5.3 
Sum and 
Difference 
Identities 
Copyright © 2011 Pearson, Inc.
What you’ll learn about 
 Cosine of a Difference 
 Cosine of a Sum 
 Sine of a Difference or Sum 
 Tangent of a Difference or Sum 
 Verifying a Sinusoid Algebraically 
… and why 
These identities provide clear examples of how different 
the algebra of functions can be from the algebra of real 
numbers. 
Copyright © 2011 Pearson, Inc. Slide 5.3 - 2
Cosine of a Sum or Difference 
cosu  v cosucos v msinusin v 
(Note the sign switch in either case.) 
Copyright © 2011 Pearson, Inc. Slide 5.3 - 3
Example Using the Cosine-of-a- 
Difference Identity 
Find the exact value of cos 75º without using a calculator. 
Copyright © 2011 Pearson, Inc. Slide 5.3 - 4
Example Using the Cosine-of-a- 
Difference Identity 
Find the exact value of cos 75º without using a calculator. 
cos 75º  cos 45º 30º 
 cos45º cos30º  sin 45º sin 30º 
 
2 
2 
 
 
 
 
 
 
3 
2 
 
 
 
 
 
 
2 
2 
 
 
 
 
 
 
1 
2 
 
  
 
  
 
6  2 
4 
Copyright © 2011 Pearson, Inc. Slide 5.3 - 5
Sine of a Sum or Difference 
sinu  v sinu cosv  sinv cosu 
(Note that the sign does not switch in either case.) 
Copyright © 2011 Pearson, Inc. Slide 5.3 - 6
Example Using the Sum and 
Difference Formulas 
Write the following expression as the sine or 
cosine of an angle: sin 
 
3 
cos 
 
4 
 sin 
 
4 
cos 
 
3 
Copyright © 2011 Pearson, Inc. Slide 5.3 - 7
Example Using the Sum and 
Difference Formulas 
Write the following expression as the sine or 
cosine of an angle: sin 
Recognize sin 
 
3 
cos 
 
4 
 
3 
cos 
 sin 
 
4 
 
4 
 sin 
cos 
 
3 
 
4 
cos 
 
3 
as the sin(u  v). 
sin 
 
3 
cos 
 
4 
 sin 
 
4 
cos 
 
3 
 sin 
 
3 
 
 
4 
 
  
 
  
 sin 
7 
12 
Copyright © 2011 Pearson, Inc. Slide 5.3 - 8
Tangent of a Difference of Sum 
tanu  v 
sinu  v 
cosu  v 
 
sinu cosv  sinv cosu 
cosu cosvmsinusinv 
or 
tanu  v 
tanu  tanv 
1mtanu tanv 
Copyright © 2011 Pearson, Inc. Slide 5.3 - 9
Example Expressing a Sum of 
Sinusoids as a Sinusoid 
Find values for a, b, and h so that for all x, 
4 cos2x  7sin2x  asin b x  h    . 
Copyright © 2011 Pearson, Inc. Slide 5.3 - 10
Example Expressing a Sum of 
Sinusoids as a Sinusoid 
4 cos2x  7sin2x  asin b x  h    
 
is a sinusoid with period 
2 
2 
  , so b  2 
4 cos2x  7sin2x  asin 2 x  h    
 
 asin2x  2h 
 asin2x cos2h  acos2x sin2h 
4 cos2x  7sin2x  asin2hcos2x  acos2hsin2x, 
so 4  asin2h and  7  acos2h 
Copyright © 2011 Pearson, Inc. Slide 5.3 - 11
Example Expressing a Sum of 
Sinusoids as a Sinusoid 
so 4  asin2h and  7  acos2h 
sin2h   
4 
a 
and cos2h   
7 
a 
so tan2h  
4 a 
7 a 
 
4 
7 
so possible values of 2h are tan1 4 
7 
 
  
 
  
 n 
Copyright © 2011 Pearson, Inc. Slide 5.3 - 12
Example Expressing a Sum of 
Sinusoids as a Sinusoid 
To find a, we use sin2h   
4 
a 
and cos2h   
7 
a 
Because a is the hypotenuse, 
a  72 
 42 
 65 
Thus, 
 
 
4 cos2x  7sin2x  65 sin 2 x  
1 
2 
tan1 4 
7 
 
  
 
  
 
 
2 
  
 
  
 
Copyright © 2011 Pearson, Inc. Slide 5.3 - 13
Example Expressing a Sum of 
Sinusoids as a Sinusoid 
Support Graphically 
The graphs of 
y1  4 cos2x  7sin2x 
and 
 
 
y2  65 sin 2 x  
1 
2 
tan1 4 
7 
 
  
 
  
 
 
2 
  
 
  
 
are identical. 
Copyright © 2011 Pearson, Inc. Slide 5.3 - 14
Example Expressing a Sum of 
Sinusoids as a Sinusoid 
Interpret 
The values are a  65, b  2, and h  
1 
2 
tan1 4 
7 
 
  
 
  
 
2 
(other values are possible). 
The amplitude is 65, the peridod is  , and 
the phase shift is 
1 
2 
tan1 4 
7 
 
  
 
  
 
2 
radians. 
Copyright © 2011 Pearson, Inc. Slide 5.3 - 15
Quick Review 
Express the angle as a sum or difference of special angles 
(multiples of 30o, 45o,  /6, or  /4). Answers are not unique. 
1. 15o 
2.  /12 
3. 75o 
Tell whether or not the identity f (x  y)  f (x)  f (y) 
holds for the function f . 
4. f (x)  16x 
5. f (x)  2ex 
Copyright © 2011 Pearson, Inc. Slide 5.3 - 16
Quick Review Solutions 
Express the angle as a sum or difference of special angles 
(multiples of 30o, 45o,  /6, or  /4). Answers are not unique. 
1. 15o 45o  30o 
2.  /12 
 
3 
 
 
4 
3. 75o 30o  45o 
Tell whether or not the identity f (x  y)  f (x)  f (y) 
holds for the function f . 
4. f (x)  16x yes 
5. f (x)  2ex no 
Copyright © 2011 Pearson, Inc. Slide 5.3 - 17

Unit 5.3

  • 1.
    5.3 Sum and Difference Identities Copyright © 2011 Pearson, Inc.
  • 2.
    What you’ll learnabout  Cosine of a Difference  Cosine of a Sum  Sine of a Difference or Sum  Tangent of a Difference or Sum  Verifying a Sinusoid Algebraically … and why These identities provide clear examples of how different the algebra of functions can be from the algebra of real numbers. Copyright © 2011 Pearson, Inc. Slide 5.3 - 2
  • 3.
    Cosine of aSum or Difference cosu  v cosucos v msinusin v (Note the sign switch in either case.) Copyright © 2011 Pearson, Inc. Slide 5.3 - 3
  • 4.
    Example Using theCosine-of-a- Difference Identity Find the exact value of cos 75º without using a calculator. Copyright © 2011 Pearson, Inc. Slide 5.3 - 4
  • 5.
    Example Using theCosine-of-a- Difference Identity Find the exact value of cos 75º without using a calculator. cos 75º  cos 45º 30º  cos45º cos30º  sin 45º sin 30º  2 2       3 2       2 2       1 2        6  2 4 Copyright © 2011 Pearson, Inc. Slide 5.3 - 5
  • 6.
    Sine of aSum or Difference sinu  v sinu cosv  sinv cosu (Note that the sign does not switch in either case.) Copyright © 2011 Pearson, Inc. Slide 5.3 - 6
  • 7.
    Example Using theSum and Difference Formulas Write the following expression as the sine or cosine of an angle: sin  3 cos  4  sin  4 cos  3 Copyright © 2011 Pearson, Inc. Slide 5.3 - 7
  • 8.
    Example Using theSum and Difference Formulas Write the following expression as the sine or cosine of an angle: sin Recognize sin  3 cos  4  3 cos  sin  4  4  sin cos  3  4 cos  3 as the sin(u  v). sin  3 cos  4  sin  4 cos  3  sin  3   4        sin 7 12 Copyright © 2011 Pearson, Inc. Slide 5.3 - 8
  • 9.
    Tangent of aDifference of Sum tanu  v sinu  v cosu  v  sinu cosv  sinv cosu cosu cosvmsinusinv or tanu  v tanu  tanv 1mtanu tanv Copyright © 2011 Pearson, Inc. Slide 5.3 - 9
  • 10.
    Example Expressing aSum of Sinusoids as a Sinusoid Find values for a, b, and h so that for all x, 4 cos2x  7sin2x  asin b x  h    . Copyright © 2011 Pearson, Inc. Slide 5.3 - 10
  • 11.
    Example Expressing aSum of Sinusoids as a Sinusoid 4 cos2x  7sin2x  asin b x  h     is a sinusoid with period 2 2   , so b  2 4 cos2x  7sin2x  asin 2 x  h      asin2x  2h  asin2x cos2h  acos2x sin2h 4 cos2x  7sin2x  asin2hcos2x  acos2hsin2x, so 4  asin2h and  7  acos2h Copyright © 2011 Pearson, Inc. Slide 5.3 - 11
  • 12.
    Example Expressing aSum of Sinusoids as a Sinusoid so 4  asin2h and  7  acos2h sin2h   4 a and cos2h   7 a so tan2h  4 a 7 a  4 7 so possible values of 2h are tan1 4 7        n Copyright © 2011 Pearson, Inc. Slide 5.3 - 12
  • 13.
    Example Expressing aSum of Sinusoids as a Sinusoid To find a, we use sin2h   4 a and cos2h   7 a Because a is the hypotenuse, a  72  42  65 Thus,   4 cos2x  7sin2x  65 sin 2 x  1 2 tan1 4 7         2       Copyright © 2011 Pearson, Inc. Slide 5.3 - 13
  • 14.
    Example Expressing aSum of Sinusoids as a Sinusoid Support Graphically The graphs of y1  4 cos2x  7sin2x and   y2  65 sin 2 x  1 2 tan1 4 7         2       are identical. Copyright © 2011 Pearson, Inc. Slide 5.3 - 14
  • 15.
    Example Expressing aSum of Sinusoids as a Sinusoid Interpret The values are a  65, b  2, and h  1 2 tan1 4 7        2 (other values are possible). The amplitude is 65, the peridod is  , and the phase shift is 1 2 tan1 4 7        2 radians. Copyright © 2011 Pearson, Inc. Slide 5.3 - 15
  • 16.
    Quick Review Expressthe angle as a sum or difference of special angles (multiples of 30o, 45o,  /6, or  /4). Answers are not unique. 1. 15o 2.  /12 3. 75o Tell whether or not the identity f (x  y)  f (x)  f (y) holds for the function f . 4. f (x)  16x 5. f (x)  2ex Copyright © 2011 Pearson, Inc. Slide 5.3 - 16
  • 17.
    Quick Review Solutions Express the angle as a sum or difference of special angles (multiples of 30o, 45o,  /6, or  /4). Answers are not unique. 1. 15o 45o  30o 2.  /12  3   4 3. 75o 30o  45o Tell whether or not the identity f (x  y)  f (x)  f (y) holds for the function f . 4. f (x)  16x yes 5. f (x)  2ex no Copyright © 2011 Pearson, Inc. Slide 5.3 - 17