5.1 
Fundamental 
Identities 
Copyright © 2011 Pearson, Inc.
What you’ll learn about 
 Identities 
 Basic Trigonometric Identities 
 Pythagorean Identities 
 Cofunction Identities 
 Odd-Even Identities 
 Simplifying Trigonometric Expressions 
 Solving Trigonometric Equations 
… and why 
Identities are important when working with trigonometric 
functions in calculus. 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 2
Basic Trigonometric Identities 
Reciprocal Identites 
csc  
1 
sin 
sec  
1 
cos 
cot  
1 
tan 
sin  
1 
csc 
cos  
1 
sec 
tan  
1 
cot 
Quotient Identites 
tan  
sin 
cos 
cot  
cos 
tan 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 3
Pythagorean Identities 
2 2 
cos sin 1 
1 tan sec 
cot 1 csc 
  
  
2 2 
  
  
2 2 
   
 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 4
Example Using Identities 
Find sin and cos if tan  3 and cos  0. 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 5
Example Using Identities 
Find sin and cos if tan  3 and cos  0. 
To find sin , use tan  3 
and cos  1 / 10. 
tan  
sin 
cos 
sin  cos tan 
sin  1 / 103 
sin  3 / 10 
1 tan2  sec2 
1 9  sec2 
sec   10 
cos  1 / 10 
Therefore, cos  1/ 10 and sin  3/ 10 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 6
Cofunction Identities 
Angle A: sin A  
y 
r 
tan A  
y 
x 
secA  
r 
x 
cosA  
x 
r 
cot A  
x 
y 
cscA  
r 
y 
Angle B: sin B  
x 
r 
tan B  
x 
y 
secB  
r 
y 
cosB  
y 
r 
cot B  
y 
x 
cscB  
r 
x 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 7
Cofunction Identities 
  
    
        
    
    
        
    
    
        
    
sin cos cos sin 
    
2 2 
  
tan cot cot tan 
    
2 2 
  
sec csc csc sec 
    
2 2 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 8
Even-Odd Identities 
sin(x)   sin x cos(x)  cos x tan(x)   tan x 
csc(x)   csc x sec(x)  sec x cot(x)   cot x 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 9
Example Simplifying by Factoring 
and Using Identities 
Simplify the expression cos3 x  cos x sin2 x. 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 10
Example Simplifying by Factoring 
and Using Identities 
Simplify the expression cos3 x  cos x sin2 x. 
cos3 x  cos xsin2 x  cos x(cos2 x  sin2 x) 
 cos x(1) Pythagorean Identity 
 cos x 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 11
Example Simplifying by Expanding 
and Using Identities 
Simplify the expression: 
csc x -1csc x 1 
cos2 x 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 12
Example Simplifying by Expanding 
and Using Identities 
csc x 1csc x 1 
cos2 x 
 
csc2 x 1 
cos2 x 
(a  b)(a  b)  a2  b2 
 
cot2 x 
cos2 x 
Pythagorean Identity 
 
cos2 x 
sin2 x 
 
1 
cos2 x 
cot  
cos 
sin 
1 
 
sin2 x 
 csc2 x 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 13
Example Solving a Trigonometric 
Equation 
Find all values of x in the interval 0,2  
that solve 
sin3 x 
cos x 
 tan x. 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 14
Example Solving a Trigonometric 
Equation 
sin3 x 
cos x 
 tan x 
sin3 x 
cos x 
 
sin x 
cos x 
Reject the posibility that cos2 x  0 
because it would make both 
sides of the original equation 
undefined. sin x  0 in the interval 
0  x  2 when x  0 and x   . 
sin3 x  sin x 
sin3 x  sin x  0 
sin x(sin2 x 1)  0 
sin x cos2  x 0 
sin x  0 or cos2 x  0 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 15
Quick Review 
Evaluate the expression. 
1. sin1 4 
5 
 
  
 
  
 
2. cos1  
12 
13 
  
 
  
Factor the expression into a product of linear factors. 
3. 2a2  3ab  2b2 
4. 9u2  6u 1 
Simplify the expression. 
5. 
2 
y 
 
3 
x 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 16
Quick Review Solutions 
Evaluate the expression. 
1. sin1 4 
5 
 
  
 
  
53.13o  0.927 rad 
 
2. cos1  
12 
13 
  
 
  
157.38o  2.747 rad 
Factor the expression into a product of linear factors. 
3. 2a2  3ab  2b2 2a  ba  2b 
4. 9u2  6u 1 3u 12 
Simplify the expression. 
5. 
2 
y 
 
3 
x 
2x  3y 
xy 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 17

Unit 5.1

  • 1.
    5.1 Fundamental Identities Copyright © 2011 Pearson, Inc.
  • 2.
    What you’ll learnabout  Identities  Basic Trigonometric Identities  Pythagorean Identities  Cofunction Identities  Odd-Even Identities  Simplifying Trigonometric Expressions  Solving Trigonometric Equations … and why Identities are important when working with trigonometric functions in calculus. Copyright © 2011 Pearson, Inc. Slide 5.1 - 2
  • 3.
    Basic Trigonometric Identities Reciprocal Identites csc  1 sin sec  1 cos cot  1 tan sin  1 csc cos  1 sec tan  1 cot Quotient Identites tan  sin cos cot  cos tan Copyright © 2011 Pearson, Inc. Slide 5.1 - 3
  • 4.
    Pythagorean Identities 22 cos sin 1 1 tan sec cot 1 csc     2 2     2 2     Copyright © 2011 Pearson, Inc. Slide 5.1 - 4
  • 5.
    Example Using Identities Find sin and cos if tan  3 and cos  0. Copyright © 2011 Pearson, Inc. Slide 5.1 - 5
  • 6.
    Example Using Identities Find sin and cos if tan  3 and cos  0. To find sin , use tan  3 and cos  1 / 10. tan  sin cos sin  cos tan sin  1 / 103 sin  3 / 10 1 tan2  sec2 1 9  sec2 sec   10 cos  1 / 10 Therefore, cos  1/ 10 and sin  3/ 10 Copyright © 2011 Pearson, Inc. Slide 5.1 - 6
  • 7.
    Cofunction Identities AngleA: sin A  y r tan A  y x secA  r x cosA  x r cot A  x y cscA  r y Angle B: sin B  x r tan B  x y secB  r y cosB  y r cot B  y x cscB  r x Copyright © 2011 Pearson, Inc. Slide 5.1 - 7
  • 8.
    Cofunction Identities                                                  sin cos cos sin     2 2   tan cot cot tan     2 2   sec csc csc sec     2 2 Copyright © 2011 Pearson, Inc. Slide 5.1 - 8
  • 9.
    Even-Odd Identities sin(x)  sin x cos(x)  cos x tan(x)   tan x csc(x)   csc x sec(x)  sec x cot(x)   cot x Copyright © 2011 Pearson, Inc. Slide 5.1 - 9
  • 10.
    Example Simplifying byFactoring and Using Identities Simplify the expression cos3 x  cos x sin2 x. Copyright © 2011 Pearson, Inc. Slide 5.1 - 10
  • 11.
    Example Simplifying byFactoring and Using Identities Simplify the expression cos3 x  cos x sin2 x. cos3 x  cos xsin2 x  cos x(cos2 x  sin2 x)  cos x(1) Pythagorean Identity  cos x Copyright © 2011 Pearson, Inc. Slide 5.1 - 11
  • 12.
    Example Simplifying byExpanding and Using Identities Simplify the expression: csc x -1csc x 1 cos2 x Copyright © 2011 Pearson, Inc. Slide 5.1 - 12
  • 13.
    Example Simplifying byExpanding and Using Identities csc x 1csc x 1 cos2 x  csc2 x 1 cos2 x (a  b)(a  b)  a2  b2  cot2 x cos2 x Pythagorean Identity  cos2 x sin2 x  1 cos2 x cot  cos sin 1  sin2 x  csc2 x Copyright © 2011 Pearson, Inc. Slide 5.1 - 13
  • 14.
    Example Solving aTrigonometric Equation Find all values of x in the interval 0,2  that solve sin3 x cos x  tan x. Copyright © 2011 Pearson, Inc. Slide 5.1 - 14
  • 15.
    Example Solving aTrigonometric Equation sin3 x cos x  tan x sin3 x cos x  sin x cos x Reject the posibility that cos2 x  0 because it would make both sides of the original equation undefined. sin x  0 in the interval 0  x  2 when x  0 and x   . sin3 x  sin x sin3 x  sin x  0 sin x(sin2 x 1)  0 sin x cos2  x 0 sin x  0 or cos2 x  0 Copyright © 2011 Pearson, Inc. Slide 5.1 - 15
  • 16.
    Quick Review Evaluatethe expression. 1. sin1 4 5        2. cos1  12 13      Factor the expression into a product of linear factors. 3. 2a2  3ab  2b2 4. 9u2  6u 1 Simplify the expression. 5. 2 y  3 x Copyright © 2011 Pearson, Inc. Slide 5.1 - 16
  • 17.
    Quick Review Solutions Evaluate the expression. 1. sin1 4 5       53.13o  0.927 rad  2. cos1  12 13      157.38o  2.747 rad Factor the expression into a product of linear factors. 3. 2a2  3ab  2b2 2a  ba  2b 4. 9u2  6u 1 3u 12 Simplify the expression. 5. 2 y  3 x 2x  3y xy Copyright © 2011 Pearson, Inc. Slide 5.1 - 17