in cells known as cuvettes. 
•Cuvette meant for ultraviolet region are made up of either ordinary glass or sometimes quartz. Since glass absorbs in the UV region, quartz or fused silica cells are used in this region. Standard path length of these cuvettes is usually 1 cm. However, cuvettes of path-length of 1 mm to 10 cm are available for special purposes. 
•The surface of the cuvette must be kept very clean, free from fingerprints smudge, and traces of previous samples which might otherwise cause interference in the optical path.
Detectiondevices: 
•Thedetectorsareusedtoconvertalightsignaltoanelectricalsignalwhichcanbesuitablymeasuredandtransformedintoanoutput. 
•Thedetectorsusedinmostoftheinstrumentsgenerateasignal,whichislinearintransmittancei.e.theyrespondlinearlytoradiantpowerfallingonthem.Thetransmittancevaluescanbechangedlogarithmicallyintoabsorbanceunitsbyanelectricalormechanicalarrangementinthesignalreadoutdevice.Therearethreetypesofdetectorswhichareusedinmodernspectrophotometers.Thesearedescribedinthefollowingparagraphs. 
1.Phototube 
•Aphototubeconsistsofaphotoemissivecathodeandananodeinanevacuatedtubewithaquartzwindow. 
•Thesetwoelectrodesaresubjectedtohighvoltage(about100V)difference. Whenaphotonentersthetubeandstrikesthecathode,anelectronisejectedandisattractedtotheanoderesultinginaflowofcurrentwhichcanbeamplifiedandmeasured. 
•Theresponseofthephotoemissivematerialiswavelengthdependentanddifferentphototubesareavailablefordifferentregionsofthespectrum.
2.Photomultiplier(PM)Tube 
•Thesedetectorsaredesignedtoamplifytheinitialphotoelectriceffectandaresuitableforuseatverylowlightintensities. 
•Aphotomultiplierconsitssof(a)anevacuatedglasstubeintowhicharesealedthecathodeandtheanode,and(b)additionalinterveningseriesofelectrodesknownasdynodes.Thevoltageofsuccessiveelectrodesismaintained50to100voltmorepositivethanthepreviousone. 
•Whenaradiationfallsonthecathodeanelectronisemittedfromit.Thisisacceleratedtowardsthenextphotoemissiveelectrodebythepotentialdifferencebetweenthetwo. 
•Here,itreleasesmanymoresecondaryelectrons.These,inturnareacceleratedtothenextelectrodewhereeachsecondaryelectronreleasesmoreelectrons.Theprocesscontinuousuptoabout10stagesofamplification. 
•Thefinaloutputofthephotomultipliertubegivesamuchlargersignalthanthephotocell.
3.DiodeArrayDetector 
•Thesedetectorsemployalargenumberofsilicondiodesarrangedsidebysideonasinglechip.WhenaUV-VISradiationfallsonthediode,itsconductivityincreasessignificantly. 
•Thisincreaseinconductivityisproportionaltotheintensityoftheradiationandcanbereadilymeasured. 
•Sincealargenumberofdiodescanbearrangedtogether,theintensityatanumberofwavelengthscanbemeasuredsimultaneously. 
•Thoughthephotodiodearrayisnotassensitiveasthephotomultipliertube,thepossibilityofbeingabletomeasurealargenumberofwavelengthsmakesitadetectorofchoiceinthemodernfastinstruments. 
SignalProcessingandOutputDevices 
•Theelectricalsignalfromthetransducerissuitablyamplifiedorprocessedbeforeitissenttotherecordertogiveanoutput. 
•Thesubtractionofthesolventspectrumfromthatofthesolutionisdoneelectronically.Theoutputplotbetweenthewavelengthandtheintensityofabsorptionistheresultantofthesubtractionprocessandischaracteristicoftheabsorbingspecies. 
•HavinglearntaboutdifferentcomponentsofUV-VISinstrumentsandtheirimportance;youarenowequippedtolearnaboutthetypesofinstrumentsused.
TYPES OF UV-VISIBLE SPECTROMETERS 
Therearegenerallythreetypesofspectrometersinuse. 
1SingleBeamSpectrometers 
•Asthenamesuggests,theseinstrumentscontainasinglebeamoflight.Thesamebeamisusedforreadingtheabsorptionofthesampleaswellasthereference.TheschematicdiagramofatypicalsinglebeamUV-Visiblespectrometer. 
•Theradiationfromthesourceispassedthroughafilterorasuitablemonochromatortogetabandoramonochromaticradiation.Itisthenpassedthroughthesample(orthereference)andthetransmittedradiationisdetectedbythephotodetector.Thesignalsoobtainedissentasareadoutorisrecorded. 
•Typically,twooperationshavetobeperformed–first,thecuvetteisfilledwiththereferencesolutionandtheabsorbancereadingatagivenwavelengthorthespectrumoverthedesiredrangeisrecorded.Second,thecuvetteistakenoutandrinsedandfilledwithsamplesolutionandtheprocessisrepeated. Thespectrumofthesampleisobtainedbysubtractingthespectrumofthereferencefromthatofthesamplesolution.
2.DoubleBeamSpectrometers 
•Inadoublebeamspectrometer,theradiationcomingfromthemonochromatorissplitintotwobeamswiththehelpofabeamsplitter.Thesearepassedsimultaneouslythroughthereferenceandthesamplecell.Thetransmittedradiationsaredetectedbythedetectorsandthedifferenceinthesignalatallthewavelengthsissuitablyamplifiedandsentfortheoutput.ThegeneralarrangementofadoublebeamspectrometerisshowninFig.2.20. Therecouldbevariationsdependingonthemanufacturer,thewavelengthregionsforwhichtheinstrumentisdesigned,theresolutionsrequiredetc.
3.PhotodiodeArraySpectrometer 
•Inaphotodiodearrayinstrument,alsocalledamulti-channelinstrument,theradiationoutputfromthesourceisfocuseddirectlyonthesample.Thisallowstheradiationsofallthewavelengthstosimultaneouslyfallonthesample.Theradiationcomingoutofthesampleafterabsorption(ifany)isthenmadetofallonareflectiongrating.TheschematicarrangementofadiodearrayspectrometerisgiveninFig.2.21.Thegratingdispersesallthewavelengthssimultaneously.Thesethenfallonthearrayofthephotodiodesarrangedsidebyside.Inthiswaytheintensitiesofalltheradiationsintherangeofthespectrumaremeasuredinonego.Theadvantageofsuchinstrumentsisthatascanofthewholerangecanbeaccomplishedinashorttime.
Chromophore 
•AlthoughtheabsorptionofUVradiationresultsfromtheexcitationofelectronsfromgroundstatetoexcitedstates,thenucleithattheelectronsholdtogetherinbondsplayanimportantroleindeterminingwhichwavelengthsofradiationareabsorbed. 
•Nucleideterminethestrengthwithwhichtheelectronsareboundandthusinfluencetheenergyspacingbetweenthegroundandexcitedstates. Hencethecharacteristicenergyofatransitionandthewavelengthofradiationabsorbedarepropertiesofagroupofatomsratherthantheelectronsthemselves. 
•Theolddefinitionofchromophoreregardsitasasystemwhichisresponsibleforimpartingcolortothecompound. 
•Mostofthenitrocompoundsareyellowincolor.Clearly,nitrogroupisachromophorewhichimpartsyellowcolor. 
•Definition:Thefunctionalmoleculargroupsthatcausecompoundstobecoloredthatistoabsorbradiationatparticularwavelengtharechromophores.
•Someoftheimportantchromophoresarecarbonyls(C=O),acids,esters(RCO2R’)andnitrile(R-C≡N)groupofethylenicoracetylenicgroup. 
•Chromophoreareknowntobeoftwotypes. 
(1)Chromophorescontainingπelectronsandinvolvedinππ*. transitions.Fore.g.Acetylenes(C2H2)andethylenes(C2H4). 
(2)Chromophorescontainingbothπandnelectronsandinvolvedinπ π*andnπ*transitions.Fore.g.Carbonyls,nitrilesandazocompounds(R-N=N-R‘).
Auxochrome 
•TheattachmentofsubstituentgroupsinplaceofHonabasicchromophorestructurechangesthepositionandintensityofanabsorptionbandofthechromophore.Substituentsthatincreasetheintensityofabsorption,andpossiblythewavelength,arecalledauxochromes. 
•‘Auxochromesaregroupswhichbythemselvesdonotactaschromophoresbutwhosepresencebringsaboutashiftoftheabsorptionbandtowardstheredendofthespectrum(longerwavelength).’ 
•Auxochromeisthusalsoknownascolorenhancer.Importantexamplesaremethyl,hydroxyl,alkoxy(R—O),halogenandaminogroup. 
•Auxochromeexertsitseffectsbyvirtueofitabilitytoextendtheconjugationofachromophorebysharingofthenon-bondingelectrons. 
•Thisresultsinanewchromophorewhichhasadifferentabsorptionmaximumandprobablyanenhancedextinctioncoefficient.
•Inmanyinstancestheabsorptionandabsorbancechangeeitherduetointeractionwithanauxochromeorduetochangeofthesolvent.Foursuchabsorptionandintensityshiftsareknownandaredetailedbelow. 
1.Bathochromicshift:Theshiftisduetothepresenceofanauxochromebyvirtueofwhichtheabsorptionmaximumshiftstowardshigherwavelengths.Suchanabsorptionshiftisknownastheredshift,orthebathochromicshift.Sometimedecreasingpolarityofthesolventmayalsocausebathochromicshift 
2.Hypsochromicshift:Thisisoppositeofthebathochromicshift.Theshiftisduetoremovalofconjugationandachangeinthepolarityofthesolventduetowhichtheabsorptionmaximumisshiftedtowardsshorterwavelengths(blueshift). 
e
3.Hyperchromiceffect:Thiseffectsignifiesanincreaseintheintensityoftheabsorptionmaximum,orachangeintheextinctioncoefficienttoahighervalueatthesameabsorptionmaximum.Thiseffectismostlyduetothepresenceofauxochrome. 
4.Hypochromiceffect:Thisisoppositeofhyperchromiceffectandiscausedduetotheintroductionofgroupwhichcausedistortioninthegeometryofabsorbingmolecules.Thiseffectsignifiesthattheintensityoftheabsorptionmaximumislowered. 
Exampletounderstandchromophoreandauxochrome: 
•Benzenedoesnotdisplaycolorasitdoesnothaveachromophore; butnitrobenzeneispaleyellowcolorbecauseofthepresenceofanitrogroup(-NO2)whichactsasachromophore.ButPara-hydroxynitrobenzeneexhibitsadeepyellowcolor,inwhich-OHgroupactsasanauxochrome.
Choice of solvent 
•TheUV-Visspectraareusuallymeasuredinverydilutesolutionsandthemostimportantcriterioninthechoiceofsolventisthatthesolventmustbetransparentwithinthewavelengthrangebeingexamined.Table2listssomecommonsolventswiththeirlowerwavelengthcutofflimits.Belowtheselimits,thesolventsshowexcessiveabsorbanceandshouldnotbeusedtodetermineUVspectrumofasample. 
•Agoodsolventshouldnotabsorbultravioletradiationinthesameregionasthesubstancewhosespectrumisbeingdetermined. 
•Usuallysolventswhichdonotcontainconjugatedsystemsaremostsuitableforthispurpose,althoughtheyvaryastotheshortestwavelengthatwhichtheyremaintransparenttoultravioletradiation. 
•Thesolventsmostcommonlyusedarewater,95%ethanol,andn-hexane.
Solvent effect 
•OneoftheimportantcriterionforagoodsolventisitsabilitytoinfluencethewavelengthofUVlightthatwillbeabsorbedviathestabilizationofeithergroundortheexcitedstate. 
•Highlypure,non-polarsolventssuchassaturatedhydrocarbonsdonotinteractwithsolutemoleculeseitherinthegroundorexcitedstateandtheabsorptionspectrumofacompoundinthesesolventsissimilartotheoneinapuregaseousstate. 
•However,polarsolventssuchaswater,alcoholsetc.maystabilizeordestabilizethemolecularorbitalsofamoleculeeitherinthegroundstateorinexcitedstateandthespectrumofacompoundinthesesolventsmaysignificantlyvaryfromtheonerecordedinahydrocarbonsolvent. 
•Solventeffectistheabilityofasolventtoinfluencethewavelengthofultravioletlightwhichwillbeabsorbed.
•Polarsolventsdonotformhydrogenbondsasreadilywithexcitedstatesofpolarmoleculesaswiththeirgroundstates,andthesepolarsolventsincreasetheenergiesofelectronictransitionsinthemolecules.Polarsolventsshiftstransitionsofthen→π*typetoshorterwavelengths. 
•Ontheotherhand,insomecasestheexcitedstatesmayformstrongerhydrogenbondsthanthecorrespondinggroundstate.Insuchcases,apolarsolventwouldshiftanabsorptiontolongerwavelength,sincetheenergyoftheelectronictransitionwouldbedecreased.Polarsolventshifttransitionsofthetypeππ*tolongerwavelengths.
Application 
•Absorptionspectroscopybasedonultravioletandvisibleradiationisoneofthemostusefultoolsavailabletothechemistforquantitativeanalysis.Theimportantcharacteristicsofspectrophotometricandphotometricmethodsare: 
1.Wideapplicability:Enormousnumbersofinorganic.organic,andbiochemicalspeciesabsorbultravioletorvisibleradiationandarethusamenabletodirectquantitativedetermination. Manynonabsorbingspeciescanalsobedeterminedafterchemicalconversiontoabsorbingderivatives.Ithasbeenestimatedthatmorethan90%oftheanalysesperformedinclinicallaboratoriesarebasedonultravioletandvisibleabsorptionspectroscopy. 
2.Highsensitivity:Typicaldetectionlimitsforabsorptionspectroscopyrangefrom1O-4to10-5M.Withcertainproceduralmodifications,thisrangecanoftenheextendedto10-6oreven10-7M. 
3.Moderatetohighse!ectivity:Oftenawavelengthcanbefoundatwhichtheanalytealoneabsorbs,thusmakingpreliminaryseparationsunnecessary.Fur-thermore,whereoverlappingabsorptionbandsdooccur,correctionsbasedonaadditionalmeasurementsatotherwavelengthssometimeeliminatetheneedforaseparationstep. 
4.Goodaccuracy:Therelativeerrorsinconcentrationencounteredwithatypicalspectrophotometricorphotometricprocedureusingultravioletandvisibleradiationlieintherangefrom1%to5%.Withspecialprecautions,sucherrorscanoftenbedecreasedtoafewtenthsofapercent. 
5.EaseandConvenience:Spectrophotometricandphotometricmeasurementsareeasilyandrapidlyperformedwithmoderninstruments.Inaddition,themethodsreadilylendthemselvestoautomation.
Woodward-Feiser Rule 
•Structuralanalysisfromelectronicspectrayieldslittleinformationbecauseoftheirrelativesimplicity. 
•In1940’s,UV-Visspectroscopywasusedforstructuralidentification. 
•Thestudyofspectraofvariousmoleculeshasrevealedcorrelationsbetweenstructuresandthepositionsofabsorptionmaxima. 
•Woodward'srules,namedafterRobertBurnsWoodwardandalsoknownasWoodward–Fieserrules(forLouisFieser)areseveralsetsofempiricallyderivedruleswhichattempttopredictthewavelengthoftheabsorptionmaximum(λmax)inanultraviolet–visiblespectrumofagivencompound.Inputsusedinthecalculationarethetypeofchromophorespresent,thesubstituentsonthechromophores,andshiftsduetothesolvent. 
•Itisthemostwidelyknownempiricalruleswhichinvolveunsaturatedcarbonyls,dienesandsteroids. 
•Usingtheincrementaltablesbasedonvariousfactorsandstructuralfeatures,itispossibletopredictthepositionoftheππ*absorptionbandsintheseconjugatedsystems.
Woodward-Fieser Rules for Calculating the λmax of Conjugated Dienes and Polyenes 
•Conjugateddienesandpolyenesarefoundinmostorganiccompounds.Forexample,evenabenzeneringisaconjugatedpolyene. ThereforeitisusefultoknowhowtoutilizetheWoodward-Fieserrulestocalculatethewavelengthofmaximumabsorptionofconjugateddienesandpolyenes. 
•AccordingtoWoodward’srulestheλmaxofthemoleculecanbecalculatedusingaformula: λmax=Basevalue+ΣSubstituentContributions+ΣOtherContributions 
•Herethebasevaluedependsuponwhetherthedieneisalinearorheteroannularortransoiddiene,orwhetheritisacyclicorhomoannulardiene(eachofthesewillbeexplainedingreaterdetailbelow).Thesumofallsubstituentcontributionsareaddedtothebasevaluetoobtainthewavelengthofmaximumabsorptionofthemolecule.
Referthefollowingwebsiteformore: 
•http://pharmaxchange.info/press/2012/08/ultraviolet-visible-uv-vis-spectroscopy- %E2%80%93-woodward-fieser-rules-to-calculate-wavelength-of-maximum- absorption-lambda-max-of-conjugated-carbonyl-compounds/ 
•http://pharmaxchange.info/press/2012/08/ultraviolet-visible-uv-vis-spectroscopy- %E2%80%93-woodward-fieser-rules-to-calculate-wavelength-of-maximum- absorption-lambda-max-of-conjugated-dienes-and-polyenes/
Uv vis spectroscopy
Uv vis spectroscopy

More Related Content

What's hot

Solvents and solvent effect in UV - Vis Spectroscopy, By Dr. Umesh Kumar sh...
Solvents and  solvent effect in UV -  Vis Spectroscopy, By Dr. Umesh Kumar sh...Solvents and  solvent effect in UV -  Vis Spectroscopy, By Dr. Umesh Kumar sh...
Solvents and solvent effect in UV - Vis Spectroscopy, By Dr. Umesh Kumar sh...Dr. UMESH KUMAR SHARMA
 
Overtone & fermi resonance in IR
Overtone & fermi resonance in IROvertone & fermi resonance in IR
Overtone & fermi resonance in IRMahgull Syed
 
Fragmentation Pattern in Mass Spectra
Fragmentation Pattern in Mass SpectraFragmentation Pattern in Mass Spectra
Fragmentation Pattern in Mass SpectraSPCGC AJMER
 
UV-Visible Spectroscopy
UV-Visible SpectroscopyUV-Visible Spectroscopy
UV-Visible SpectroscopyAshish Roge
 
Infra Red Spectroscopy and Its Applications
Infra Red Spectroscopy and Its ApplicationsInfra Red Spectroscopy and Its Applications
Infra Red Spectroscopy and Its ApplicationsVikram Choudhary
 
Uv spectroscopy (Collected)
Uv spectroscopy (Collected)Uv spectroscopy (Collected)
Uv spectroscopy (Collected)Istiqur Rahman
 
NMR SPECTROSCOPY
NMR SPECTROSCOPYNMR SPECTROSCOPY
NMR SPECTROSCOPYVidyaNani
 
Mass fragmentation & rules
Mass fragmentation & rulesMass fragmentation & rules
Mass fragmentation & rulesMehulJain143
 
Factors and applications of IR Spectroscopy
Factors and applications of IR SpectroscopyFactors and applications of IR Spectroscopy
Factors and applications of IR SpectroscopyKasturi Banerjee
 
UV-VISIBLE SPECTROSCOPY
UV-VISIBLE SPECTROSCOPYUV-VISIBLE SPECTROSCOPY
UV-VISIBLE SPECTROSCOPYBinuja S.S
 
Infrared instrumentation
Infrared instrumentationInfrared instrumentation
Infrared instrumentationNIPER MOHALI
 
Basic Concepts of UV & IR Spectroscopy
Basic Concepts of UV & IR SpectroscopyBasic Concepts of UV & IR Spectroscopy
Basic Concepts of UV & IR SpectroscopyDrBasavarajaiahSm
 
Introduction to spectroscopy
Introduction to spectroscopyIntroduction to spectroscopy
Introduction to spectroscopyUSTC, Hefei, PRC
 
INSTRUMENTATION OF UV-VISIBLE SPECTROPHOTOMETRY
INSTRUMENTATION OF UV-VISIBLE SPECTROPHOTOMETRYINSTRUMENTATION OF UV-VISIBLE SPECTROPHOTOMETRY
INSTRUMENTATION OF UV-VISIBLE SPECTROPHOTOMETRYAshwini Somayaji
 
INTRODUCTION TO UV-VISIBLE SPECTROSCOPY
INTRODUCTION TO UV-VISIBLE SPECTROSCOPYINTRODUCTION TO UV-VISIBLE SPECTROSCOPY
INTRODUCTION TO UV-VISIBLE SPECTROSCOPYJunaid Khan
 
UV visible spectroscopy
UV visible spectroscopyUV visible spectroscopy
UV visible spectroscopyAkshay Patil
 
Instrumentation of uv spectroscopy
Instrumentation of uv spectroscopyInstrumentation of uv spectroscopy
Instrumentation of uv spectroscopyArabinda Changmai
 
Uv visible spectroscopy
Uv visible spectroscopyUv visible spectroscopy
Uv visible spectroscopyPALANIANANTH.S
 

What's hot (20)

Nmr theory
Nmr theoryNmr theory
Nmr theory
 
Solvents and solvent effect in UV - Vis Spectroscopy, By Dr. Umesh Kumar sh...
Solvents and  solvent effect in UV -  Vis Spectroscopy, By Dr. Umesh Kumar sh...Solvents and  solvent effect in UV -  Vis Spectroscopy, By Dr. Umesh Kumar sh...
Solvents and solvent effect in UV - Vis Spectroscopy, By Dr. Umesh Kumar sh...
 
Overtone & fermi resonance in IR
Overtone & fermi resonance in IROvertone & fermi resonance in IR
Overtone & fermi resonance in IR
 
Fragmentation Pattern in Mass Spectra
Fragmentation Pattern in Mass SpectraFragmentation Pattern in Mass Spectra
Fragmentation Pattern in Mass Spectra
 
UV-Visible Spectroscopy
UV-Visible SpectroscopyUV-Visible Spectroscopy
UV-Visible Spectroscopy
 
Infra Red Spectroscopy and Its Applications
Infra Red Spectroscopy and Its ApplicationsInfra Red Spectroscopy and Its Applications
Infra Red Spectroscopy and Its Applications
 
Uv spectroscopy (Collected)
Uv spectroscopy (Collected)Uv spectroscopy (Collected)
Uv spectroscopy (Collected)
 
U.V Spectroscopy
U.V SpectroscopyU.V Spectroscopy
U.V Spectroscopy
 
NMR SPECTROSCOPY
NMR SPECTROSCOPYNMR SPECTROSCOPY
NMR SPECTROSCOPY
 
Mass fragmentation & rules
Mass fragmentation & rulesMass fragmentation & rules
Mass fragmentation & rules
 
Factors and applications of IR Spectroscopy
Factors and applications of IR SpectroscopyFactors and applications of IR Spectroscopy
Factors and applications of IR Spectroscopy
 
UV-VISIBLE SPECTROSCOPY
UV-VISIBLE SPECTROSCOPYUV-VISIBLE SPECTROSCOPY
UV-VISIBLE SPECTROSCOPY
 
Infrared instrumentation
Infrared instrumentationInfrared instrumentation
Infrared instrumentation
 
Basic Concepts of UV & IR Spectroscopy
Basic Concepts of UV & IR SpectroscopyBasic Concepts of UV & IR Spectroscopy
Basic Concepts of UV & IR Spectroscopy
 
Introduction to spectroscopy
Introduction to spectroscopyIntroduction to spectroscopy
Introduction to spectroscopy
 
INSTRUMENTATION OF UV-VISIBLE SPECTROPHOTOMETRY
INSTRUMENTATION OF UV-VISIBLE SPECTROPHOTOMETRYINSTRUMENTATION OF UV-VISIBLE SPECTROPHOTOMETRY
INSTRUMENTATION OF UV-VISIBLE SPECTROPHOTOMETRY
 
INTRODUCTION TO UV-VISIBLE SPECTROSCOPY
INTRODUCTION TO UV-VISIBLE SPECTROSCOPYINTRODUCTION TO UV-VISIBLE SPECTROSCOPY
INTRODUCTION TO UV-VISIBLE SPECTROSCOPY
 
UV visible spectroscopy
UV visible spectroscopyUV visible spectroscopy
UV visible spectroscopy
 
Instrumentation of uv spectroscopy
Instrumentation of uv spectroscopyInstrumentation of uv spectroscopy
Instrumentation of uv spectroscopy
 
Uv visible spectroscopy
Uv visible spectroscopyUv visible spectroscopy
Uv visible spectroscopy
 

Viewers also liked

Visible and ultraviolet spectroscopy
Visible and ultraviolet spectroscopyVisible and ultraviolet spectroscopy
Visible and ultraviolet spectroscopyRawat DA Greatt
 
UV Visible Spectroscopy
 UV Visible Spectroscopy UV Visible Spectroscopy
UV Visible SpectroscopyAvinash Jadhav
 
Uv vis spectroscopy practical.
Uv vis spectroscopy practical.Uv vis spectroscopy practical.
Uv vis spectroscopy practical.Salum Mkata
 
Electromagnetic spectrum e learning
Electromagnetic spectrum e learningElectromagnetic spectrum e learning
Electromagnetic spectrum e learningOlivia Ng
 
Applicationofu v-spectroscopy-120416145659-phpapp02
Applicationofu v-spectroscopy-120416145659-phpapp02Applicationofu v-spectroscopy-120416145659-phpapp02
Applicationofu v-spectroscopy-120416145659-phpapp02Kirsha K S
 
05 uv visible spectroscopy-uv-vis-292557
05 uv visible spectroscopy-uv-vis-29255705 uv visible spectroscopy-uv-vis-292557
05 uv visible spectroscopy-uv-vis-292557Itachi SK
 
New ppt of uv visible
New ppt of uv visibleNew ppt of uv visible
New ppt of uv visiblekeshav pai
 
ABSORPTION SPECTROPHOTOMETRY
ABSORPTION SPECTROPHOTOMETRYABSORPTION SPECTROPHOTOMETRY
ABSORPTION SPECTROPHOTOMETRYJelilat Kareem
 
spectroscpy slides sidra
spectroscpy slides sidraspectroscpy slides sidra
spectroscpy slides sidraDr Sidra Khalid
 
Uv visible-spectroscopy
Uv visible-spectroscopy Uv visible-spectroscopy
Uv visible-spectroscopy Protik Biswas
 
UV visible Spectroscoy - How to used UV Spectrophotometer
UV visible Spectroscoy - How to used UV SpectrophotometerUV visible Spectroscoy - How to used UV Spectrophotometer
UV visible Spectroscoy - How to used UV SpectrophotometerSagar Savale
 
UV- VISIBLE SPECTROSCOPY BY Ann
UV- VISIBLE SPECTROSCOPY BY AnnUV- VISIBLE SPECTROSCOPY BY Ann
UV- VISIBLE SPECTROSCOPY BY AnnAnjali Rarichan
 

Viewers also liked (20)

UV-VIS Spectroscopy
UV-VIS SpectroscopyUV-VIS Spectroscopy
UV-VIS Spectroscopy
 
Spectroscopy uv vis
Spectroscopy uv visSpectroscopy uv vis
Spectroscopy uv vis
 
Visible and ultraviolet spectroscopy
Visible and ultraviolet spectroscopyVisible and ultraviolet spectroscopy
Visible and ultraviolet spectroscopy
 
UV Visible Spectroscopy
 UV Visible Spectroscopy UV Visible Spectroscopy
UV Visible Spectroscopy
 
UV visible spectroscopy
UV visible spectroscopyUV visible spectroscopy
UV visible spectroscopy
 
Uv vis spectroscopy practical.
Uv vis spectroscopy practical.Uv vis spectroscopy practical.
Uv vis spectroscopy practical.
 
Electromagnetic spectrum e learning
Electromagnetic spectrum e learningElectromagnetic spectrum e learning
Electromagnetic spectrum e learning
 
Applicationofu v-spectroscopy-120416145659-phpapp02
Applicationofu v-spectroscopy-120416145659-phpapp02Applicationofu v-spectroscopy-120416145659-phpapp02
Applicationofu v-spectroscopy-120416145659-phpapp02
 
Uv slideshare :)
Uv slideshare :)Uv slideshare :)
Uv slideshare :)
 
05 uv visible spectroscopy-uv-vis-292557
05 uv visible spectroscopy-uv-vis-29255705 uv visible spectroscopy-uv-vis-292557
05 uv visible spectroscopy-uv-vis-292557
 
New ppt of uv visible
New ppt of uv visibleNew ppt of uv visible
New ppt of uv visible
 
ABSORPTION SPECTROPHOTOMETRY
ABSORPTION SPECTROPHOTOMETRYABSORPTION SPECTROPHOTOMETRY
ABSORPTION SPECTROPHOTOMETRY
 
Ultravoilet spectroscopy
Ultravoilet spectroscopyUltravoilet spectroscopy
Ultravoilet spectroscopy
 
spectroscpy slides sidra
spectroscpy slides sidraspectroscpy slides sidra
spectroscpy slides sidra
 
U V Visible Spectroscopy
U V Visible SpectroscopyU V Visible Spectroscopy
U V Visible Spectroscopy
 
Uv visible-spectroscopy
Uv visible-spectroscopy Uv visible-spectroscopy
Uv visible-spectroscopy
 
U.V Spectroscopy.
U.V Spectroscopy.U.V Spectroscopy.
U.V Spectroscopy.
 
UV visible Spectroscoy - How to used UV Spectrophotometer
UV visible Spectroscoy - How to used UV SpectrophotometerUV visible Spectroscoy - How to used UV Spectrophotometer
UV visible Spectroscoy - How to used UV Spectrophotometer
 
NMR Spectroscopy
NMR SpectroscopyNMR Spectroscopy
NMR Spectroscopy
 
UV- VISIBLE SPECTROSCOPY BY Ann
UV- VISIBLE SPECTROSCOPY BY AnnUV- VISIBLE SPECTROSCOPY BY Ann
UV- VISIBLE SPECTROSCOPY BY Ann
 

Similar to Uv vis spectroscopy

Ch7z5eatstructure 110115225106-phpapp02
Ch7z5eatstructure 110115225106-phpapp02Ch7z5eatstructure 110115225106-phpapp02
Ch7z5eatstructure 110115225106-phpapp02Cleophas Rwemera
 
Uv vis spectroscopy for ktu students
Uv vis spectroscopy for ktu studentsUv vis spectroscopy for ktu students
Uv vis spectroscopy for ktu studentsSiju N Antony
 
CHM260 - Spectroscopy Method
CHM260 - Spectroscopy MethodCHM260 - Spectroscopy Method
CHM260 - Spectroscopy MethodAlia Najiha
 
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabusUltraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabusMonika Singh
 
Uv visible Spectroscopy
Uv visible SpectroscopyUv visible Spectroscopy
Uv visible Spectroscopyknowledge1995
 
X-ray spectroscopy
X-ray spectroscopyX-ray spectroscopy
X-ray spectroscopyVinit Gohel
 
Week1_Notes.pdf
Week1_Notes.pdfWeek1_Notes.pdf
Week1_Notes.pdfJoyPalit
 
Uv vis and raman spectroscopy
Uv vis and raman spectroscopyUv vis and raman spectroscopy
Uv vis and raman spectroscopyAnubhav Shukla
 
uv spectroscopy by HARVINDAR SINGH .M.PHARM PHARMACEUTICS
 uv spectroscopy by HARVINDAR SINGH .M.PHARM PHARMACEUTICS uv spectroscopy by HARVINDAR SINGH .M.PHARM PHARMACEUTICS
uv spectroscopy by HARVINDAR SINGH .M.PHARM PHARMACEUTICSHarevindarsingh
 
UV-Ultraviolet Visible Spectroscopy MANIK
UV-Ultraviolet Visible Spectroscopy MANIKUV-Ultraviolet Visible Spectroscopy MANIK
UV-Ultraviolet Visible Spectroscopy MANIKImran Nur Manik
 
Lec (1 2-3) ch one- optical analytical instrumentation
Lec (1 2-3)  ch one- optical analytical instrumentationLec (1 2-3)  ch one- optical analytical instrumentation
Lec (1 2-3) ch one- optical analytical instrumentationcairo university
 
CY1001D full ppt.pdf
CY1001D full ppt.pdfCY1001D full ppt.pdf
CY1001D full ppt.pdfpk2003158
 
Basic concepts of organic spectroscopy
Basic concepts of organic spectroscopyBasic concepts of organic spectroscopy
Basic concepts of organic spectroscopyDrBasavarajaiahSm
 
Uv-visible spectroscopy
Uv-visible spectroscopyUv-visible spectroscopy
Uv-visible spectroscopyMzgin Mohammed
 

Similar to Uv vis spectroscopy (20)

Uv seminar ppt
Uv seminar pptUv seminar ppt
Uv seminar ppt
 
Ch7z5eatstructure 110115225106-phpapp02
Ch7z5eatstructure 110115225106-phpapp02Ch7z5eatstructure 110115225106-phpapp02
Ch7z5eatstructure 110115225106-phpapp02
 
Uv vis spectroscopy for ktu students
Uv vis spectroscopy for ktu studentsUv vis spectroscopy for ktu students
Uv vis spectroscopy for ktu students
 
CHM260 - Spectroscopy Method
CHM260 - Spectroscopy MethodCHM260 - Spectroscopy Method
CHM260 - Spectroscopy Method
 
Spectroscopy all
Spectroscopy allSpectroscopy all
Spectroscopy all
 
PHARMACEUTICAL ANALYSIS-II.ppt
PHARMACEUTICAL ANALYSIS-II.pptPHARMACEUTICAL ANALYSIS-II.ppt
PHARMACEUTICAL ANALYSIS-II.ppt
 
Mass spectrometry
Mass spectrometryMass spectrometry
Mass spectrometry
 
Basic uv,visible
Basic uv,visibleBasic uv,visible
Basic uv,visible
 
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabusUltraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
 
Uv visible Spectroscopy
Uv visible SpectroscopyUv visible Spectroscopy
Uv visible Spectroscopy
 
Mossbauer spectroscopy
Mossbauer spectroscopyMossbauer spectroscopy
Mossbauer spectroscopy
 
X-ray spectroscopy
X-ray spectroscopyX-ray spectroscopy
X-ray spectroscopy
 
Week1_Notes.pdf
Week1_Notes.pdfWeek1_Notes.pdf
Week1_Notes.pdf
 
Uv vis and raman spectroscopy
Uv vis and raman spectroscopyUv vis and raman spectroscopy
Uv vis and raman spectroscopy
 
uv spectroscopy by HARVINDAR SINGH .M.PHARM PHARMACEUTICS
 uv spectroscopy by HARVINDAR SINGH .M.PHARM PHARMACEUTICS uv spectroscopy by HARVINDAR SINGH .M.PHARM PHARMACEUTICS
uv spectroscopy by HARVINDAR SINGH .M.PHARM PHARMACEUTICS
 
UV-Ultraviolet Visible Spectroscopy MANIK
UV-Ultraviolet Visible Spectroscopy MANIKUV-Ultraviolet Visible Spectroscopy MANIK
UV-Ultraviolet Visible Spectroscopy MANIK
 
Lec (1 2-3) ch one- optical analytical instrumentation
Lec (1 2-3)  ch one- optical analytical instrumentationLec (1 2-3)  ch one- optical analytical instrumentation
Lec (1 2-3) ch one- optical analytical instrumentation
 
CY1001D full ppt.pdf
CY1001D full ppt.pdfCY1001D full ppt.pdf
CY1001D full ppt.pdf
 
Basic concepts of organic spectroscopy
Basic concepts of organic spectroscopyBasic concepts of organic spectroscopy
Basic concepts of organic spectroscopy
 
Uv-visible spectroscopy
Uv-visible spectroscopyUv-visible spectroscopy
Uv-visible spectroscopy
 

More from Bijaya Kumar Uprety (16)

Progress, prospect and challenges in glycerol purification process
Progress, prospect and challenges in glycerol purification processProgress, prospect and challenges in glycerol purification process
Progress, prospect and challenges in glycerol purification process
 
Biodiesel production from oleaginous microorganisms
Biodiesel production from oleaginous microorganismsBiodiesel production from oleaginous microorganisms
Biodiesel production from oleaginous microorganisms
 
Value added products from glycerol
Value added products from glycerol Value added products from glycerol
Value added products from glycerol
 
Biodiesel production process
Biodiesel production processBiodiesel production process
Biodiesel production process
 
Antibiotics
AntibioticsAntibiotics
Antibiotics
 
Enzyme immobilization
Enzyme immobilizationEnzyme immobilization
Enzyme immobilization
 
Microbial transformation
Microbial transformationMicrobial transformation
Microbial transformation
 
Immunology & immunological preparation
Immunology & immunological preparationImmunology & immunological preparation
Immunology & immunological preparation
 
Genetic recombination
Genetic recombinationGenetic recombination
Genetic recombination
 
NMR
NMRNMR
NMR
 
IR spectroscopy
IR spectroscopyIR spectroscopy
IR spectroscopy
 
Fluorimetry
FluorimetryFluorimetry
Fluorimetry
 
Flame emission spectroscopy
Flame emission spectroscopyFlame emission spectroscopy
Flame emission spectroscopy
 
Emission spectroscopy
Emission spectroscopyEmission spectroscopy
Emission spectroscopy
 
Atomic absorption spectroscopy
Atomic absorption spectroscopyAtomic absorption spectroscopy
Atomic absorption spectroscopy
 
Biopesticide
Biopesticide Biopesticide
Biopesticide
 

Recently uploaded

Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...Sérgio Sacani
 
SAMPLING.pptx for analystical chemistry sample techniques
SAMPLING.pptx for analystical chemistry sample techniquesSAMPLING.pptx for analystical chemistry sample techniques
SAMPLING.pptx for analystical chemistry sample techniquesrodneykiptoo8
 
mixotrophy in cyanobacteria: a dual nutritional strategy
mixotrophy in cyanobacteria: a dual nutritional strategymixotrophy in cyanobacteria: a dual nutritional strategy
mixotrophy in cyanobacteria: a dual nutritional strategyMansiBishnoi1
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinossaicprecious19
 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Sérgio Sacani
 
electrochemical gas sensors and their uses.pptx
electrochemical gas sensors and their uses.pptxelectrochemical gas sensors and their uses.pptx
electrochemical gas sensors and their uses.pptxHusna Zaheer
 
GBSN - Microbiology (Lab 1) Microbiology Lab Safety Procedures
GBSN -  Microbiology (Lab  1) Microbiology Lab Safety ProceduresGBSN -  Microbiology (Lab  1) Microbiology Lab Safety Procedures
GBSN - Microbiology (Lab 1) Microbiology Lab Safety ProceduresAreesha Ahmad
 
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243Sérgio Sacani
 
Transport in plants G1.pptx Cambridge IGCSE
Transport in plants G1.pptx Cambridge IGCSETransport in plants G1.pptx Cambridge IGCSE
Transport in plants G1.pptx Cambridge IGCSEjordanparish425
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rockskumarmathi863
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard Gill
 
Shuaib Y-basedComprehensive mahmudj.pptx
Shuaib Y-basedComprehensive mahmudj.pptxShuaib Y-basedComprehensive mahmudj.pptx
Shuaib Y-basedComprehensive mahmudj.pptxMdAbuRayhan16
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxmuralinath2
 
Seminar on Halal AGriculture and Fisheries.pptx
Seminar on Halal AGriculture and Fisheries.pptxSeminar on Halal AGriculture and Fisheries.pptx
Seminar on Halal AGriculture and Fisheries.pptxRUDYLUMAPINET2
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionpablovgd
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayAADYARAJPANDEY1
 
THYROID-PARATHYROID medical surgical nursing
THYROID-PARATHYROID medical surgical nursingTHYROID-PARATHYROID medical surgical nursing
THYROID-PARATHYROID medical surgical nursingJocelyn Atis
 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationanitaento25
 
Topography and sediments of the floor of the Bay of Bengal
Topography and sediments of the floor of the Bay of BengalTopography and sediments of the floor of the Bay of Bengal
Topography and sediments of the floor of the Bay of BengalMd Hasan Tareq
 
Aerodynamics. flippatterncn5tm5ttnj6nmnynyppt
Aerodynamics. flippatterncn5tm5ttnj6nmnynypptAerodynamics. flippatterncn5tm5ttnj6nmnynyppt
Aerodynamics. flippatterncn5tm5ttnj6nmnynypptsreddyrahul
 

Recently uploaded (20)

Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...
 
SAMPLING.pptx for analystical chemistry sample techniques
SAMPLING.pptx for analystical chemistry sample techniquesSAMPLING.pptx for analystical chemistry sample techniques
SAMPLING.pptx for analystical chemistry sample techniques
 
mixotrophy in cyanobacteria: a dual nutritional strategy
mixotrophy in cyanobacteria: a dual nutritional strategymixotrophy in cyanobacteria: a dual nutritional strategy
mixotrophy in cyanobacteria: a dual nutritional strategy
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...
 
electrochemical gas sensors and their uses.pptx
electrochemical gas sensors and their uses.pptxelectrochemical gas sensors and their uses.pptx
electrochemical gas sensors and their uses.pptx
 
GBSN - Microbiology (Lab 1) Microbiology Lab Safety Procedures
GBSN -  Microbiology (Lab  1) Microbiology Lab Safety ProceduresGBSN -  Microbiology (Lab  1) Microbiology Lab Safety Procedures
GBSN - Microbiology (Lab 1) Microbiology Lab Safety Procedures
 
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
 
Transport in plants G1.pptx Cambridge IGCSE
Transport in plants G1.pptx Cambridge IGCSETransport in plants G1.pptx Cambridge IGCSE
Transport in plants G1.pptx Cambridge IGCSE
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
 
Shuaib Y-basedComprehensive mahmudj.pptx
Shuaib Y-basedComprehensive mahmudj.pptxShuaib Y-basedComprehensive mahmudj.pptx
Shuaib Y-basedComprehensive mahmudj.pptx
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
 
Seminar on Halal AGriculture and Fisheries.pptx
Seminar on Halal AGriculture and Fisheries.pptxSeminar on Halal AGriculture and Fisheries.pptx
Seminar on Halal AGriculture and Fisheries.pptx
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
 
THYROID-PARATHYROID medical surgical nursing
THYROID-PARATHYROID medical surgical nursingTHYROID-PARATHYROID medical surgical nursing
THYROID-PARATHYROID medical surgical nursing
 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
 
Topography and sediments of the floor of the Bay of Bengal
Topography and sediments of the floor of the Bay of BengalTopography and sediments of the floor of the Bay of Bengal
Topography and sediments of the floor of the Bay of Bengal
 
Aerodynamics. flippatterncn5tm5ttnj6nmnynyppt
Aerodynamics. flippatterncn5tm5ttnj6nmnynypptAerodynamics. flippatterncn5tm5ttnj6nmnynyppt
Aerodynamics. flippatterncn5tm5ttnj6nmnynyppt
 

Uv vis spectroscopy