10.3 The Area Of A TrianglePrepared By,AsnitaMapasisiNurulHanisahHalbaniSharmizaAdlinaJunaidi
10.3.1 Area Of A Triangle    Consider a triangle ABC on the right. By dropinga perpendicular line, h from C to meet AB at D, sin A = h/b , h = b sin A CArea of triangle  =  ½ x base x height                                                                                = ½ x c x h                                                                                = ½ c x b sin A         b               h            a                                           = ½ bcsin A A                 D                  B                   c   Area of ∆ABC = ½ bc sin A
10.3.1  Area Of A TriangleSimilarity,area of ∆ABC = ½ ac sin B or ½ absin C. Hence,to find the area of a triangle ABC given two sides and the included angle is as follows :Area of ABC = ½ bcsin A                      = ½ ac sin B                      = ½ absin C
10.3.1  Area Of A TriangleExample 5Find the areas of the following triangles.a )                                    3cm                             A                       5 cm                    Bb )     C8 cm                       A                           BC32̊    55 ˚10 cm
10.3.1Area Of A TriangleSolution :a ) Area of ∆ ABC      = ½ bcsin A = ½ (3)(5) sin 32= 3.97 cm²b ) By using the sine rule                   b     =    c                                   b = 40˚ 57’          sin b      sin c                                  = 180˚ - 55˚- 40˚57’8     =      10                                  = 84˚3’sin bsin 55˚                 sin b  =  8 ( sin 55˚ )                     ABC = ½ bcsin A                              10                                      = ½ (8)(10) sin 84˚3’                                                                        = 39.78 cm²
10.3.2Problems Involving Three DimensionsExample 6   The diagram on the right shows a pyramid of height 9 cm and stands on a  square base of 12 cm.The vertex V is vertically above the point D and U is the midpoint of BC.Calculate,A )     UAV                                                                                     B ) the area of ∆UAV                                                           9 cmVDCUA12 cm12 cmB
10.3.2 Problems Involving Three DimensionsSolution :U              VA                             B         D                            UV6 cm9 cm9 cmAD12 cm12 cm13.416 cmAU ² = 6² + 12²        = 180AU   = 13.416 cmDU = AU       = 13.416UV ² = 9² + 13.416²         = 260.989UV    = 16.155 cmAV ² = 9² + 12²        = 225AV    = 15 cm
10.3.2 Problems Involving Three Dimensionsb )  Area ∆ UAV  =  ½ (13.416) (15) sin 69˚2’                            =  93.958 cm²V16.155 cmBy using the cosine rule,cosUAV  = 13.416² + 15² - 16.155²                              2(13.416)(15)UAV  =  69º2’15 cmU13.416 cmA
Rumus SOH CAH TOASin = T      HKos = S      HTan = T      SSayaTelahHafalKalauSayaHafalTentuTidak Susah
Prepared By,NurulHanisahHalbaniAsnitaMapasisiSharmizaAdlinaJunaidi

The area of A Triangle

  • 1.
    10.3 The AreaOf A TrianglePrepared By,AsnitaMapasisiNurulHanisahHalbaniSharmizaAdlinaJunaidi
  • 2.
    10.3.1 Area OfA Triangle Consider a triangle ABC on the right. By dropinga perpendicular line, h from C to meet AB at D, sin A = h/b , h = b sin A CArea of triangle = ½ x base x height = ½ x c x h = ½ c x b sin A b h a = ½ bcsin A A D B c Area of ∆ABC = ½ bc sin A
  • 3.
    10.3.1 AreaOf A TriangleSimilarity,area of ∆ABC = ½ ac sin B or ½ absin C. Hence,to find the area of a triangle ABC given two sides and the included angle is as follows :Area of ABC = ½ bcsin A = ½ ac sin B = ½ absin C
  • 4.
    10.3.1 AreaOf A TriangleExample 5Find the areas of the following triangles.a ) 3cm A 5 cm Bb ) C8 cm A BC32̊ 55 ˚10 cm
  • 5.
    10.3.1Area Of ATriangleSolution :a ) Area of ∆ ABC = ½ bcsin A = ½ (3)(5) sin 32= 3.97 cm²b ) By using the sine rule b = c b = 40˚ 57’ sin b sin c = 180˚ - 55˚- 40˚57’8 = 10 = 84˚3’sin bsin 55˚ sin b = 8 ( sin 55˚ ) ABC = ½ bcsin A 10 = ½ (8)(10) sin 84˚3’ = 39.78 cm²
  • 6.
    10.3.2Problems Involving ThreeDimensionsExample 6 The diagram on the right shows a pyramid of height 9 cm and stands on a square base of 12 cm.The vertex V is vertically above the point D and U is the midpoint of BC.Calculate,A ) UAV B ) the area of ∆UAV 9 cmVDCUA12 cm12 cmB
  • 7.
    10.3.2 Problems InvolvingThree DimensionsSolution :U VA B D UV6 cm9 cm9 cmAD12 cm12 cm13.416 cmAU ² = 6² + 12² = 180AU = 13.416 cmDU = AU = 13.416UV ² = 9² + 13.416² = 260.989UV = 16.155 cmAV ² = 9² + 12² = 225AV = 15 cm
  • 8.
    10.3.2 Problems InvolvingThree Dimensionsb ) Area ∆ UAV = ½ (13.416) (15) sin 69˚2’ = 93.958 cm²V16.155 cmBy using the cosine rule,cosUAV = 13.416² + 15² - 16.155² 2(13.416)(15)UAV = 69º2’15 cmU13.416 cmA
  • 9.
    Rumus SOH CAHTOASin = T HKos = S HTan = T SSayaTelahHafalKalauSayaHafalTentuTidak Susah
  • 10.