SlideShare a Scribd company logo
The Binomial & Multinomial
Coefficients
 In formulas arising from the analysis of
algorithms in computer science, the binomial
coefficients occur over and over again, so
that a facility for manipulating them is a
necessity.
 Moreover, different approaches to problems
often give rise to formulas that are different
in appearance yet identities of binomial
coefficients reveal that they are, in fact, the
same expressions.
Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 3
The binomial theorem provides a useful method for raising any
binomial to a nonnegative integral power.
Consider the patterns formed by expanding (x + y)n.
(x + y)0 = 1
(x + y)1 = x + y
(x + y)2 = x2 + 2xy + y2
(x + y)3 = x3 + 3x2y + 3xy2 + y3
(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4
(x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5
Notice that each expansion has n + 1 terms.
1 term
2 terms
3 terms
4 terms
5 terms
6 terms
Example: (x + y)10 will have 10 + 1, or 11 terms.
Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 4
Consider the patterns formed by expanding (x + y)n.
(x + y)0 = 1
(x + y)1 = x + y
(x + y)2 = x2 + 2xy + y2
(x + y)3 = x3 + 3x2y + 3xy2 + y3
(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4
(x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5
1. The exponents on x decrease from n to 0.
The exponents on y increase from 0 to n.
2. Each term is of degree n.
Example: The 5th term of (x + y)10 is a term with x6y4.”
Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 5
The coefficients of the binomial expansion are called binomial
coefficients. The coefficients have symmetry.
The coefficient of xn–ryr in the expansion of (x + y)n is written
or nCr .
n
r
 
 
 
(x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5
The first and last coefficients are 1.
The coefficients of the second and second to last terms
are equal to n.
1 1
Example: What are the last 2 terms of (x + y)10 ? Since n = 10,
the last two terms are 10xy9 + 1y10.
So, the last two terms of (x + y)10 can be expressed
as 10C9 xy9 + 10C10 y10 or as xy9 + y10.






9
10






10
10
Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 6
The triangular arrangement of numbers below is called Pascal’s
Triangle.
Each number in the interior of the triangle is the sum of the two
numbers immediately above it.
The numbers in the nth row of Pascal’s Triangle are the binomial
coefficients for (x + y)n .
1 1 1st row
1 2 1 2nd row
1 3 3 1 3rd row
1 4 6 4 1 4th row
1 5 10 10 5 1 5th row
0th row1
6 + 4 = 10
1 + 2 = 3
Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 7
Example: Use the fifth row of Pascal’s Triangle to generate the
sixth row and find the binomial coefficients , , 6C4 and 6C2 .
6
1
 
 
 
6
5
 
 
 
5th row 1 5 10 10 5 1
6th row
6
0
 
 
 
6
1
 
 
 
6
2
 
 
 
6
3
 
 
 
6
4
 
 
 
6
5
 
 
 
6
6
 
 
 
6C0 6C1 6C2 6C3 6C4 6C5 6C6
= 6 = and 6C4 = 15 = 6C2.
6
1
 
 
 
6
5
 
 
 
There is symmetry between binomial coefficients.
nCr = nCn–r
1 6 15 20 15 6 1
Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 8
Example: Use Pascal’s Triangle to expand (2a + b)4.
(2a + b)4 = 1(2a)4 + 4(2a)3b + 6(2a)2b2 + 4(2a)b3 + 1b4
= 1(16a4) + 4(8a3)b + 6(4a2b2) + 4(2a)b3 + b4
= 16a4 + 32a3b + 24a2b2 + 8ab3 + b4
1 1 1st row
1 2 1 2nd row
1 3 3 1 3rd row
1 4 6 4 1 4th row
0th row1
Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 9
The symbol n! (n factorial) denotes the product of the first n
positive integers. 0! is defined to be 1.
n! = n(n – 1)(n – 2)  3 • 2 • 1
1! = 1
4! = 4 • 3 • 2 • 1 = 24
6! = 6 • 5 • 4 • 3 • 2 • 1 = 720
Formula for Binomial Coefficients For all nonnegative
integers n and r, !
( )! !
n r
n
C
n r r


Example:
)123()1234(
)123()4567(
••••••
••••••

!3!4
7
!3!4
!7
!3)!37(
!7
•••
37 

C
35
1234
4567
•••
•••

Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 10
Example: Use the formula to calculate the binomial coefficients
10C5, 10C0, and .50
48
 
 
 
12
1
 
 
 
!5)!510(
!10
•
510

C
!0)!010(
!10
•
010

C
!48)!4850(
!50
48
50
•






!1)!112(
!12
1
12
•






!5!5
!10
•

!5!5
!5)678910(
•
•••••
 252
12345
678910
••••
••••

!0!10
!10
•
 1
1
1
!0
!1

!48!2
!48)4950(
!48!2
!50
•
••
•
 1225
12
4950
•
•

!1!11
!1112
!1!1
!12
•
•
•
 12
1
12

Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 11
Binomial Theorem
1 1
( )n n n n r r n n
n rx y x nx y C x y nxy y  
       L L
!
with
( )! !
n r
n
C
n r r


Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 13
Binomial Theorem
Example: Use the Binomial Theorem to expand (x4 + 2)3.
03C 13C 23C 33C 34
)2(x 34
)(x )2()( 24
x 24
)2)((x 3
)2(
1 34
)(x 3 )2()( 24
x 3 24
)2)((x 1
3
)2(
8126 4812
 xxx
Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 14
Although the Binomial Theorem is stated for a binomial which
is a sum of terms, it can also be used to expand a difference of
terms.
Simply rewrite
(x + y)n as (x + (– y))n
and apply the theorem to this sum.
Example: Use the Binomial Theorem to expand (3x – 4)4.
4
)43( x 4
))4(3(  x
432234
)4(1)4)(3(4)4()3(6)4()3(4)3(1  xxxx
256)64)(3(4)16)(9(6)4)(27(481 234
 xxxx
25676886443281 234
 xxxx
Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 15
Example: Use the Binomial Theorem to write the first three
terms in the expansion of (2a + b)12 .
...)2(
2
12
)2(
1
12
)2(
0
12
)2( 210111212


















 babaaba
...)2(
!2)!212(
!12
)2(
!1)!112(
!12
)2(
!0)!012(
!12 2101011111212
•••






 babaa
...)2)(1112()2(12)2( 2101011111212 •  babaa
...135168245764096 2101112
 babaa
Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 16
Example: Find the eighth term in the expansion of (x + y)13 .
Think of the first term of the expansion as x13y0 . The power of
y is 1 less than the number of the term in the expansion.
The eighth term is 13C7 x6y7.
Therefore, the eighth term of (x + y)13 is 1716 x6y7.
!7!6
!7)8910111213(
!7!6
!13
•
••••••
•
713 C
1716
123456
8910111213
•••••
•••••

Find the 6th term in the expansion of (3a + 2b)12
Using the Binomial Theorem, let x = 3a and y = 2b
and note that in the 6th term, the exponent of y is
m = 5 and the exponent of x is n – m = 12 – 5 = 7.
Consequently, the 6th term of the expansion is:
57
512 yxC    57
23
!5!7
!789101112
ba


= 55,427,328 a7b5
E.g. 7—Finding a Particular Term in a Bin. Expansion
Find the coefficient of x8
in the expansion of
• Both x2 and 1/x are powers of x.
• So, the power of x in each term of the expansion
is determined by both terms of the binomial.
10
2 1
x
x
 
 
 
To find the required coefficient, we first
find the general term in the expansion.
• By the formula, we have:
a = x2, b = 1/x, n = 10
• So, the general term is:
E.g. 7—Finding a Particular Term in a Bin. Expansion
10
2 2 1 10
3 10
10 101
( ) ( )
10 10
10
10
r
r r r
r
x x x
r x r
x
r

 

    
         
 
  
 
Thus, the term that contains x8
is the term in which
3r – 10 = 8
r = 6
• So, the required coefficient is:
E.g. 7—Finding a Particular Term in a Bin. Expansion
10 10
210
10 6 4
   
    
   
Binomial
Binomial
Binomial
Binomial
Binomial
Binomial
Binomial
Binomial
Binomial
Binomial
Binomial
Binomial
Binomial

More Related Content

What's hot

Pendugaan parameter
Pendugaan parameterPendugaan parameter
Pendugaan parameter
siti Julaeha
 
Statistika Non Parametrik
Statistika Non ParametrikStatistika Non Parametrik
Statistika Non Parametrik
Peggy Roselidiah
 
Bnp.01.uji tanda (sign test)
Bnp.01.uji tanda (sign test)Bnp.01.uji tanda (sign test)
Bnp.01.uji tanda (sign test)raysa hasdi
 
Pengantar Rancangan Percobaan
Pengantar Rancangan PercobaanPengantar Rancangan Percobaan
Pengantar Rancangan Percobaan
Dian Arisona
 
Istilah istilah rancangan percobaan rahmi-1
Istilah  istilah rancangan percobaan rahmi-1Istilah  istilah rancangan percobaan rahmi-1
Istilah istilah rancangan percobaan rahmi-1
Ir. Zakaria, M.M
 
Creative Thinking 4_Teknik Brainstorming dalam Creative Thinking.pptx
Creative Thinking 4_Teknik Brainstorming dalam Creative Thinking.pptxCreative Thinking 4_Teknik Brainstorming dalam Creative Thinking.pptx
Creative Thinking 4_Teknik Brainstorming dalam Creative Thinking.pptx
RintaArina
 
unit-5 Transportation problem in operation research ppt.pdf
unit-5 Transportation problem in operation research ppt.pdfunit-5 Transportation problem in operation research ppt.pdf
unit-5 Transportation problem in operation research ppt.pdf
bizuayehuadmasu1
 
Statistik Dasar
Statistik Dasar Statistik Dasar
Statistik Dasar
linda_rosalina
 
Modul 7 fuzzy logic
Modul 7   fuzzy logicModul 7   fuzzy logic
Modul 7 fuzzy logic
ahmad haidaroh
 
Selang kepercayaan
Selang kepercayaanSelang kepercayaan
Selang kepercayaansidesty
 
Pengendalian Persediaan.ppt
Pengendalian Persediaan.pptPengendalian Persediaan.ppt
Pengendalian Persediaan.ppt
GagakLumayung3
 
1 dan 2 ratarata statistik
1 dan 2 ratarata statistik1 dan 2 ratarata statistik
1 dan 2 ratarata statistikfebirenicoselvia
 
Metode statistika
Metode statistikaMetode statistika
Metode statistikamus_lim
 
Soal matstat ngagel+jawabannya
Soal matstat ngagel+jawabannyaSoal matstat ngagel+jawabannya
Soal matstat ngagel+jawabannyaKana Outlier
 
Uji linearitas dengan tabel anova
Uji linearitas dengan tabel anovaUji linearitas dengan tabel anova
Uji linearitas dengan tabel anova
Chris Hukubun
 
Chi Kuadrat
Chi KuadratChi Kuadrat
Chi Kuadrat
Nailul Hasibuan
 
F. METODE TAGUCHI 7.ppt
F. METODE TAGUCHI 7.pptF. METODE TAGUCHI 7.ppt
F. METODE TAGUCHI 7.ppt
039TrioSukmono
 
12. contoh soal uts statistika
12. contoh soal uts statistika12. contoh soal uts statistika
12. contoh soal uts statistikaaliyudin007
 

What's hot (20)

Pendugaan parameter
Pendugaan parameterPendugaan parameter
Pendugaan parameter
 
Statistika Non Parametrik
Statistika Non ParametrikStatistika Non Parametrik
Statistika Non Parametrik
 
Bnp.01.uji tanda (sign test)
Bnp.01.uji tanda (sign test)Bnp.01.uji tanda (sign test)
Bnp.01.uji tanda (sign test)
 
Pengantar Rancangan Percobaan
Pengantar Rancangan PercobaanPengantar Rancangan Percobaan
Pengantar Rancangan Percobaan
 
Istilah istilah rancangan percobaan rahmi-1
Istilah  istilah rancangan percobaan rahmi-1Istilah  istilah rancangan percobaan rahmi-1
Istilah istilah rancangan percobaan rahmi-1
 
Creative Thinking 4_Teknik Brainstorming dalam Creative Thinking.pptx
Creative Thinking 4_Teknik Brainstorming dalam Creative Thinking.pptxCreative Thinking 4_Teknik Brainstorming dalam Creative Thinking.pptx
Creative Thinking 4_Teknik Brainstorming dalam Creative Thinking.pptx
 
Ukuran penyebaran
Ukuran penyebaranUkuran penyebaran
Ukuran penyebaran
 
unit-5 Transportation problem in operation research ppt.pdf
unit-5 Transportation problem in operation research ppt.pdfunit-5 Transportation problem in operation research ppt.pdf
unit-5 Transportation problem in operation research ppt.pdf
 
Statistik Dasar
Statistik Dasar Statistik Dasar
Statistik Dasar
 
Modul 7 fuzzy logic
Modul 7   fuzzy logicModul 7   fuzzy logic
Modul 7 fuzzy logic
 
Selang kepercayaan
Selang kepercayaanSelang kepercayaan
Selang kepercayaan
 
Pengendalian Persediaan.ppt
Pengendalian Persediaan.pptPengendalian Persediaan.ppt
Pengendalian Persediaan.ppt
 
1 dan 2 ratarata statistik
1 dan 2 ratarata statistik1 dan 2 ratarata statistik
1 dan 2 ratarata statistik
 
Contoh korelasi dan regresi
Contoh korelasi dan regresiContoh korelasi dan regresi
Contoh korelasi dan regresi
 
Metode statistika
Metode statistikaMetode statistika
Metode statistika
 
Soal matstat ngagel+jawabannya
Soal matstat ngagel+jawabannyaSoal matstat ngagel+jawabannya
Soal matstat ngagel+jawabannya
 
Uji linearitas dengan tabel anova
Uji linearitas dengan tabel anovaUji linearitas dengan tabel anova
Uji linearitas dengan tabel anova
 
Chi Kuadrat
Chi KuadratChi Kuadrat
Chi Kuadrat
 
F. METODE TAGUCHI 7.ppt
F. METODE TAGUCHI 7.pptF. METODE TAGUCHI 7.ppt
F. METODE TAGUCHI 7.ppt
 
12. contoh soal uts statistika
12. contoh soal uts statistika12. contoh soal uts statistika
12. contoh soal uts statistika
 

Similar to Binomial

binomial_theorem_notes.ppt
binomial_theorem_notes.pptbinomial_theorem_notes.ppt
binomial_theorem_notes.ppt
LokeshBabuDV
 
1631 the binomial theorem
1631 the binomial theorem1631 the binomial theorem
1631 the binomial theorem
Dr Fereidoun Dejahang
 
1631-thebinomialtheorem-161031145734.pdf
1631-thebinomialtheorem-161031145734.pdf1631-thebinomialtheorem-161031145734.pdf
1631-thebinomialtheorem-161031145734.pdf
RajDubey83
 
11.4 The Binomial Theorem
11.4 The Binomial Theorem11.4 The Binomial Theorem
11.4 The Binomial Theorem
smiller5
 
Binomial theorem
Binomial theorem Binomial theorem
Binomial theorem
Harshit Sharma
 
Vivek
VivekVivek
9.6 Binomial Theorem
9.6 Binomial Theorem9.6 Binomial Theorem
9.6 Binomial Theorem
smiller5
 
1st Quarter MATH 8 module
1st Quarter MATH 8 module1st Quarter MATH 8 module
1st Quarter MATH 8 module
Russeneth Joy Nalo
 
Pc12 sol c08_8-6
Pc12 sol c08_8-6Pc12 sol c08_8-6
Pc12 sol c08_8-6Garden City
 
Geometry unit 7.1
Geometry unit 7.1Geometry unit 7.1
Geometry unit 7.1
Mark Ryder
 
Algebra Trigonometry Problems
Algebra Trigonometry ProblemsAlgebra Trigonometry Problems
Algebra Trigonometry Problems
Don Dooley
 
THE BINOMIAL THEOREM
THE BINOMIAL THEOREM THE BINOMIAL THEOREM
THE BINOMIAL THEOREM
τυσηαρ ηαβιβ
 
thebinomialtheorem-170110005856.pdf
thebinomialtheorem-170110005856.pdfthebinomialtheorem-170110005856.pdf
thebinomialtheorem-170110005856.pdf
RajDubey83
 
Grade 8 Mathematics Common Monomial Factoring
Grade 8 Mathematics Common Monomial FactoringGrade 8 Mathematics Common Monomial Factoring
Grade 8 Mathematics Common Monomial Factoring
ChristopherRama
 
Pascal Triangle
Pascal TrianglePascal Triangle
Pascal Triangle
Joseph Nilo
 
0.3 Factoring Polynomials
0.3 Factoring Polynomials0.3 Factoring Polynomials
0.3 Factoring Polynomials
smiller5
 
U1 04 factorizacion
U1   04 factorizacionU1   04 factorizacion
U1 04 factorizacion
UNEFA Zulia
 
GR 8 Math Powerpoint about Polynomial Techniques
GR 8 Math Powerpoint about Polynomial TechniquesGR 8 Math Powerpoint about Polynomial Techniques
GR 8 Math Powerpoint about Polynomial Techniques
reginaatin
 
2LinearSequences
2LinearSequences2LinearSequences
The binomial theorem class 11 maths
The binomial theorem class 11 mathsThe binomial theorem class 11 maths
The binomial theorem class 11 maths
Dharmendra Dudi
 

Similar to Binomial (20)

binomial_theorem_notes.ppt
binomial_theorem_notes.pptbinomial_theorem_notes.ppt
binomial_theorem_notes.ppt
 
1631 the binomial theorem
1631 the binomial theorem1631 the binomial theorem
1631 the binomial theorem
 
1631-thebinomialtheorem-161031145734.pdf
1631-thebinomialtheorem-161031145734.pdf1631-thebinomialtheorem-161031145734.pdf
1631-thebinomialtheorem-161031145734.pdf
 
11.4 The Binomial Theorem
11.4 The Binomial Theorem11.4 The Binomial Theorem
11.4 The Binomial Theorem
 
Binomial theorem
Binomial theorem Binomial theorem
Binomial theorem
 
Vivek
VivekVivek
Vivek
 
9.6 Binomial Theorem
9.6 Binomial Theorem9.6 Binomial Theorem
9.6 Binomial Theorem
 
1st Quarter MATH 8 module
1st Quarter MATH 8 module1st Quarter MATH 8 module
1st Quarter MATH 8 module
 
Pc12 sol c08_8-6
Pc12 sol c08_8-6Pc12 sol c08_8-6
Pc12 sol c08_8-6
 
Geometry unit 7.1
Geometry unit 7.1Geometry unit 7.1
Geometry unit 7.1
 
Algebra Trigonometry Problems
Algebra Trigonometry ProblemsAlgebra Trigonometry Problems
Algebra Trigonometry Problems
 
THE BINOMIAL THEOREM
THE BINOMIAL THEOREM THE BINOMIAL THEOREM
THE BINOMIAL THEOREM
 
thebinomialtheorem-170110005856.pdf
thebinomialtheorem-170110005856.pdfthebinomialtheorem-170110005856.pdf
thebinomialtheorem-170110005856.pdf
 
Grade 8 Mathematics Common Monomial Factoring
Grade 8 Mathematics Common Monomial FactoringGrade 8 Mathematics Common Monomial Factoring
Grade 8 Mathematics Common Monomial Factoring
 
Pascal Triangle
Pascal TrianglePascal Triangle
Pascal Triangle
 
0.3 Factoring Polynomials
0.3 Factoring Polynomials0.3 Factoring Polynomials
0.3 Factoring Polynomials
 
U1 04 factorizacion
U1   04 factorizacionU1   04 factorizacion
U1 04 factorizacion
 
GR 8 Math Powerpoint about Polynomial Techniques
GR 8 Math Powerpoint about Polynomial TechniquesGR 8 Math Powerpoint about Polynomial Techniques
GR 8 Math Powerpoint about Polynomial Techniques
 
2LinearSequences
2LinearSequences2LinearSequences
2LinearSequences
 
The binomial theorem class 11 maths
The binomial theorem class 11 mathsThe binomial theorem class 11 maths
The binomial theorem class 11 maths
 

More from Ramanamurthy Banda

UNIT III_Python Programming_aditya COllege
UNIT III_Python Programming_aditya COllegeUNIT III_Python Programming_aditya COllege
UNIT III_Python Programming_aditya COllege
Ramanamurthy Banda
 
UNIT II_python Programming_aditya College
UNIT II_python Programming_aditya CollegeUNIT II_python Programming_aditya College
UNIT II_python Programming_aditya College
Ramanamurthy Banda
 
Python Programming Unit1_Aditya College of Engg & Tech
Python Programming Unit1_Aditya College of Engg & TechPython Programming Unit1_Aditya College of Engg & Tech
Python Programming Unit1_Aditya College of Engg & Tech
Ramanamurthy Banda
 
UnSupervised Machincs4811-ch23a-clustering.ppt
UnSupervised Machincs4811-ch23a-clustering.pptUnSupervised Machincs4811-ch23a-clustering.ppt
UnSupervised Machincs4811-ch23a-clustering.ppt
Ramanamurthy Banda
 
Virtualization for Windows - Seminar.pptx
Virtualization for Windows - Seminar.pptxVirtualization for Windows - Seminar.pptx
Virtualization for Windows - Seminar.pptx
Ramanamurthy Banda
 

More from Ramanamurthy Banda (7)

UNIT III_Python Programming_aditya COllege
UNIT III_Python Programming_aditya COllegeUNIT III_Python Programming_aditya COllege
UNIT III_Python Programming_aditya COllege
 
UNIT II_python Programming_aditya College
UNIT II_python Programming_aditya CollegeUNIT II_python Programming_aditya College
UNIT II_python Programming_aditya College
 
Python Programming Unit1_Aditya College of Engg & Tech
Python Programming Unit1_Aditya College of Engg & TechPython Programming Unit1_Aditya College of Engg & Tech
Python Programming Unit1_Aditya College of Engg & Tech
 
UnSupervised Machincs4811-ch23a-clustering.ppt
UnSupervised Machincs4811-ch23a-clustering.pptUnSupervised Machincs4811-ch23a-clustering.ppt
UnSupervised Machincs4811-ch23a-clustering.ppt
 
Introduction.ppt
Introduction.pptIntroduction.ppt
Introduction.ppt
 
Virtualization for Windows - Seminar.pptx
Virtualization for Windows - Seminar.pptxVirtualization for Windows - Seminar.pptx
Virtualization for Windows - Seminar.pptx
 
UML-casestudy.ppt
UML-casestudy.pptUML-casestudy.ppt
UML-casestudy.ppt
 

Recently uploaded

CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Atul Kumar Singh
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
EduSkills OECD
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
kaushalkr1407
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 

Recently uploaded (20)

CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 

Binomial

  • 1. The Binomial & Multinomial Coefficients
  • 2.  In formulas arising from the analysis of algorithms in computer science, the binomial coefficients occur over and over again, so that a facility for manipulating them is a necessity.  Moreover, different approaches to problems often give rise to formulas that are different in appearance yet identities of binomial coefficients reveal that they are, in fact, the same expressions.
  • 3. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 3 The binomial theorem provides a useful method for raising any binomial to a nonnegative integral power. Consider the patterns formed by expanding (x + y)n. (x + y)0 = 1 (x + y)1 = x + y (x + y)2 = x2 + 2xy + y2 (x + y)3 = x3 + 3x2y + 3xy2 + y3 (x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4 (x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5 Notice that each expansion has n + 1 terms. 1 term 2 terms 3 terms 4 terms 5 terms 6 terms Example: (x + y)10 will have 10 + 1, or 11 terms.
  • 4. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 4 Consider the patterns formed by expanding (x + y)n. (x + y)0 = 1 (x + y)1 = x + y (x + y)2 = x2 + 2xy + y2 (x + y)3 = x3 + 3x2y + 3xy2 + y3 (x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4 (x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5 1. The exponents on x decrease from n to 0. The exponents on y increase from 0 to n. 2. Each term is of degree n. Example: The 5th term of (x + y)10 is a term with x6y4.”
  • 5. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 5 The coefficients of the binomial expansion are called binomial coefficients. The coefficients have symmetry. The coefficient of xn–ryr in the expansion of (x + y)n is written or nCr . n r       (x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5 The first and last coefficients are 1. The coefficients of the second and second to last terms are equal to n. 1 1 Example: What are the last 2 terms of (x + y)10 ? Since n = 10, the last two terms are 10xy9 + 1y10. So, the last two terms of (x + y)10 can be expressed as 10C9 xy9 + 10C10 y10 or as xy9 + y10.       9 10       10 10
  • 6. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 6 The triangular arrangement of numbers below is called Pascal’s Triangle. Each number in the interior of the triangle is the sum of the two numbers immediately above it. The numbers in the nth row of Pascal’s Triangle are the binomial coefficients for (x + y)n . 1 1 1st row 1 2 1 2nd row 1 3 3 1 3rd row 1 4 6 4 1 4th row 1 5 10 10 5 1 5th row 0th row1 6 + 4 = 10 1 + 2 = 3
  • 7. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 7 Example: Use the fifth row of Pascal’s Triangle to generate the sixth row and find the binomial coefficients , , 6C4 and 6C2 . 6 1       6 5       5th row 1 5 10 10 5 1 6th row 6 0       6 1       6 2       6 3       6 4       6 5       6 6       6C0 6C1 6C2 6C3 6C4 6C5 6C6 = 6 = and 6C4 = 15 = 6C2. 6 1       6 5       There is symmetry between binomial coefficients. nCr = nCn–r 1 6 15 20 15 6 1
  • 8. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 8 Example: Use Pascal’s Triangle to expand (2a + b)4. (2a + b)4 = 1(2a)4 + 4(2a)3b + 6(2a)2b2 + 4(2a)b3 + 1b4 = 1(16a4) + 4(8a3)b + 6(4a2b2) + 4(2a)b3 + b4 = 16a4 + 32a3b + 24a2b2 + 8ab3 + b4 1 1 1st row 1 2 1 2nd row 1 3 3 1 3rd row 1 4 6 4 1 4th row 0th row1
  • 9. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 9 The symbol n! (n factorial) denotes the product of the first n positive integers. 0! is defined to be 1. n! = n(n – 1)(n – 2)  3 • 2 • 1 1! = 1 4! = 4 • 3 • 2 • 1 = 24 6! = 6 • 5 • 4 • 3 • 2 • 1 = 720 Formula for Binomial Coefficients For all nonnegative integers n and r, ! ( )! ! n r n C n r r   Example: )123()1234( )123()4567( •••••• ••••••  !3!4 7 !3!4 !7 !3)!37( !7 ••• 37   C 35 1234 4567 ••• ••• 
  • 10. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 10 Example: Use the formula to calculate the binomial coefficients 10C5, 10C0, and .50 48       12 1       !5)!510( !10 • 510  C !0)!010( !10 • 010  C !48)!4850( !50 48 50 •       !1)!112( !12 1 12 •       !5!5 !10 •  !5!5 !5)678910( • •••••  252 12345 678910 •••• ••••  !0!10 !10 •  1 1 1 !0 !1  !48!2 !48)4950( !48!2 !50 • •• •  1225 12 4950 • •  !1!11 !1112 !1!1 !12 • • •  12 1 12 
  • 11. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 11 Binomial Theorem 1 1 ( )n n n n r r n n n rx y x nx y C x y nxy y          L L ! with ( )! ! n r n C n r r  
  • 12.
  • 13. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 13 Binomial Theorem Example: Use the Binomial Theorem to expand (x4 + 2)3. 03C 13C 23C 33C 34 )2(x 34 )(x )2()( 24 x 24 )2)((x 3 )2( 1 34 )(x 3 )2()( 24 x 3 24 )2)((x 1 3 )2( 8126 4812  xxx
  • 14. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 14 Although the Binomial Theorem is stated for a binomial which is a sum of terms, it can also be used to expand a difference of terms. Simply rewrite (x + y)n as (x + (– y))n and apply the theorem to this sum. Example: Use the Binomial Theorem to expand (3x – 4)4. 4 )43( x 4 ))4(3(  x 432234 )4(1)4)(3(4)4()3(6)4()3(4)3(1  xxxx 256)64)(3(4)16)(9(6)4)(27(481 234  xxxx 25676886443281 234  xxxx
  • 15. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 15 Example: Use the Binomial Theorem to write the first three terms in the expansion of (2a + b)12 . ...)2( 2 12 )2( 1 12 )2( 0 12 )2( 210111212                    babaaba ...)2( !2)!212( !12 )2( !1)!112( !12 )2( !0)!012( !12 2101011111212 •••        babaa ...)2)(1112()2(12)2( 2101011111212 •  babaa ...135168245764096 2101112  babaa
  • 16. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 16 Example: Find the eighth term in the expansion of (x + y)13 . Think of the first term of the expansion as x13y0 . The power of y is 1 less than the number of the term in the expansion. The eighth term is 13C7 x6y7. Therefore, the eighth term of (x + y)13 is 1716 x6y7. !7!6 !7)8910111213( !7!6 !13 • •••••• • 713 C 1716 123456 8910111213 ••••• ••••• 
  • 17. Find the 6th term in the expansion of (3a + 2b)12 Using the Binomial Theorem, let x = 3a and y = 2b and note that in the 6th term, the exponent of y is m = 5 and the exponent of x is n – m = 12 – 5 = 7. Consequently, the 6th term of the expansion is: 57 512 yxC    57 23 !5!7 !789101112 ba   = 55,427,328 a7b5
  • 18. E.g. 7—Finding a Particular Term in a Bin. Expansion Find the coefficient of x8 in the expansion of • Both x2 and 1/x are powers of x. • So, the power of x in each term of the expansion is determined by both terms of the binomial. 10 2 1 x x      
  • 19. To find the required coefficient, we first find the general term in the expansion. • By the formula, we have: a = x2, b = 1/x, n = 10 • So, the general term is: E.g. 7—Finding a Particular Term in a Bin. Expansion 10 2 2 1 10 3 10 10 101 ( ) ( ) 10 10 10 10 r r r r r x x x r x r x r                          
  • 20. Thus, the term that contains x8 is the term in which 3r – 10 = 8 r = 6 • So, the required coefficient is: E.g. 7—Finding a Particular Term in a Bin. Expansion 10 10 210 10 6 4             