SlideShare a Scribd company logo
CLASS XII THREE DIMENSIONAL GEOMETRY
DIRECTION COSINES& DIRECTION RATIOS OF A LINE
The direction cosines of a line are defined as the direction cosines of any vector whose support is a given line. If
, , ,α β γ are the angles which the line l makes with the positive direction of x-axis, y-axis & z- axis
respectively,then its direction cosines are cosα , cos β , cos γ .
Or -cosα , -cos β , -cos γ .
Therefore, if l, m, n are D.C of a line,
then -l,-m,-n are also its D.C & we always have 222
nml ++ =1.
DIRECTION RATIOS OF LINE:-
Any three numbers which are proportional to the D.C of a line are called D .R of a line.
If l ,m ,n are D.C and a, b ,c are D.R of a line then a=λ l, b λm, c=λn.
TO FIND DIRCTION COSINES OF A LINE FROM ITS DIRECTION RATIO’S
Let <a, b ,c> be the D.R of a line L and <l ,m ,n>be its D.C then a=λl, b=λ m, c=λn. For some λ (≠0)
 l=a/λ, m=b/λ, n=c/λ
As 222
nml ++ =1 =>
2 2 2
2 2 2
1
a b c
λ λ λ
+ + =
 λ = 2 2 2
a b c± + +
 2 2 2
a
l
a b c
= ±
+ +
, 2 2 2
b
m
a b c
= ±
+ +
, 2 2 2
c
n
a b c
= ±
+ +
DIRECTION RATIOS OF A LINE PASSING THROUGH TWO POINTS
The D.C. of a line joining two points P( 1 1 1, ,x y z ) &Q ( 2 2 2, ,x y z ) are
2 1 2 1 2 1
, ,
x x y y Z Z
PQ PQ PQ
− − −
< >
Where PQ= 2 2 2
2 1 2 1 2 1( ) ( ) ( )x x y y z z− + − + −
Direction Ratios of a line joining the points P( 1 1 1, ,x y z ) & Q( 2 2 2, ,x y z ) are
2 1 2 1 2 1, ,x x y y z z< − − − >
EQUATION OF A LINE IN A SPACE
EQUATION OF A LINE PASSING THROUGH A GIVEN POINT AND PARALLEL TO A GIVEN
VECTOR
Vector form: Let the line passing through the given point A with position vector a
→
and let it be parallel to vector b
→
. i.e. . AP bλ
→ →
=
BUT AP OB OA
→ → →
= −
b r aλ
→ → →
⇒ = − ⇒ r a bλ
→ → →
= + , this is vector equation of a line.
Cartesian form: Let the given point be A(( 1 1 1, ,x y z ) and
<a, b ,c> be the direction ratio & the point P( 1 1 1, ,x y z ), then 1 1 1x x y y z z
a b c
− − −
= = is symmetrical form
of line.
EQUATION OF A STRAIGHT LINE PASSING THROUGH TWO GIVEN POINTS
Vector form: ( )r a b aλ
→ → → →
= + −
Cartesian form:
1 1 1
2 1 2 1 2 1
x x y y z z
x x y y z z
− − −
= =
− − −
ANGLE BETWEEN TWO LINES: Let 1 2&L L be two lines passing through the origin and with
D.R. 1 1, 1,a b c & 2 2 2, ,a b c . Let P be a point on 1L & Q on 2L
Therefore the angle θ is given by
1 2 1 2 1 2
2 2 2 2 2 2
21 1 1 2 2
| |
a a b b c c
Cos
a b c a b c
θ
+ +
=
+ + + +
Vector form: Let the vectors equation of two lines be
1 1r a bλ
→ → →
= + &
2 2r a bµ
→ → →
= +
Cosθ = 1 2
1 2
.
| || |
b b
b b
→ →
→ →
Condition of perpendicularity: If the lines 1b
→
and 2b
→
are perpendicular then 1 2.b b
→ →
=0
Condition of parallelism: If the lines 1b
→
and 2b
→
are parallel then 1b
→
=λ 2b
→
Cartesian form: Let the Cartesian equation of two lines be
1 1 1
1 1 1
x x y y z z
a b c
− − −
= = &
1 1 1
2 2 2
x x y y z z
a b c
− − −
= = then
1 2 1 2 1 2
2 2 2 2 2 2
21 1 1 2 2
a a b b c c
Cos
a b c a b c
θ
+ +
=
+ + + +
Condition of perpendicularity: 90θ = g
i.e. 1 2 1 2 1 2a a bb c c+ +
Condition of parallelism: 0θ = i.e 1 1 1
2 2 2
a b c
a b c
= =
SHORTEST DISTANCE
Vector form: Let
1 1r a bλ
→ → →
= + &
2 2r a bµ
→ → →
= +
be two non interesting lines. Then the shortest distance
between the given lines is equal to
1 2 2 1
1 2
( ).( )
| |
| |
b b a a
b b
→ → → →
→ →
× −
×
Cartesian form: Let the lines be
1 1 1
1 1 1
x x y y z z
a b c
− − −
= = and
1 1 1
2 2 2
x x y y z z
a b c
− − −
= =
Shortest distance =
2 1 2 1 2 1
1 1 1
2 2 2
2 2 2
1 2 2 1 1 2 2 1 1 2 2 1( ) ( ) ( )
x x y y z z
a b c
a b c
b c b c c a c a a b a b
− − −
− + − + −
Note: If the lines are intersecting ⇒ lines are Coplanar
⇒ S.D = 0 ⇒ ( 1 2 2 1).(b b a a
→ → → →
× − ) = 0
or
2 1 2 1 2 1
1 1 1
2 2 2
x x y y z z
a b c
a b c
− − −
=0
SKEW LINES :
Two straight lines in space which are neither parallel nor intersecting are called Skew lines.
SHORTEST DISTANCE BETWEEN TWO PARALLEL LINES
The shortest distance between two parallel lines
1r a bλ
→ → →
= +
&
2r a bµ
→ → →
= + is given by
d = 2 1(a -a ) b
|b|
→ → →
→
×
PLANES
A Plane is a surface such that if any two distinct points are taken on it then the line containing these
points lie completely in it. i.e. every point of the line in it. Or in short A line in the space is called a plane.
NOTE: A plane is determined uniquely if any one of the following is known:
a) The normal to the plane and its distance from the origin is given.
i.e. equation of plane in normal form.
b) It passes through a point and is perpendicular to given direction
c) It passes through three non collinear points
DIFFERENT FORMS OF EQUATION OF PLANES:
EQUATION OF PLANE IN NORMAL FORM:
Let the Plane ABC be at a distance d from the origin. ON is the normal to the plane in direction n
∧
.
Equation of plane is r
→
.n
∧
=d where d= | |n
→
p
If l, m, n are the direction cosines of the normal to the plane which is at distance d from origin.
The equation of plane is lx +my +nz =d
NOTE: general form of equation of plane are r
→
. N
→
=D & Ax +By +Cz +D=0
EQUATION OF A PLANE PASSING THROUGH A GIVEN POINT & PERPENDICULAR TO A
GIVEN DIRECTION
Vector form: ( )r a
→ →
− . n
→
=0
Cartesian form: 1 1 1( ) ( ) ( ) 0A x x B y y C z z− + − + − =
PLANES THROUGH THE INTERSECTION OF TWO PLANES
Vector form :Let 1p and 2p be two planes with equations
1 1.r n d
→ ∧
= and 2 2.r n d
→ ∧
= . Then equation of plane passing through
the intersection of two planes is 1 2 1 2.( )r n n d dλ λ
→ → →
+ = +
Cartesian form: let 1p and 2p be two planes with equations 1 1 1 1 1 0p a x b y c z d= + + + = &
2 2 2 2 2 0p a x b y c z d= + + + = be two intersecting planes, then 1 2 0p pλ+ = represent a family of planes.
EQUATION OF PLANE PASSING THROUGH 3 NON COLLINEAR POINTS
Vector form: let a plane passing through three given opoints A,B,C with positions vectors a
→
, b
→
, c
→
. Then
equation of plane is ( )r a
→ →
− . ( ) ( ) 0b a c a
→ → → →
 
− × − =  
Cartesian form: Let the plane pass through the points A ( 1 1 1, ,x y z ), B 2 2 2( , , )x y z ,C 3 3 3( , , )x y z .
be any point. Let P( , , )x y z be any point. Then equation of plane is
1 1 1
2 1 2 1 2 1
3 1 3 1 3 1
x x y y z z
x x y y z z
x x y y z z
− − −
− − −
− − −
=0
INTERCEPT FORM OF THE EQUATION OF PLANE:
The equation of plane in intercept form is 1
x y z
a b c
+ + =
Intersection of two planes: Let 1p and 2p be two intersecting planes with equations 1 1.r n d
→ ∧
= and
2 2.r n d
→ ∧
= .and a
→
be the position vector of any point common to them.
r a bλ
→ → →
= + where λ is real number is the vector equation of straight line.
NOTE: Whenever two planes intersect, they always intersect along a straight line.
ANGLE BETWEEN TWO PLANES: The angle between planes is defined as the angle between their
normals. If 1n
→
and 2n
→
are normals to the planes and θ be the angle between planes 1 1.r n d
→ ∧
= and
2 2.r n d
→ ∧
= . Then 1 2
1 2
.
| || |
n n
Cos
n n
θ
→ →
→ →
=
NOTE: The planes are perpendicular to each other if 1 2.n n
→ →
=0 and parallel if 1 2n n
→ →
P .
Cartesian form: Let θ be the angle between the planes 1 1 1 1 0a x b y c z d+ + + = and
2 2 2 2 0a x b y c z d+ + + = then 1 2 1 2 1 2
2 2 2 2 2 2
1 1 1 2 2 2
a a bb c c
Cos
a b c a b c
θ
+ +
=
+ + + +
NOTE: Two planes are perpendicular if 0
=90θ . i.e. 1 2 1 2 1 2a a bb c c+ + =0
Two planes are parallel if
1 1 1
2 2 2
a b c
a b c
= =
DISTANCE OF A POINT FROM A LINE:
Vector form: The length p of the perpendicular drawn from the point p with position vector a
→
to the
plane r
→
. n
→
=d is given by p=
| . |
| |
a n d
n
→ →
→
−
NOTE: the length of perpendicular from origin to plane r
→
. n
→
=d is given by p=
| |
| |
d
n
→
Cartesian form: The length p of the perpendicular drawn from the point P( , , )x y z to the plane
Ax+By+Cz+D=0 is given by p=
1 1 1
2 2 2
Ax By Cz D
A B C
+ + +
+ +
ANGLE BETWEEN A LINE AND A PLANE:
If the equation of line is r a bλ
→ → →
= + and equation of plane is r
→
. n
→
=d .
Then the angle θ between line and normal to plane is
.
| || |
b n
Cos
b n
θ
→ →
→ →
=
So angle φ between line and plane is 90-θ .i.e. (90 )Sin Cosθ θ− =
i.e. Sinφ =
.
| || |
b n
b n
→ →
→ →
NOTE: If we have Cartesian form change it into vector form.
Two planes are parallel if
1 1 1
2 2 2
a b c
a b c
= =
DISTANCE OF A POINT FROM A LINE:
Vector form: The length p of the perpendicular drawn from the point p with position vector a
→
to the
plane r
→
. n
→
=d is given by p=
| . |
| |
a n d
n
→ →
→
−
NOTE: the length of perpendicular from origin to plane r
→
. n
→
=d is given by p=
| |
| |
d
n
→
Cartesian form: The length p of the perpendicular drawn from the point P( , , )x y z to the plane
Ax+By+Cz+D=0 is given by p=
1 1 1
2 2 2
Ax By Cz D
A B C
+ + +
+ +
ANGLE BETWEEN A LINE AND A PLANE:
If the equation of line is r a bλ
→ → →
= + and equation of plane is r
→
. n
→
=d .
Then the angle θ between line and normal to plane is
.
| || |
b n
Cos
b n
θ
→ →
→ →
=
So angle φ between line and plane is 90-θ .i.e. (90 )Sin Cosθ θ− =
i.e. Sinφ =
.
| || |
b n
b n
→ →
→ →
NOTE: If we have Cartesian form change it into vector form.

More Related Content

What's hot

Vector calculus
Vector calculusVector calculus
Vector calculus
Santhanam Krishnan
 
Linear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent SetLinear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent Set
Dhaval Shukla
 
24 double integral over polar coordinate
24 double integral over polar coordinate24 double integral over polar coordinate
24 double integral over polar coordinatemath267
 
Inner Product Space
Inner Product SpaceInner Product Space
Inner Product Space
Patel Raj
 
Presentaton on Polynomials....Class 10
Presentaton on Polynomials....Class 10 Presentaton on Polynomials....Class 10
Presentaton on Polynomials....Class 10
Bindu Cm
 
7.5 lines and_planes_in_space
7.5 lines and_planes_in_space7.5 lines and_planes_in_space
7.5 lines and_planes_in_spaceMahbub Alwathoni
 
1 3 d coordinate system
1 3 d coordinate system1 3 d coordinate system
1 3 d coordinate system
math267
 
Application of partial derivatives with two variables
Application of partial derivatives with two variablesApplication of partial derivatives with two variables
Application of partial derivatives with two variables
Sagar Patel
 
Vector space
Vector spaceVector space
Vector space
Mehedi Hasan Raju
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
aman1894
 
Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & Dimension
Manikanta satyala
 
Geometry (Grid & section formula)
Geometry (Grid & section formula)Geometry (Grid & section formula)
Geometry (Grid & section formula)itutor
 
Vector calculus
Vector calculusVector calculus
Vector calculusKumar
 
Arc Length, Curvature and Torsion
Arc Length, Curvature and TorsionArc Length, Curvature and Torsion
Arc Length, Curvature and Torsion
vaani pathak
 
Cylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shaliniCylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shalini
shalini singh
 
Elementary differential equation
Elementary differential equationElementary differential equation
Elementary differential equation
Angeli Castillo
 
Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus
garghanish
 
Double integration in polar form with change in variable (harsh gupta)
Double integration in polar form with change in variable (harsh gupta)Double integration in polar form with change in variable (harsh gupta)
Double integration in polar form with change in variable (harsh gupta)
Harsh Gupta
 
Chapter 16 2
Chapter 16 2Chapter 16 2
Chapter 16 2
EasyStudy3
 

What's hot (20)

Vector calculus
Vector calculusVector calculus
Vector calculus
 
Linear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent SetLinear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent Set
 
24 double integral over polar coordinate
24 double integral over polar coordinate24 double integral over polar coordinate
24 double integral over polar coordinate
 
Inner Product Space
Inner Product SpaceInner Product Space
Inner Product Space
 
Presentaton on Polynomials....Class 10
Presentaton on Polynomials....Class 10 Presentaton on Polynomials....Class 10
Presentaton on Polynomials....Class 10
 
7.5 lines and_planes_in_space
7.5 lines and_planes_in_space7.5 lines and_planes_in_space
7.5 lines and_planes_in_space
 
Straight lines
Straight linesStraight lines
Straight lines
 
1 3 d coordinate system
1 3 d coordinate system1 3 d coordinate system
1 3 d coordinate system
 
Application of partial derivatives with two variables
Application of partial derivatives with two variablesApplication of partial derivatives with two variables
Application of partial derivatives with two variables
 
Vector space
Vector spaceVector space
Vector space
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & Dimension
 
Geometry (Grid & section formula)
Geometry (Grid & section formula)Geometry (Grid & section formula)
Geometry (Grid & section formula)
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Arc Length, Curvature and Torsion
Arc Length, Curvature and TorsionArc Length, Curvature and Torsion
Arc Length, Curvature and Torsion
 
Cylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shaliniCylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shalini
 
Elementary differential equation
Elementary differential equationElementary differential equation
Elementary differential equation
 
Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus
 
Double integration in polar form with change in variable (harsh gupta)
Double integration in polar form with change in variable (harsh gupta)Double integration in polar form with change in variable (harsh gupta)
Double integration in polar form with change in variable (harsh gupta)
 
Chapter 16 2
Chapter 16 2Chapter 16 2
Chapter 16 2
 

Viewers also liked

Mathematics
MathematicsMathematics
Mathematics
Shomes Ray
 
Rd sharma class 10 solutions some applications of trigonometry
Rd sharma class 10 solutions some applications of trigonometryRd sharma class 10 solutions some applications of trigonometry
Rd sharma class 10 solutions some applications of trigonometry
gyanpub
 
A constructive naive set theory and infinity
A constructive naive set theory and infinityA constructive naive set theory and infinity
A constructive naive set theory and infinity
Shunsuke Yatabe
 
Three Dimensional Co-ordinate Geometry - SSC Maths Preparation
Three Dimensional Co-ordinate Geometry  - SSC Maths Preparation Three Dimensional Co-ordinate Geometry  - SSC Maths Preparation
Three Dimensional Co-ordinate Geometry - SSC Maths Preparation
Ednexa
 
THE BINOMIAL THEOREM
THE BINOMIAL THEOREM THE BINOMIAL THEOREM
THE BINOMIAL THEOREM
τυσηαρ ηαβιβ
 
mathematical induction
mathematical inductionmathematical induction
mathematical inductionankush_kumar
 
Three dimensional geometry
Three dimensional geometryThree dimensional geometry
Three dimensional geometryAnthony_Maiorano
 
Set Theory
Set TheorySet Theory
Set Theoryitutor
 
Statistics for Class XI (CBSE)
Statistics for Class XI (CBSE)Statistics for Class XI (CBSE)
Statistics for Class XI (CBSE)
mini4deb
 
Project - Class XI D
Project  - Class XI DProject  - Class XI D
Project - Class XI DArnabchaks
 
Trigonometry project
Trigonometry projectTrigonometry project
Trigonometry projectKajal Soni
 
Trigonometry, Applications of Trigonometry CBSE Class X Project
Trigonometry, Applications of Trigonometry CBSE Class X ProjectTrigonometry, Applications of Trigonometry CBSE Class X Project
Trigonometry, Applications of Trigonometry CBSE Class X Project
Spandan Bhattacharya
 
PPT on Trigonometric Functions. Class 11
PPT on Trigonometric Functions. Class 11PPT on Trigonometric Functions. Class 11
PPT on Trigonometric Functions. Class 11
Rushikesh Reddy
 
Trigonometry presentation
Trigonometry presentationTrigonometry presentation
Trigonometry presentation
Nomsa Blessing Mswane
 
SET THEORY
SET THEORYSET THEORY
SET THEORYLena
 
Maths sets ppt
Maths sets pptMaths sets ppt
Maths sets ppt
Akshit Saxena
 
LinkedIn powerpoint
LinkedIn powerpointLinkedIn powerpoint
LinkedIn powerpointguest2137df
 

Viewers also liked (18)

Mathematics
MathematicsMathematics
Mathematics
 
Rd sharma class 10 solutions some applications of trigonometry
Rd sharma class 10 solutions some applications of trigonometryRd sharma class 10 solutions some applications of trigonometry
Rd sharma class 10 solutions some applications of trigonometry
 
A constructive naive set theory and infinity
A constructive naive set theory and infinityA constructive naive set theory and infinity
A constructive naive set theory and infinity
 
Three Dimensional Co-ordinate Geometry - SSC Maths Preparation
Three Dimensional Co-ordinate Geometry  - SSC Maths Preparation Three Dimensional Co-ordinate Geometry  - SSC Maths Preparation
Three Dimensional Co-ordinate Geometry - SSC Maths Preparation
 
Projection of Line
Projection of LineProjection of Line
Projection of Line
 
THE BINOMIAL THEOREM
THE BINOMIAL THEOREM THE BINOMIAL THEOREM
THE BINOMIAL THEOREM
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
Three dimensional geometry
Three dimensional geometryThree dimensional geometry
Three dimensional geometry
 
Set Theory
Set TheorySet Theory
Set Theory
 
Statistics for Class XI (CBSE)
Statistics for Class XI (CBSE)Statistics for Class XI (CBSE)
Statistics for Class XI (CBSE)
 
Project - Class XI D
Project  - Class XI DProject  - Class XI D
Project - Class XI D
 
Trigonometry project
Trigonometry projectTrigonometry project
Trigonometry project
 
Trigonometry, Applications of Trigonometry CBSE Class X Project
Trigonometry, Applications of Trigonometry CBSE Class X ProjectTrigonometry, Applications of Trigonometry CBSE Class X Project
Trigonometry, Applications of Trigonometry CBSE Class X Project
 
PPT on Trigonometric Functions. Class 11
PPT on Trigonometric Functions. Class 11PPT on Trigonometric Functions. Class 11
PPT on Trigonometric Functions. Class 11
 
Trigonometry presentation
Trigonometry presentationTrigonometry presentation
Trigonometry presentation
 
SET THEORY
SET THEORYSET THEORY
SET THEORY
 
Maths sets ppt
Maths sets pptMaths sets ppt
Maths sets ppt
 
LinkedIn powerpoint
LinkedIn powerpointLinkedIn powerpoint
LinkedIn powerpoint
 

Similar to Three dimensional geometry

Three dim. geometry
Three dim. geometryThree dim. geometry
Three dim. geometryindu thakur
 
Math - analytic geometry
Math - analytic geometryMath - analytic geometry
Math - analytic geometry
immortalmikhel
 
1525 equations of lines in space
1525 equations of lines in space1525 equations of lines in space
1525 equations of lines in space
Dr Fereidoun Dejahang
 
Straight Lines ( Especially For XI )
Straight Lines ( Especially For XI ) Straight Lines ( Especially For XI )
Straight Lines ( Especially For XI )
Atit Gaonkar
 
Analytical Geometry of Three Dimensions
Analytical Geometry of Three DimensionsAnalytical Geometry of Three Dimensions
Analytical Geometry of Three Dimensions
Kalaiindhu
 
Vectors2
Vectors2Vectors2
Gmat quant topic 6 co ordinate geometry solutions
Gmat quant topic 6 co ordinate geometry solutionsGmat quant topic 6 co ordinate geometry solutions
Gmat quant topic 6 co ordinate geometry solutions
Rushabh Vora
 
3D-PPt MODULE 1.pptx
3D-PPt MODULE 1.pptx3D-PPt MODULE 1.pptx
3D-PPt MODULE 1.pptx
AnujChoudhary61
 
JC Vectors summary
JC Vectors summaryJC Vectors summary
JC Vectors summary
Math Academy Singapore
 
Equation of second degree
Equation of second degreeEquation of second degree
Equation of second degree
M M ALAMGIR HOSSAIN
 
Equation of second degree
Equation of second degreeEquation of second degree
Equation of second degree
M M ALAMGIR HOSSAIN
 
Solution kepler chap 1
Solution kepler chap 1Solution kepler chap 1
Solution kepler chap 1
Kamran Khursheed
 
Three dimensional geometry
Three dimensional geometryThree dimensional geometry
Three dimensional geometry
nitishguptamaps
 
Coordinate 1.pdf
Coordinate 1.pdfCoordinate 1.pdf
Coordinate 1.pdf
Jihudumie.Com
 
Analytical geometry slides
Analytical geometry slidesAnalytical geometry slides
Analytical geometry slides
Sizwe Ngcobo
 
Is ellipse really a section of cone
Is ellipse really a section of coneIs ellipse really a section of cone
Is ellipse really a section of cone
narayana dash
 
Coordinate geometry
Coordinate geometryCoordinate geometry
Coordinate geometry
Ravichandran Keerthi
 
Notes on Equation of Plane
Notes on Equation of PlaneNotes on Equation of Plane
Notes on Equation of Plane
Herbert Mujungu
 
5.vector geometry Further Mathematics Zimbabwe Zimsec Cambridge
5.vector geometry   Further Mathematics Zimbabwe Zimsec Cambridge5.vector geometry   Further Mathematics Zimbabwe Zimsec Cambridge
5.vector geometry Further Mathematics Zimbabwe Zimsec Cambridge
alproelearning
 
Plano numerico.
Plano numerico.Plano numerico.
Plano numerico.
CindyCamacho10
 

Similar to Three dimensional geometry (20)

Three dim. geometry
Three dim. geometryThree dim. geometry
Three dim. geometry
 
Math - analytic geometry
Math - analytic geometryMath - analytic geometry
Math - analytic geometry
 
1525 equations of lines in space
1525 equations of lines in space1525 equations of lines in space
1525 equations of lines in space
 
Straight Lines ( Especially For XI )
Straight Lines ( Especially For XI ) Straight Lines ( Especially For XI )
Straight Lines ( Especially For XI )
 
Analytical Geometry of Three Dimensions
Analytical Geometry of Three DimensionsAnalytical Geometry of Three Dimensions
Analytical Geometry of Three Dimensions
 
Vectors2
Vectors2Vectors2
Vectors2
 
Gmat quant topic 6 co ordinate geometry solutions
Gmat quant topic 6 co ordinate geometry solutionsGmat quant topic 6 co ordinate geometry solutions
Gmat quant topic 6 co ordinate geometry solutions
 
3D-PPt MODULE 1.pptx
3D-PPt MODULE 1.pptx3D-PPt MODULE 1.pptx
3D-PPt MODULE 1.pptx
 
JC Vectors summary
JC Vectors summaryJC Vectors summary
JC Vectors summary
 
Equation of second degree
Equation of second degreeEquation of second degree
Equation of second degree
 
Equation of second degree
Equation of second degreeEquation of second degree
Equation of second degree
 
Solution kepler chap 1
Solution kepler chap 1Solution kepler chap 1
Solution kepler chap 1
 
Three dimensional geometry
Three dimensional geometryThree dimensional geometry
Three dimensional geometry
 
Coordinate 1.pdf
Coordinate 1.pdfCoordinate 1.pdf
Coordinate 1.pdf
 
Analytical geometry slides
Analytical geometry slidesAnalytical geometry slides
Analytical geometry slides
 
Is ellipse really a section of cone
Is ellipse really a section of coneIs ellipse really a section of cone
Is ellipse really a section of cone
 
Coordinate geometry
Coordinate geometryCoordinate geometry
Coordinate geometry
 
Notes on Equation of Plane
Notes on Equation of PlaneNotes on Equation of Plane
Notes on Equation of Plane
 
5.vector geometry Further Mathematics Zimbabwe Zimsec Cambridge
5.vector geometry   Further Mathematics Zimbabwe Zimsec Cambridge5.vector geometry   Further Mathematics Zimbabwe Zimsec Cambridge
5.vector geometry Further Mathematics Zimbabwe Zimsec Cambridge
 
Plano numerico.
Plano numerico.Plano numerico.
Plano numerico.
 

More from nitishguptamaps

Class XII Mathematics long assignment
Class XII Mathematics long assignmentClass XII Mathematics long assignment
Class XII Mathematics long assignment
nitishguptamaps
 
Class 11 important questions for final term
Class 11 important questions for final termClass 11 important questions for final term
Class 11 important questions for final term
nitishguptamaps
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivatives
nitishguptamaps
 
Probability class 11
Probability class 11Probability class 11
Probability class 11
nitishguptamaps
 
10 unsolved papers with answers class 12
10 unsolved papers with answers class 1210 unsolved papers with answers class 12
10 unsolved papers with answers class 12
nitishguptamaps
 
Mathsclass xii (exampler problems)
Mathsclass xii (exampler problems)Mathsclass xii (exampler problems)
Mathsclass xii (exampler problems)
nitishguptamaps
 
Scan0013
Scan0013Scan0013
Scan0013
nitishguptamaps
 
Scan0012
Scan0012Scan0012
Scan0012
nitishguptamaps
 
Scan0011
Scan0011Scan0011
Scan0011
nitishguptamaps
 
Scan0010
Scan0010Scan0010
Scan0010
nitishguptamaps
 
Scan0009
Scan0009Scan0009
Scan0009
nitishguptamaps
 
Poly
PolyPoly
Extraction 2
Extraction 2Extraction 2
Extraction 2
nitishguptamaps
 
Extraction 2
Extraction 2Extraction 2
Extraction 2
nitishguptamaps
 
some important questions for practice clas 12
some important questions for practice clas 12  some important questions for practice clas 12
some important questions for practice clas 12
nitishguptamaps
 
Chapters 1 8 ( 6 marks)
Chapters 1   8 ( 6 marks)Chapters 1   8 ( 6 marks)
Chapters 1 8 ( 6 marks)
nitishguptamaps
 
Chapters 1 8 ( 6 marks)
Chapters 1   8 ( 6 marks)Chapters 1   8 ( 6 marks)
Chapters 1 8 ( 6 marks)
nitishguptamaps
 
Chapters 1 8 ( 6 marks)
Chapters 1   8 ( 6 marks)Chapters 1   8 ( 6 marks)
Chapters 1 8 ( 6 marks)
nitishguptamaps
 
Assignment (chapter 1 8) maths
Assignment (chapter 1   8) mathsAssignment (chapter 1   8) maths
Assignment (chapter 1 8) maths
nitishguptamaps
 
Assignment (chapter 1 8) maths
Assignment (chapter 1   8) mathsAssignment (chapter 1   8) maths
Assignment (chapter 1 8) maths
nitishguptamaps
 

More from nitishguptamaps (20)

Class XII Mathematics long assignment
Class XII Mathematics long assignmentClass XII Mathematics long assignment
Class XII Mathematics long assignment
 
Class 11 important questions for final term
Class 11 important questions for final termClass 11 important questions for final term
Class 11 important questions for final term
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivatives
 
Probability class 11
Probability class 11Probability class 11
Probability class 11
 
10 unsolved papers with answers class 12
10 unsolved papers with answers class 1210 unsolved papers with answers class 12
10 unsolved papers with answers class 12
 
Mathsclass xii (exampler problems)
Mathsclass xii (exampler problems)Mathsclass xii (exampler problems)
Mathsclass xii (exampler problems)
 
Scan0013
Scan0013Scan0013
Scan0013
 
Scan0012
Scan0012Scan0012
Scan0012
 
Scan0011
Scan0011Scan0011
Scan0011
 
Scan0010
Scan0010Scan0010
Scan0010
 
Scan0009
Scan0009Scan0009
Scan0009
 
Poly
PolyPoly
Poly
 
Extraction 2
Extraction 2Extraction 2
Extraction 2
 
Extraction 2
Extraction 2Extraction 2
Extraction 2
 
some important questions for practice clas 12
some important questions for practice clas 12  some important questions for practice clas 12
some important questions for practice clas 12
 
Chapters 1 8 ( 6 marks)
Chapters 1   8 ( 6 marks)Chapters 1   8 ( 6 marks)
Chapters 1 8 ( 6 marks)
 
Chapters 1 8 ( 6 marks)
Chapters 1   8 ( 6 marks)Chapters 1   8 ( 6 marks)
Chapters 1 8 ( 6 marks)
 
Chapters 1 8 ( 6 marks)
Chapters 1   8 ( 6 marks)Chapters 1   8 ( 6 marks)
Chapters 1 8 ( 6 marks)
 
Assignment (chapter 1 8) maths
Assignment (chapter 1   8) mathsAssignment (chapter 1   8) maths
Assignment (chapter 1 8) maths
 
Assignment (chapter 1 8) maths
Assignment (chapter 1   8) mathsAssignment (chapter 1   8) maths
Assignment (chapter 1 8) maths
 

Recently uploaded

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
timhan337
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
EduSkills OECD
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
Peter Windle
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
beazzy04
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 

Recently uploaded (20)

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 

Three dimensional geometry

  • 1. CLASS XII THREE DIMENSIONAL GEOMETRY DIRECTION COSINES& DIRECTION RATIOS OF A LINE The direction cosines of a line are defined as the direction cosines of any vector whose support is a given line. If , , ,α β γ are the angles which the line l makes with the positive direction of x-axis, y-axis & z- axis respectively,then its direction cosines are cosα , cos β , cos γ . Or -cosα , -cos β , -cos γ . Therefore, if l, m, n are D.C of a line, then -l,-m,-n are also its D.C & we always have 222 nml ++ =1. DIRECTION RATIOS OF LINE:- Any three numbers which are proportional to the D.C of a line are called D .R of a line. If l ,m ,n are D.C and a, b ,c are D.R of a line then a=λ l, b λm, c=λn. TO FIND DIRCTION COSINES OF A LINE FROM ITS DIRECTION RATIO’S Let <a, b ,c> be the D.R of a line L and <l ,m ,n>be its D.C then a=λl, b=λ m, c=λn. For some λ (≠0)  l=a/λ, m=b/λ, n=c/λ As 222 nml ++ =1 => 2 2 2 2 2 2 1 a b c λ λ λ + + =  λ = 2 2 2 a b c± + +  2 2 2 a l a b c = ± + + , 2 2 2 b m a b c = ± + + , 2 2 2 c n a b c = ± + + DIRECTION RATIOS OF A LINE PASSING THROUGH TWO POINTS The D.C. of a line joining two points P( 1 1 1, ,x y z ) &Q ( 2 2 2, ,x y z ) are 2 1 2 1 2 1 , , x x y y Z Z PQ PQ PQ − − − < > Where PQ= 2 2 2 2 1 2 1 2 1( ) ( ) ( )x x y y z z− + − + − Direction Ratios of a line joining the points P( 1 1 1, ,x y z ) & Q( 2 2 2, ,x y z ) are 2 1 2 1 2 1, ,x x y y z z< − − − > EQUATION OF A LINE IN A SPACE EQUATION OF A LINE PASSING THROUGH A GIVEN POINT AND PARALLEL TO A GIVEN VECTOR Vector form: Let the line passing through the given point A with position vector a → and let it be parallel to vector b → . i.e. . AP bλ → → = BUT AP OB OA → → → = − b r aλ → → → ⇒ = − ⇒ r a bλ → → → = + , this is vector equation of a line. Cartesian form: Let the given point be A(( 1 1 1, ,x y z ) and <a, b ,c> be the direction ratio & the point P( 1 1 1, ,x y z ), then 1 1 1x x y y z z a b c − − − = = is symmetrical form of line.
  • 2. EQUATION OF A STRAIGHT LINE PASSING THROUGH TWO GIVEN POINTS Vector form: ( )r a b aλ → → → → = + − Cartesian form: 1 1 1 2 1 2 1 2 1 x x y y z z x x y y z z − − − = = − − − ANGLE BETWEEN TWO LINES: Let 1 2&L L be two lines passing through the origin and with D.R. 1 1, 1,a b c & 2 2 2, ,a b c . Let P be a point on 1L & Q on 2L Therefore the angle θ is given by 1 2 1 2 1 2 2 2 2 2 2 2 21 1 1 2 2 | | a a b b c c Cos a b c a b c θ + + = + + + + Vector form: Let the vectors equation of two lines be 1 1r a bλ → → → = + & 2 2r a bµ → → → = + Cosθ = 1 2 1 2 . | || | b b b b → → → → Condition of perpendicularity: If the lines 1b → and 2b → are perpendicular then 1 2.b b → → =0 Condition of parallelism: If the lines 1b → and 2b → are parallel then 1b → =λ 2b → Cartesian form: Let the Cartesian equation of two lines be 1 1 1 1 1 1 x x y y z z a b c − − − = = & 1 1 1 2 2 2 x x y y z z a b c − − − = = then 1 2 1 2 1 2 2 2 2 2 2 2 21 1 1 2 2 a a b b c c Cos a b c a b c θ + + = + + + + Condition of perpendicularity: 90θ = g i.e. 1 2 1 2 1 2a a bb c c+ + Condition of parallelism: 0θ = i.e 1 1 1 2 2 2 a b c a b c = = SHORTEST DISTANCE Vector form: Let 1 1r a bλ → → → = + & 2 2r a bµ → → → = + be two non interesting lines. Then the shortest distance between the given lines is equal to 1 2 2 1 1 2 ( ).( ) | | | | b b a a b b → → → → → → × − × Cartesian form: Let the lines be 1 1 1 1 1 1 x x y y z z a b c − − − = = and 1 1 1 2 2 2 x x y y z z a b c − − − = = Shortest distance = 2 1 2 1 2 1 1 1 1 2 2 2 2 2 2 1 2 2 1 1 2 2 1 1 2 2 1( ) ( ) ( ) x x y y z z a b c a b c b c b c c a c a a b a b − − − − + − + −
  • 3. Note: If the lines are intersecting ⇒ lines are Coplanar ⇒ S.D = 0 ⇒ ( 1 2 2 1).(b b a a → → → → × − ) = 0 or 2 1 2 1 2 1 1 1 1 2 2 2 x x y y z z a b c a b c − − − =0 SKEW LINES : Two straight lines in space which are neither parallel nor intersecting are called Skew lines. SHORTEST DISTANCE BETWEEN TWO PARALLEL LINES The shortest distance between two parallel lines 1r a bλ → → → = + & 2r a bµ → → → = + is given by d = 2 1(a -a ) b |b| → → → → × PLANES A Plane is a surface such that if any two distinct points are taken on it then the line containing these points lie completely in it. i.e. every point of the line in it. Or in short A line in the space is called a plane. NOTE: A plane is determined uniquely if any one of the following is known: a) The normal to the plane and its distance from the origin is given. i.e. equation of plane in normal form. b) It passes through a point and is perpendicular to given direction c) It passes through three non collinear points DIFFERENT FORMS OF EQUATION OF PLANES: EQUATION OF PLANE IN NORMAL FORM: Let the Plane ABC be at a distance d from the origin. ON is the normal to the plane in direction n ∧ . Equation of plane is r → .n ∧ =d where d= | |n → p If l, m, n are the direction cosines of the normal to the plane which is at distance d from origin. The equation of plane is lx +my +nz =d NOTE: general form of equation of plane are r → . N → =D & Ax +By +Cz +D=0 EQUATION OF A PLANE PASSING THROUGH A GIVEN POINT & PERPENDICULAR TO A GIVEN DIRECTION Vector form: ( )r a → → − . n → =0 Cartesian form: 1 1 1( ) ( ) ( ) 0A x x B y y C z z− + − + − =
  • 4. PLANES THROUGH THE INTERSECTION OF TWO PLANES Vector form :Let 1p and 2p be two planes with equations 1 1.r n d → ∧ = and 2 2.r n d → ∧ = . Then equation of plane passing through the intersection of two planes is 1 2 1 2.( )r n n d dλ λ → → → + = + Cartesian form: let 1p and 2p be two planes with equations 1 1 1 1 1 0p a x b y c z d= + + + = & 2 2 2 2 2 0p a x b y c z d= + + + = be two intersecting planes, then 1 2 0p pλ+ = represent a family of planes. EQUATION OF PLANE PASSING THROUGH 3 NON COLLINEAR POINTS Vector form: let a plane passing through three given opoints A,B,C with positions vectors a → , b → , c → . Then equation of plane is ( )r a → → − . ( ) ( ) 0b a c a → → → →   − × − =   Cartesian form: Let the plane pass through the points A ( 1 1 1, ,x y z ), B 2 2 2( , , )x y z ,C 3 3 3( , , )x y z . be any point. Let P( , , )x y z be any point. Then equation of plane is 1 1 1 2 1 2 1 2 1 3 1 3 1 3 1 x x y y z z x x y y z z x x y y z z − − − − − − − − − =0 INTERCEPT FORM OF THE EQUATION OF PLANE: The equation of plane in intercept form is 1 x y z a b c + + = Intersection of two planes: Let 1p and 2p be two intersecting planes with equations 1 1.r n d → ∧ = and 2 2.r n d → ∧ = .and a → be the position vector of any point common to them. r a bλ → → → = + where λ is real number is the vector equation of straight line. NOTE: Whenever two planes intersect, they always intersect along a straight line. ANGLE BETWEEN TWO PLANES: The angle between planes is defined as the angle between their normals. If 1n → and 2n → are normals to the planes and θ be the angle between planes 1 1.r n d → ∧ = and 2 2.r n d → ∧ = . Then 1 2 1 2 . | || | n n Cos n n θ → → → → = NOTE: The planes are perpendicular to each other if 1 2.n n → → =0 and parallel if 1 2n n → → P . Cartesian form: Let θ be the angle between the planes 1 1 1 1 0a x b y c z d+ + + = and 2 2 2 2 0a x b y c z d+ + + = then 1 2 1 2 1 2 2 2 2 2 2 2 1 1 1 2 2 2 a a bb c c Cos a b c a b c θ + + = + + + + NOTE: Two planes are perpendicular if 0 =90θ . i.e. 1 2 1 2 1 2a a bb c c+ + =0
  • 5. Two planes are parallel if 1 1 1 2 2 2 a b c a b c = = DISTANCE OF A POINT FROM A LINE: Vector form: The length p of the perpendicular drawn from the point p with position vector a → to the plane r → . n → =d is given by p= | . | | | a n d n → → → − NOTE: the length of perpendicular from origin to plane r → . n → =d is given by p= | | | | d n → Cartesian form: The length p of the perpendicular drawn from the point P( , , )x y z to the plane Ax+By+Cz+D=0 is given by p= 1 1 1 2 2 2 Ax By Cz D A B C + + + + + ANGLE BETWEEN A LINE AND A PLANE: If the equation of line is r a bλ → → → = + and equation of plane is r → . n → =d . Then the angle θ between line and normal to plane is . | || | b n Cos b n θ → → → → = So angle φ between line and plane is 90-θ .i.e. (90 )Sin Cosθ θ− = i.e. Sinφ = . | || | b n b n → → → → NOTE: If we have Cartesian form change it into vector form.
  • 6. Two planes are parallel if 1 1 1 2 2 2 a b c a b c = = DISTANCE OF A POINT FROM A LINE: Vector form: The length p of the perpendicular drawn from the point p with position vector a → to the plane r → . n → =d is given by p= | . | | | a n d n → → → − NOTE: the length of perpendicular from origin to plane r → . n → =d is given by p= | | | | d n → Cartesian form: The length p of the perpendicular drawn from the point P( , , )x y z to the plane Ax+By+Cz+D=0 is given by p= 1 1 1 2 2 2 Ax By Cz D A B C + + + + + ANGLE BETWEEN A LINE AND A PLANE: If the equation of line is r a bλ → → → = + and equation of plane is r → . n → =d . Then the angle θ between line and normal to plane is . | || | b n Cos b n θ → → → → = So angle φ between line and plane is 90-θ .i.e. (90 )Sin Cosθ θ− = i.e. Sinφ = . | || | b n b n → → → → NOTE: If we have Cartesian form change it into vector form.