SlideShare a Scribd company logo
6.6 
De Moivre’s 
Theorem and 
nth Roots 
Copyright © 2011 Pearson, Inc.
What you’ll learn about 
 The Complex Plane 
 Trigonometric Form of Complex Numbers 
 Multiplication and Division of Complex Numbers 
 Powers of Complex Numbers 
 Roots of Complex Numbers 
… and why 
The material extends your equation-solving technique 
to include equations of the form zn = c, n is an integer 
and c is a complex number. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 2
Complex Plane 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 3
Absolute Value (Modulus) of a 
Complex Number 
The absolute value or modulus 
of a complex number 
z  a  bi z  a  bi  a  
b 
is | | | | . 
2 2 
a bi a bi 
In the complex plane, | | is the distance of 
from the origin. 
  
Copyright © 2011 Pearson, Inc. Slide 6.1 - 4
Graph of z = a + bi 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 5
Trigonometric Form of a Complex 
Number 
The trigonometric form of the complex number 
z  a  bi is 
z  rcos  isin  
where a  r cos , b  r sin , r  a2  b2 , 
and tan  b / a. The number r is the absolute 
value or modulus of z, and  is an argument of z. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 6
Example Finding Trigonometric 
Form 
Find the trigonometric form with 0    2 for the 
complex number 1 3i. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 7
Example Finding Trigonometric 
Form 
Find the trigonometric form with 0    2 for the 
complex number 1 3i. 
Find r: r |1 3i | 12  32 
 2. 
Find  : tan  
3 
1 
so   
 
3 
. 
 
Therefore, 1 3i  2 cos 
 
3 
 isin 
 
 
3 
  
  
. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 8
Product and Quotient of Complex 
Numbers 
Let z1  r1 cos1  isin1   and z2  r2 cos 2  isin 2  . 
Then 
1. z1  z2  r1r2 cos 1  2   isin 1  2    
 
. 
2. 
z1 
z2 
 
r1 
r2 
cos 1  2   isin 1  2     
, r2  0. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 9
Example Multiplying Complex 
Numbers 
Express the product of z1 and z2 in standard form. 
 
z1  4 cos 
 
4 
 isin 
 
 
4 
  
  
 
, z2  2 cos 
 
6 
 isin 
 
 
6 
  
  
Copyright © 2011 Pearson, Inc. Slide 6.1 - 10
Example Multiplying Complex 
Numbers 
Express the product of z1 and z2 in standard form. 
 
z1  4 cos 
 
4 
 isin 
 
 
4 
  
  
 
, z2  2 cos 
 
6 
 isin 
  
z1  z2  r1r2 cos 1  2   isin 1  2    
 
 
 4 2 cos 
 
4 
 
 
 
6 
 
  
  
 isin 
 
4 
 
 
 
6 
 
  
  
  
 
 
6 
 
  
 
 4 2 cos 
 
5 
12 
 
  
  
 isin 
 
5 
12 
 
  
  
  
 
  
  
 4 20.259  i0.966 1.464  5.464i 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 11
A Geometric Interpretation of z2 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 12
De Moivre’s Theorem 
Let z  rcos  isin  and let n be a positive integer. 
Then 
zn  r cos  isin    
 
 
 
n 
 r n cosn  isin n . 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 13
Example Using De Moivre’s Theorem 
 
Find  
3 
2 
 i 
1 
2 
  
 
  
4 
using De Moivre's theorem. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 14
Example Using De Moivre’s Theorem 
 
Find  
3 
2 
 i 
1 
2 
  
 
  
4 
using De Moivre's theorem. 
The argument of z   
3 
2 
 i 
1 
2 
is   
7 
6 
, 
and its modulus  
3 
2 
 i 
1 
2 
 
3 
4 
 
1 
4 
 1. 
Hence, 
z  2cos 
7 
6 
 isin 
7 
6 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 15
Example Using De Moivre’s Theorem 
4 
using De Moivre's theorem. 
 
 i 
1 
2 
 
  
z4  cos 4  
 
7 
6 
  
  
 
 isin 4  
 
7 
6 
  
  
 cos 
 
14 
3 
 
  
  
 isin 
 
14 
3 
 
  
  
 cos 
 
2 
3 
 
  
  
 isin 
 
2 
3 
 
  
  
  
1 
2 
 i 
3 
2 
 
Find  
3 
2 
  
Copyright © 2011 Pearson, Inc. Slide 6.1 - 16
nth Root of a Complex Number 
A complex number v  a  bi is an nth root of z if 
vn  z. 
If z  1, the v is an nth root of unity. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 17
Finding nth Roots of a Complex 
Number 
If z  rcos  isin , then the n distinct 
complex numbers 
 
r n cos 
  2 k 
n 
 isin 
  2 k 
n 
  
 
 , 
where k  0,1,2,..,n 1, 
are the nth roots of the complex number z. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 18
Example Finding Cube Roots 
Find the cube roots of 1. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 19
Example Finding Cube Roots 
Find the cube roots of 1. 
Write 1 in complex form: z  1 0i  cos0  isin0 
The third roots of 1 are the complex numbers 
cos 
0  2 k 
3 
 isin 
0  2 k 
3 
for k  0,1,2. 
z1  cos0  isin0  1 
z2  cos 
2 
3 
 isin 
2 
3 
  
1 
2 
 
3 
2 
i 
z3  cos 
4 
3 
 isin 
4 
3 
  
1 
2 
 
3 
2 
i 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 20
Quick Review 
1. Write the roots of the equation x2 12  6x in a  bi form. 
2. Write the complex number 1 i3 
in standard form a  bi. 
3. Find all real solutions to x3  27  0. 
Find an angle  in 0    2 which satisfies both equations. 
4. sin  
1 
2 
and cos   
3 
2 
5. sin   
2 
2 
and cos   
2 
2 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 21
Quick Review Solutions 
1. Write the roots of the equation x2 12  6x in a  bi form. 
3 3i, 3 3i 
2. Write the complex number 1 i3 
in standard form a  bi. 
2  2i 
3. Find all real solutions to x3  27  0. x  3 
Find an angle  in 0    2 which satisfies both equations. 
4. sin  
1 
2 
and cos   
3 
2 
  5 / 6 
5. sin   
2 
2 
and cos   
2 
2 
  5 / 4 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 22
Chapter Test 
1. Let u  2, 1 and v  4,2 . Find u v. 
2. Let A  (2, 1),B  (3,1),C  (4,2), and D  (1, 5). 
Find the component form and magnitude of the vector 
uuur 
uuur 
AC 
+BD 
3. Given A  (4,0) and B  (2,1), find (a) a unit vector in 
uuur 
the direction of AB 
and (b) a vector of magnitude 3 in 
the opposite direction. 
4. Given u  4,3 and v  2,5 , find (a) the direction 
angles of u and v and (b) the angle between u and v. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 23
Chapter Test 
5. Convert the polar coordinate (  2.5,25o) to a rectangular 
coordinate. 
6. Eliminate the parameter t. x  4  t, y  8  5t,  3  t  5. 
7. Find a parameterization for the line through the points 
( 1, 2) and (3,4). 
 
 
8. Use De Moivre's theorem to evaluate 3 cos 
 
4 
 isin 
 
 
4 
  
  
  
 
  
5 
. 
Write your answer in (a) trigonometric form and (b) standard 
form. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 24
Chapter Test 
9. Convert the polar equation r  3cos  2sin to 
rectangular form. 
10. A 3000 pound car is parked on a street that makes 
an angle of 16o with the horizontal. 
(a) Find the force required to keep the car from rolling 
down the hill. 
(b) Find the component of the force perpendicular to 
the street. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 25
Chapter Test Solutions 
1. Let u  2, 1 and v  4,2 . Find u v. 6 
2. Let A  (2, 1),B  (3,1),C  (4,2), and D  (1, 5). 
Find the component form and magnitude of the vector 
uuur 
uuur 
AC 
+BD 
8, 3 ; 73 
3. Given A  (4,0) and B  (2,1), find (a) a unit vector in 
uuur 
the direction of AB 
and (b) a vector of magnitude 3 in 
the opposite direction. (a)  
2 
5 
, 
1 
5 
(b) 
6 
5 
,  
3 
5 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 26
Chapter Test Solutions 
4. Given u  4,3 and v  2,5 , find (a) the direction 
angles of u and v and (b) the angle between u and v. 
 
(a) tan1 3 
4 
  
 
 
  0.64 tan1 5 
2 
  
 
  1.19 (b)  0.55 
5. Convert the polar coordinate (  2.5,25o) to a 
rectangular coordinate.  (  2.27, 1.06) 
6. Eliminate the parameter t. x  4  t, y  8  5t, 
 3  t  5. y  5x 12 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 27
Chapter Test 
7. Find a parameterization for the line through the points 
( 1, 2) and (3,4). x  2t  3, y  3t  4 
 
 
8. Use De Moivre's theorem to evaluate 3 cos 
 
4 
 isin 
 
 
4 
  
  
 
 
 
 
 
5 
. 
Write your answer in (a) trigonometric form and (b) standard 
form. 
 
(a) 243 cos 
5 
4 
 isin 
 
5 
4 
  
  (b) 
243 2 
2 
 
243 2 
2 
i 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 28
Chapter Test 
9. Convert the polar equation r  3cos  2sin to 
 
rectangular form. x  
3 
2 
  
 
  
2 
 y 12 
 
13 
4 
10. A 3000 pound car is parked on a street that makes 
an angle of 16o with the horizontal. 
(a) Find the force required to keep the car from rolling 
down the hill.  826.91 pounds 
(b) Find the component of the force perpendicular to 
the street. 2883.79 pounds 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 29

More Related Content

What's hot

Geometric sequences
Geometric sequencesGeometric sequences
Geometric sequences
mooca76
 
Hypergeometric Distribution
Hypergeometric DistributionHypergeometric Distribution
Hypergeometric Distribution
mathscontent
 
Poisson Probability Distributions
Poisson Probability DistributionsPoisson Probability Distributions
Poisson Probability Distributions
Long Beach City College
 
Class 14 3D HermiteInterpolation.pptx
Class 14 3D HermiteInterpolation.pptxClass 14 3D HermiteInterpolation.pptx
Class 14 3D HermiteInterpolation.pptx
MdSiddique20
 
Introduction to Partial Fractions
Introduction to Partial FractionsIntroduction to Partial Fractions
Introduction to Partial Fractions
dmidgette
 
Theory of Equation
Theory of EquationTheory of Equation
Theory of Equation
SOMASUNDARAM T
 
Number theory.ppt22
Number theory.ppt22Number theory.ppt22
Number theory.ppt22
teena zacharias
 
Standard form solve equations
Standard form solve equationsStandard form solve equations
Standard form solve equations
pfefferteacher
 
Polynomial congruence with prime moduli.pptx
Polynomial congruence with prime moduli.pptxPolynomial congruence with prime moduli.pptx
Polynomial congruence with prime moduli.pptx
JaniceBarnaha
 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a function
btmathematics
 
Exponential functions
Exponential functionsExponential functions
Exponential functions
omar_egypt
 
26 alternating series and conditional convergence x
26 alternating series and conditional convergence x26 alternating series and conditional convergence x
26 alternating series and conditional convergence x
math266
 
U4 l4 quadratic formula powerpoint
U4 l4 quadratic formula powerpointU4 l4 quadratic formula powerpoint
U4 l4 quadratic formula powerpoint
chrystal_brinson
 
The binomial theorem
The binomial theoremThe binomial theorem
The binomial theorem
MaxTorresdey
 
Probability(mutually exclusive events)
Probability(mutually exclusive events)Probability(mutually exclusive events)
Probability(mutually exclusive events)
Nadeem Uddin
 
Permutation and combination
Permutation and combinationPermutation and combination
Permutation and combination
Sadia Zareen
 
Geometric Series and Finding the Sum of Finite Geometric Sequence
Geometric Series and Finding the Sum of Finite Geometric SequenceGeometric Series and Finding the Sum of Finite Geometric Sequence
Geometric Series and Finding the Sum of Finite Geometric Sequence
Free Math Powerpoints
 
Newton Raphson
Newton RaphsonNewton Raphson
Newton Raphson
Nasima Akhtar
 
Taylor slides
Taylor slidesTaylor slides
Taylor slides
Herbert Mujungu
 
Sequences and series
Sequences and seriesSequences and series
Sequences and series
mstf mstf
 

What's hot (20)

Geometric sequences
Geometric sequencesGeometric sequences
Geometric sequences
 
Hypergeometric Distribution
Hypergeometric DistributionHypergeometric Distribution
Hypergeometric Distribution
 
Poisson Probability Distributions
Poisson Probability DistributionsPoisson Probability Distributions
Poisson Probability Distributions
 
Class 14 3D HermiteInterpolation.pptx
Class 14 3D HermiteInterpolation.pptxClass 14 3D HermiteInterpolation.pptx
Class 14 3D HermiteInterpolation.pptx
 
Introduction to Partial Fractions
Introduction to Partial FractionsIntroduction to Partial Fractions
Introduction to Partial Fractions
 
Theory of Equation
Theory of EquationTheory of Equation
Theory of Equation
 
Number theory.ppt22
Number theory.ppt22Number theory.ppt22
Number theory.ppt22
 
Standard form solve equations
Standard form solve equationsStandard form solve equations
Standard form solve equations
 
Polynomial congruence with prime moduli.pptx
Polynomial congruence with prime moduli.pptxPolynomial congruence with prime moduli.pptx
Polynomial congruence with prime moduli.pptx
 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a function
 
Exponential functions
Exponential functionsExponential functions
Exponential functions
 
26 alternating series and conditional convergence x
26 alternating series and conditional convergence x26 alternating series and conditional convergence x
26 alternating series and conditional convergence x
 
U4 l4 quadratic formula powerpoint
U4 l4 quadratic formula powerpointU4 l4 quadratic formula powerpoint
U4 l4 quadratic formula powerpoint
 
The binomial theorem
The binomial theoremThe binomial theorem
The binomial theorem
 
Probability(mutually exclusive events)
Probability(mutually exclusive events)Probability(mutually exclusive events)
Probability(mutually exclusive events)
 
Permutation and combination
Permutation and combinationPermutation and combination
Permutation and combination
 
Geometric Series and Finding the Sum of Finite Geometric Sequence
Geometric Series and Finding the Sum of Finite Geometric SequenceGeometric Series and Finding the Sum of Finite Geometric Sequence
Geometric Series and Finding the Sum of Finite Geometric Sequence
 
Newton Raphson
Newton RaphsonNewton Raphson
Newton Raphson
 
Taylor slides
Taylor slidesTaylor slides
Taylor slides
 
Sequences and series
Sequences and seriesSequences and series
Sequences and series
 

Viewers also liked

Unit 6.1
Unit 6.1Unit 6.1
Unit 6.1
Mark Ryder
 
Unit 6.3
Unit 6.3Unit 6.3
Unit 6.3
Mark Ryder
 
Unit 6.4
Unit 6.4Unit 6.4
Unit 6.4
Mark Ryder
 
Unit 6.5
Unit 6.5Unit 6.5
Unit 6.5
Mark Ryder
 
Unit 6.2
Unit 6.2Unit 6.2
Unit 6.2
Mark Ryder
 
X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)Nigel Simmons
 
1 complex numbers
1 complex numbers 1 complex numbers
1 complex numbers
gandhinagar
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
Unit 5.5
Unit 5.5Unit 5.5
Unit 5.5
Mark Ryder
 
Unit 5.6
Unit 5.6Unit 5.6
Unit 5.6
Mark Ryder
 
Unit 5.3
Unit 5.3Unit 5.3
Unit 5.3
Mark Ryder
 
Unit 5.4
Unit 5.4Unit 5.4
Unit 5.4
Mark Ryder
 
Unit 5.2
Unit 5.2Unit 5.2
Unit 5.2
Mark Ryder
 
Unit 5.1
Unit 5.1Unit 5.1
Unit 5.1
Mark Ryder
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
swartzje
 

Viewers also liked (15)

Unit 6.1
Unit 6.1Unit 6.1
Unit 6.1
 
Unit 6.3
Unit 6.3Unit 6.3
Unit 6.3
 
Unit 6.4
Unit 6.4Unit 6.4
Unit 6.4
 
Unit 6.5
Unit 6.5Unit 6.5
Unit 6.5
 
Unit 6.2
Unit 6.2Unit 6.2
Unit 6.2
 
X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)
 
1 complex numbers
1 complex numbers 1 complex numbers
1 complex numbers
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
Unit 5.5
Unit 5.5Unit 5.5
Unit 5.5
 
Unit 5.6
Unit 5.6Unit 5.6
Unit 5.6
 
Unit 5.3
Unit 5.3Unit 5.3
Unit 5.3
 
Unit 5.4
Unit 5.4Unit 5.4
Unit 5.4
 
Unit 5.2
Unit 5.2Unit 5.2
Unit 5.2
 
Unit 5.1
Unit 5.1Unit 5.1
Unit 5.1
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 

Similar to Unit 6.6

Unit 5.4
Unit 5.4Unit 5.4
Unit 5.4
Mark Ryder
 
Unit .7
Unit .7Unit .7
Unit .7
Mark Ryder
 
3-Special Factoring.ppt
3-Special Factoring.ppt3-Special Factoring.ppt
3-Special Factoring.ppt
AllanLego
 
3-Special Factoring.ppt
3-Special Factoring.ppt3-Special Factoring.ppt
3-Special Factoring.ppt
ElmabethDelaCruz1
 
11.4 The Binomial Theorem
11.4 The Binomial Theorem11.4 The Binomial Theorem
11.4 The Binomial Theorem
smiller5
 
Complex numbers precalculus
Complex numbers   precalculusComplex numbers   precalculus
Complex numbers precalculus
Itumeleng Segona
 
Unit .6
Unit .6Unit .6
Unit .6
Mark Ryder
 
Unit .2
Unit .2Unit .2
Unit .2
Mark Ryder
 
1273900307 holiday homework class x
1273900307 holiday homework class x1273900307 holiday homework class x
1273900307 holiday homework class x
Abhishek Kumar
 
Ppt kbsm t4 matematik k1
Ppt kbsm t4 matematik k1Ppt kbsm t4 matematik k1
Ppt kbsm t4 matematik k1
Saya Unigfx
 
Complex nos demo 2
Complex nos demo 2Complex nos demo 2
Complex nos demo 2
sudersana viswanathan
 
Core 1 revision booklet edexcel
Core 1 revision booklet edexcelCore 1 revision booklet edexcel
Core 1 revision booklet edexcel
claire meadows-smith
 
Mathematics Mid Year Form 4 Paper 2 2010
Mathematics Mid Year Form 4 Paper 2 2010Mathematics Mid Year Form 4 Paper 2 2010
Mathematics Mid Year Form 4 Paper 2 2010
sue sha
 
Pure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - TextbookPure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - Textbook
Rushane Barnes
 
Q paper I puc-2014(MATHEMATICS)
Q paper I puc-2014(MATHEMATICS)Q paper I puc-2014(MATHEMATICS)
Q paper I puc-2014(MATHEMATICS)
Bagalkot
 
Demo slides in math editedppt
Demo slides in math editedpptDemo slides in math editedppt
Demo slides in math editedppt
Doods Bautista
 
Unit 4.3
Unit 4.3Unit 4.3
Unit 4.3
Mark Ryder
 
Binomial
BinomialBinomial
Unit .5
Unit .5Unit .5
Unit .5
Mark Ryder
 
Tenth class-state syllabus-model paper-em-ap-mathematics
Tenth class-state syllabus-model paper-em-ap-mathematicsTenth class-state syllabus-model paper-em-ap-mathematics
Tenth class-state syllabus-model paper-em-ap-mathematics
NaukriTuts
 

Similar to Unit 6.6 (20)

Unit 5.4
Unit 5.4Unit 5.4
Unit 5.4
 
Unit .7
Unit .7Unit .7
Unit .7
 
3-Special Factoring.ppt
3-Special Factoring.ppt3-Special Factoring.ppt
3-Special Factoring.ppt
 
3-Special Factoring.ppt
3-Special Factoring.ppt3-Special Factoring.ppt
3-Special Factoring.ppt
 
11.4 The Binomial Theorem
11.4 The Binomial Theorem11.4 The Binomial Theorem
11.4 The Binomial Theorem
 
Complex numbers precalculus
Complex numbers   precalculusComplex numbers   precalculus
Complex numbers precalculus
 
Unit .6
Unit .6Unit .6
Unit .6
 
Unit .2
Unit .2Unit .2
Unit .2
 
1273900307 holiday homework class x
1273900307 holiday homework class x1273900307 holiday homework class x
1273900307 holiday homework class x
 
Ppt kbsm t4 matematik k1
Ppt kbsm t4 matematik k1Ppt kbsm t4 matematik k1
Ppt kbsm t4 matematik k1
 
Complex nos demo 2
Complex nos demo 2Complex nos demo 2
Complex nos demo 2
 
Core 1 revision booklet edexcel
Core 1 revision booklet edexcelCore 1 revision booklet edexcel
Core 1 revision booklet edexcel
 
Mathematics Mid Year Form 4 Paper 2 2010
Mathematics Mid Year Form 4 Paper 2 2010Mathematics Mid Year Form 4 Paper 2 2010
Mathematics Mid Year Form 4 Paper 2 2010
 
Pure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - TextbookPure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - Textbook
 
Q paper I puc-2014(MATHEMATICS)
Q paper I puc-2014(MATHEMATICS)Q paper I puc-2014(MATHEMATICS)
Q paper I puc-2014(MATHEMATICS)
 
Demo slides in math editedppt
Demo slides in math editedpptDemo slides in math editedppt
Demo slides in math editedppt
 
Unit 4.3
Unit 4.3Unit 4.3
Unit 4.3
 
Binomial
BinomialBinomial
Binomial
 
Unit .5
Unit .5Unit .5
Unit .5
 
Tenth class-state syllabus-model paper-em-ap-mathematics
Tenth class-state syllabus-model paper-em-ap-mathematicsTenth class-state syllabus-model paper-em-ap-mathematics
Tenth class-state syllabus-model paper-em-ap-mathematics
 

More from Mark Ryder

Geometry 201 Unit 4.1
Geometry 201 Unit 4.1Geometry 201 Unit 4.1
Geometry 201 Unit 4.1
Mark Ryder
 
Algebra 302 unit 11.4
Algebra 302 unit 11.4Algebra 302 unit 11.4
Algebra 302 unit 11.4
Mark Ryder
 
Algebra 2 unit 10.6
Algebra 2 unit 10.6Algebra 2 unit 10.6
Algebra 2 unit 10.6
Mark Ryder
 
Algebra 2 unit 10.7
Algebra 2 unit 10.7Algebra 2 unit 10.7
Algebra 2 unit 10.7
Mark Ryder
 
Algebra 2 unit 10.5
Algebra 2 unit 10.5Algebra 2 unit 10.5
Algebra 2 unit 10.5
Mark Ryder
 
Algebra 2 unit 10.4
Algebra 2 unit 10.4Algebra 2 unit 10.4
Algebra 2 unit 10.4
Mark Ryder
 
Algebra 2 unit 10.3
Algebra 2 unit 10.3Algebra 2 unit 10.3
Algebra 2 unit 10.3
Mark Ryder
 
Algebra 2 unit 10.2
Algebra 2 unit 10.2Algebra 2 unit 10.2
Algebra 2 unit 10.2
Mark Ryder
 
11.1 combination and permutations
11.1 combination and permutations11.1 combination and permutations
11.1 combination and permutations
Mark Ryder
 
Unit 11.3 probability of multiple events
Unit 11.3 probability of multiple eventsUnit 11.3 probability of multiple events
Unit 11.3 probability of multiple events
Mark Ryder
 
Unit 11.2 experimental probability
Unit 11.2 experimental probabilityUnit 11.2 experimental probability
Unit 11.2 experimental probability
Mark Ryder
 
Unit 11.2 theoretical probability
Unit 11.2 theoretical probabilityUnit 11.2 theoretical probability
Unit 11.2 theoretical probability
Mark Ryder
 
11.1 11.1 combination and permutations
11.1 11.1 combination and permutations11.1 11.1 combination and permutations
11.1 11.1 combination and permutations
Mark Ryder
 
Geometry 201 unit 5.7
Geometry 201 unit 5.7Geometry 201 unit 5.7
Geometry 201 unit 5.7
Mark Ryder
 
Geometry 201 unit 5.5
Geometry 201 unit 5.5Geometry 201 unit 5.5
Geometry 201 unit 5.5
Mark Ryder
 
Geometry 201 unit 5.4
Geometry 201 unit 5.4Geometry 201 unit 5.4
Geometry 201 unit 5.4
Mark Ryder
 
Geometry 201 unit 5.3
Geometry 201 unit 5.3Geometry 201 unit 5.3
Geometry 201 unit 5.3
Mark Ryder
 
Geometry 201 unit 4.7
Geometry 201 unit 4.7Geometry 201 unit 4.7
Geometry 201 unit 4.7
Mark Ryder
 
Geometry 201 unit 4.4
Geometry 201 unit 4.4Geometry 201 unit 4.4
Geometry 201 unit 4.4
Mark Ryder
 
Geometry 201 unit 4.3
Geometry 201 unit 4.3Geometry 201 unit 4.3
Geometry 201 unit 4.3
Mark Ryder
 

More from Mark Ryder (20)

Geometry 201 Unit 4.1
Geometry 201 Unit 4.1Geometry 201 Unit 4.1
Geometry 201 Unit 4.1
 
Algebra 302 unit 11.4
Algebra 302 unit 11.4Algebra 302 unit 11.4
Algebra 302 unit 11.4
 
Algebra 2 unit 10.6
Algebra 2 unit 10.6Algebra 2 unit 10.6
Algebra 2 unit 10.6
 
Algebra 2 unit 10.7
Algebra 2 unit 10.7Algebra 2 unit 10.7
Algebra 2 unit 10.7
 
Algebra 2 unit 10.5
Algebra 2 unit 10.5Algebra 2 unit 10.5
Algebra 2 unit 10.5
 
Algebra 2 unit 10.4
Algebra 2 unit 10.4Algebra 2 unit 10.4
Algebra 2 unit 10.4
 
Algebra 2 unit 10.3
Algebra 2 unit 10.3Algebra 2 unit 10.3
Algebra 2 unit 10.3
 
Algebra 2 unit 10.2
Algebra 2 unit 10.2Algebra 2 unit 10.2
Algebra 2 unit 10.2
 
11.1 combination and permutations
11.1 combination and permutations11.1 combination and permutations
11.1 combination and permutations
 
Unit 11.3 probability of multiple events
Unit 11.3 probability of multiple eventsUnit 11.3 probability of multiple events
Unit 11.3 probability of multiple events
 
Unit 11.2 experimental probability
Unit 11.2 experimental probabilityUnit 11.2 experimental probability
Unit 11.2 experimental probability
 
Unit 11.2 theoretical probability
Unit 11.2 theoretical probabilityUnit 11.2 theoretical probability
Unit 11.2 theoretical probability
 
11.1 11.1 combination and permutations
11.1 11.1 combination and permutations11.1 11.1 combination and permutations
11.1 11.1 combination and permutations
 
Geometry 201 unit 5.7
Geometry 201 unit 5.7Geometry 201 unit 5.7
Geometry 201 unit 5.7
 
Geometry 201 unit 5.5
Geometry 201 unit 5.5Geometry 201 unit 5.5
Geometry 201 unit 5.5
 
Geometry 201 unit 5.4
Geometry 201 unit 5.4Geometry 201 unit 5.4
Geometry 201 unit 5.4
 
Geometry 201 unit 5.3
Geometry 201 unit 5.3Geometry 201 unit 5.3
Geometry 201 unit 5.3
 
Geometry 201 unit 4.7
Geometry 201 unit 4.7Geometry 201 unit 4.7
Geometry 201 unit 4.7
 
Geometry 201 unit 4.4
Geometry 201 unit 4.4Geometry 201 unit 4.4
Geometry 201 unit 4.4
 
Geometry 201 unit 4.3
Geometry 201 unit 4.3Geometry 201 unit 4.3
Geometry 201 unit 4.3
 

Recently uploaded

Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
adhitya5119
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
Katrina Pritchard
 
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptxNEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
iammrhaywood
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
Nguyen Thanh Tu Collection
 
How to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 InventoryHow to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 Inventory
Celine George
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
Nicholas Montgomery
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
History of Stoke Newington
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Leveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit InnovationLeveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit Innovation
TechSoup
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
AyyanKhan40
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
NgcHiNguyn25
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
Jean Carlos Nunes Paixão
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
amberjdewit93
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
Dr. Shivangi Singh Parihar
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
Celine George
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
Himanshu Rai
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
PECB
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
Celine George
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Akanksha trivedi rama nursing college kanpur.
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
Celine George
 

Recently uploaded (20)

Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
 
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptxNEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
 
How to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 InventoryHow to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 Inventory
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
 
Leveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit InnovationLeveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit Innovation
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
 

Unit 6.6

  • 1. 6.6 De Moivre’s Theorem and nth Roots Copyright © 2011 Pearson, Inc.
  • 2. What you’ll learn about  The Complex Plane  Trigonometric Form of Complex Numbers  Multiplication and Division of Complex Numbers  Powers of Complex Numbers  Roots of Complex Numbers … and why The material extends your equation-solving technique to include equations of the form zn = c, n is an integer and c is a complex number. Copyright © 2011 Pearson, Inc. Slide 6.1 - 2
  • 3. Complex Plane Copyright © 2011 Pearson, Inc. Slide 6.1 - 3
  • 4. Absolute Value (Modulus) of a Complex Number The absolute value or modulus of a complex number z  a  bi z  a  bi  a  b is | | | | . 2 2 a bi a bi In the complex plane, | | is the distance of from the origin.   Copyright © 2011 Pearson, Inc. Slide 6.1 - 4
  • 5. Graph of z = a + bi Copyright © 2011 Pearson, Inc. Slide 6.1 - 5
  • 6. Trigonometric Form of a Complex Number The trigonometric form of the complex number z  a  bi is z  rcos  isin  where a  r cos , b  r sin , r  a2  b2 , and tan  b / a. The number r is the absolute value or modulus of z, and  is an argument of z. Copyright © 2011 Pearson, Inc. Slide 6.1 - 6
  • 7. Example Finding Trigonometric Form Find the trigonometric form with 0    2 for the complex number 1 3i. Copyright © 2011 Pearson, Inc. Slide 6.1 - 7
  • 8. Example Finding Trigonometric Form Find the trigonometric form with 0    2 for the complex number 1 3i. Find r: r |1 3i | 12  32  2. Find  : tan  3 1 so    3 .  Therefore, 1 3i  2 cos  3  isin   3     . Copyright © 2011 Pearson, Inc. Slide 6.1 - 8
  • 9. Product and Quotient of Complex Numbers Let z1  r1 cos1  isin1   and z2  r2 cos 2  isin 2  . Then 1. z1  z2  r1r2 cos 1  2   isin 1  2     . 2. z1 z2  r1 r2 cos 1  2   isin 1  2     , r2  0. Copyright © 2011 Pearson, Inc. Slide 6.1 - 9
  • 10. Example Multiplying Complex Numbers Express the product of z1 and z2 in standard form.  z1  4 cos  4  isin   4      , z2  2 cos  6  isin   6     Copyright © 2011 Pearson, Inc. Slide 6.1 - 10
  • 11. Example Multiplying Complex Numbers Express the product of z1 and z2 in standard form.  z1  4 cos  4  isin   4      , z2  2 cos  6  isin   z1  z2  r1r2 cos 1  2   isin 1  2       4 2 cos  4    6       isin  4    6          6      4 2 cos  5 12       isin  5 12              4 20.259  i0.966 1.464  5.464i Copyright © 2011 Pearson, Inc. Slide 6.1 - 11
  • 12. A Geometric Interpretation of z2 Copyright © 2011 Pearson, Inc. Slide 6.1 - 12
  • 13. De Moivre’s Theorem Let z  rcos  isin  and let n be a positive integer. Then zn  r cos  isin       n  r n cosn  isin n . Copyright © 2011 Pearson, Inc. Slide 6.1 - 13
  • 14. Example Using De Moivre’s Theorem  Find  3 2  i 1 2      4 using De Moivre's theorem. Copyright © 2011 Pearson, Inc. Slide 6.1 - 14
  • 15. Example Using De Moivre’s Theorem  Find  3 2  i 1 2      4 using De Moivre's theorem. The argument of z   3 2  i 1 2 is   7 6 , and its modulus  3 2  i 1 2  3 4  1 4  1. Hence, z  2cos 7 6  isin 7 6 Copyright © 2011 Pearson, Inc. Slide 6.1 - 15
  • 16. Example Using De Moivre’s Theorem 4 using De Moivre's theorem.   i 1 2    z4  cos 4   7 6       isin 4   7 6      cos  14 3       isin  14 3       cos  2 3       isin  2 3        1 2  i 3 2  Find  3 2   Copyright © 2011 Pearson, Inc. Slide 6.1 - 16
  • 17. nth Root of a Complex Number A complex number v  a  bi is an nth root of z if vn  z. If z  1, the v is an nth root of unity. Copyright © 2011 Pearson, Inc. Slide 6.1 - 17
  • 18. Finding nth Roots of a Complex Number If z  rcos  isin , then the n distinct complex numbers  r n cos   2 k n  isin   2 k n     , where k  0,1,2,..,n 1, are the nth roots of the complex number z. Copyright © 2011 Pearson, Inc. Slide 6.1 - 18
  • 19. Example Finding Cube Roots Find the cube roots of 1. Copyright © 2011 Pearson, Inc. Slide 6.1 - 19
  • 20. Example Finding Cube Roots Find the cube roots of 1. Write 1 in complex form: z  1 0i  cos0  isin0 The third roots of 1 are the complex numbers cos 0  2 k 3  isin 0  2 k 3 for k  0,1,2. z1  cos0  isin0  1 z2  cos 2 3  isin 2 3   1 2  3 2 i z3  cos 4 3  isin 4 3   1 2  3 2 i Copyright © 2011 Pearson, Inc. Slide 6.1 - 20
  • 21. Quick Review 1. Write the roots of the equation x2 12  6x in a  bi form. 2. Write the complex number 1 i3 in standard form a  bi. 3. Find all real solutions to x3  27  0. Find an angle  in 0    2 which satisfies both equations. 4. sin  1 2 and cos   3 2 5. sin   2 2 and cos   2 2 Copyright © 2011 Pearson, Inc. Slide 6.1 - 21
  • 22. Quick Review Solutions 1. Write the roots of the equation x2 12  6x in a  bi form. 3 3i, 3 3i 2. Write the complex number 1 i3 in standard form a  bi. 2  2i 3. Find all real solutions to x3  27  0. x  3 Find an angle  in 0    2 which satisfies both equations. 4. sin  1 2 and cos   3 2   5 / 6 5. sin   2 2 and cos   2 2   5 / 4 Copyright © 2011 Pearson, Inc. Slide 6.1 - 22
  • 23. Chapter Test 1. Let u  2, 1 and v  4,2 . Find u v. 2. Let A  (2, 1),B  (3,1),C  (4,2), and D  (1, 5). Find the component form and magnitude of the vector uuur uuur AC +BD 3. Given A  (4,0) and B  (2,1), find (a) a unit vector in uuur the direction of AB and (b) a vector of magnitude 3 in the opposite direction. 4. Given u  4,3 and v  2,5 , find (a) the direction angles of u and v and (b) the angle between u and v. Copyright © 2011 Pearson, Inc. Slide 6.1 - 23
  • 24. Chapter Test 5. Convert the polar coordinate (  2.5,25o) to a rectangular coordinate. 6. Eliminate the parameter t. x  4  t, y  8  5t,  3  t  5. 7. Find a parameterization for the line through the points ( 1, 2) and (3,4).   8. Use De Moivre's theorem to evaluate 3 cos  4  isin   4          5 . Write your answer in (a) trigonometric form and (b) standard form. Copyright © 2011 Pearson, Inc. Slide 6.1 - 24
  • 25. Chapter Test 9. Convert the polar equation r  3cos  2sin to rectangular form. 10. A 3000 pound car is parked on a street that makes an angle of 16o with the horizontal. (a) Find the force required to keep the car from rolling down the hill. (b) Find the component of the force perpendicular to the street. Copyright © 2011 Pearson, Inc. Slide 6.1 - 25
  • 26. Chapter Test Solutions 1. Let u  2, 1 and v  4,2 . Find u v. 6 2. Let A  (2, 1),B  (3,1),C  (4,2), and D  (1, 5). Find the component form and magnitude of the vector uuur uuur AC +BD 8, 3 ; 73 3. Given A  (4,0) and B  (2,1), find (a) a unit vector in uuur the direction of AB and (b) a vector of magnitude 3 in the opposite direction. (a)  2 5 , 1 5 (b) 6 5 ,  3 5 Copyright © 2011 Pearson, Inc. Slide 6.1 - 26
  • 27. Chapter Test Solutions 4. Given u  4,3 and v  2,5 , find (a) the direction angles of u and v and (b) the angle between u and v.  (a) tan1 3 4       0.64 tan1 5 2      1.19 (b)  0.55 5. Convert the polar coordinate (  2.5,25o) to a rectangular coordinate.  (  2.27, 1.06) 6. Eliminate the parameter t. x  4  t, y  8  5t,  3  t  5. y  5x 12 Copyright © 2011 Pearson, Inc. Slide 6.1 - 27
  • 28. Chapter Test 7. Find a parameterization for the line through the points ( 1, 2) and (3,4). x  2t  3, y  3t  4   8. Use De Moivre's theorem to evaluate 3 cos  4  isin   4          5 . Write your answer in (a) trigonometric form and (b) standard form.  (a) 243 cos 5 4  isin  5 4     (b) 243 2 2  243 2 2 i Copyright © 2011 Pearson, Inc. Slide 6.1 - 28
  • 29. Chapter Test 9. Convert the polar equation r  3cos  2sin to  rectangular form. x  3 2      2  y 12  13 4 10. A 3000 pound car is parked on a street that makes an angle of 16o with the horizontal. (a) Find the force required to keep the car from rolling down the hill.  826.91 pounds (b) Find the component of the force perpendicular to the street. 2883.79 pounds Copyright © 2011 Pearson, Inc. Slide 6.1 - 29