Linear Combination,
Span and
Linearly Independent and
Linearly Dependent
-by Dhaval Shukla(141080119050)
Abhishek Singh(141080119051)
Abhishek Singh(141080119052)
Aman Singh(141080119053)
Azhar Tai(141080119054)
-Group No. 9
-Prof. Ketan Chavda
-Mechanical Branch
-2nd Semester
Linear Combination
1 2 3 r
1 1 2 2 3 3 r
i
A vector V is called a Linear Combination of
vectors v , v , v ,......., v
if V can be expressed as
v k k k ..... k
where k are scalar such that 1 i r
rv v v v    
 
Linear Combination
 

  
.v,....,v,v,vofnCombinatio
LinearaisVthenconsistentis1inequationofsystemtheIf2
1k.....kkkv
v,.....,v,v,vofnCombinatioLinearaasVExpress1
:followasisv.....,,v,v,v
orsgiven vectofnCombinatioLinearacalledisVvectoraIf
r321
r332211
r321
r321
 rvvvv
Linear Combination
2
3
2
2
2
1
2
267p
4510p
592pofnCombinatioLinear
aas1588ppolynomialtheExpress1:
xx
xx
xx
xxEx




1 1 2 2 3 3
2 2 2
1 2
2
3
:1 Let p k k k
8 8 15 k (2 9 5 ) k (10 5 4 )
k (7 6 2 )
n
Sol p p p
x x x x x x
x x
  
          
 
Linear Combination
2
1 2 3 1 2 3
2
1 2 3
1 2 3
1 2 3
1 2 3
8 8 15 (2k 10k 7k ) (9k 5k 6k )
(5k 4k 2k )
by comparison we get,
2k 10k 7k 8
9k 5k 6k 8
5k 4k 2k 15
now, turning the above equatio
x x x
x
         
 

   
   
   
 ns into an Augmented Matrix:
82 10 7
89 5 6
155 4 2
 
 
 
  
Linear Combination
1
2 1 3 1
performing R / 2
7
1 5
42
9 5 6 8
5 4 2 15
performing R 9R , R 5R
7
1 5
2 4
51
0 50 28
2
5
31
0 21
2

 
 
 
  
 
 
 
  
 
 
 
 
 
 
 
  
Linear Combination
2
7
2
51 14
100 25
31
2
3 2
7
2
51 14
100 25
479 169
100 25
1
performing R ( )
50
1 5 4
0 1
0 21 5
now performing R 21R
1 5 4
0 1
0 0

 
 
 
 
 
  
 
 
 
 
 
 
Linear Combination
100
3 479
7
2
51 14
100 25
676
479
7
1 2 32
51 14
2 3100 25
676
3 479
performing R ( )
1 5 4
0 1
0 0 1
Hence, here sysem is consistent
k 5k k 4
k k
k
 
 
 
 
 
 

    
   
 
Linear Combination
613
2 479
7347
1 479
by solving above equations
k and
k
which is proven

  
  

Linear Combination
1
2 3
1 1 2 2 3 3
1 2 3
: 2 Express v (6,11,6) as Linear Combination of v (2,1,4),
v (1, 1,3), v (3,2,5).
: 2
- Let v k v k v k v
(6,11,6) k (2,1,4) k (1, 1,3) k (3,2,5)
(6,11,6
n
Ex
Sol
 
  
  
   
1 2 3 1 2 3 1 2 3
1 2 3
1 2 3
1 2 3
) (2k k 3k ) (k k 2k ) (4k 3k 5k )
2k k 3k 6
k 2k 7k 11
5k 7k 7k 7
        
   
   
   
Linear Combination
1
72 4
3 3 3
2 1 3 1
Therefore,
3 2 4 7
2 2 7 12
5 7 7 7
Performing R / 3
1
2 2 7 12
5 7 7 7
Now, performing R 2R and R 5R

 
 
 
  

 
 
 
 
 
  
Linear Combination
72 4
3 3 3
10 13 22
3 3 3
11 1 14
3 3 3
2
72 4
3 3 3
13 11
10 5
11 1 14
3 3 3
11
3 23
1
0
0
Now, R ( 3/10)
1
0 1
0
Now doing R R


 

 
 
 
 
 
 
 
 
 
 
 
 
Linear Combination
1
3
2
3
3
3 2
1
3
306
3 23
1 1 2 11
0 1 6
0 0 4
Now, performing R ( )
1 1 2 11
0 1 6
0 0 1 1
So, we get
k
 
 
  
  
 
  
 
  
  

 
Linear Combination
13 11
2 310 5
1978 23171
2 35 115
306 1978 23171
23 5 115
k k
k and k
Now,
(7,12,7)= (3,2,5) (2, 2,7) (4,6,7)
(7,12,7)=(7,12,7)
Which is proven.
   
  

  

Linear Combination
1 2 3
1 1 2 2 3 3
1 2
5 1
:3 Express the matrix A= as a Linear Combination
1 9
1 1 1 1 2 2
of A , A and A .
0 3 0 2 1 1
:3 Let A=k A k A k A
5 1 1 1 1 1
k k
1 9 0 3 0 2
n
Ex
Sol
 
  
     
            
 
    
         
3
1 2 3 1 2 3
3 1 2 3
2 2
k
1 1
k k 2k k k 2k5 1
k 3k 2k k1 9
  
     
      
          
Linear Combination
1 2 3
1 2 3
3
1 2 3
k k 2k 5
-k k 2k 1
-k 1
3k 2k k 9
The Augmented Matrix will be
1 1 2 5
1 1 2 1
0 0 1 1
3 2 1 9
   
   
  
   

 
 
 
  
 
  
Linear Combination
2 1 4 1
2
Now, performing R R and R 3R
1 1 2 5
0 2 4 6
0 0 1 1
0 1 5 6
Now, doing R / 2
1 1 2 5
0 1 2 3
0 0 1 1
0 1 5 6
  
 
 
 
  
 
    

 
 
 
  
 
    
Linear Combination
1 4
1 2 3
Now, R R
1 1 2 5
0 1 2 3
0 0 1 1
0 0 3 3
The system is Inconsistent. Therefore the given
matrix A is not the linear combination of all three
matrices A , A , A .
 
 
 
 
  
 
   

Linear Combination
2
2
1
2
2
2
3
: 4 Express the polynomial p 9 7 15 as a
Linear Combination of p 2 4
p 1 3
p 3 2 5
Ex x x
x x
x x
x x
   
  
  
  
1 1 2 2 3 3
2 2 2
1 2
2
3
: 4 Let p k k k
9 7 15 k (2 4 ) k (1 3 )
k (3 2 5 )
n
Sol p p p
x x x x x x
x x
  
          
 
Linear Combination
2
1 2 3 1 2 3
2
1 2 3
1 2 3
1 2 3
1 2 3
9 7 15 (2k k 3k ) (k k 2k )
(4k 3k 5k )
by comparison we get,
2k k 3k 9
k k 2k 7
4k 3k 5k 15
now, turning the above equations into
x x x
x
         
 

   
   
   
 an Augmented Matrix:
92 1 3
71 1 2
154 3 5
 
 
 
  
Linear Combination
1 2
2 1 3 1
performing R R
1 1 2 7
2 1 3 9
4 3 5 15
performing R 2R , R 4R
1 1 2 7
0 3 1 5
0 7 3 13
 
   
 
 
  
  
   
 
 
  
Linear Combination
2
51
3 3
3 2
51
3 3
2 4
3 3
performing R / 3
1 1 2 7
0 1
0 7 3 13
now performing R 7R
1 1 2 7
0 1
0 0
Hence, the system is consistent.

   
 
 
  
 
  
 
 
  

Linear Combination
3
3
1 2 3
k 5
2 3 3
2k 4
3 3
3
5 2
2 3 3
2
1
1
k k 2 k 7
k
k 2
k
k 1
k 1 2( 2) 7
k 2
    
  
 
  
 
 
    
  
Linear Combination
2 2 2
2
2 2
Now,
9 7 15 =( 2)(2 4 ) (1)(1 3 )
( 2)(3 2 5 )
9 7 15 = 9 7 15
Which is proven.
x x x x x x
x x
x x x x

        
  
     

Linear Combination
1 2 3
1 1 2 2 3 3
1 2 3
:5 Check whether the following v (6,11,6) as Linear
Combination of v (2,1,4), v (1, 1,3), v (3,2,5).
:5
- Let v k v k v k v
(6,11,6) k (2,1,4) k (1, 1,3) k (3,
n
Ex
Sol

   
  
   
1 2 3 1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
2,5)
(6,11,6) (2k k 3k ) (k k 2k )
(4k 3k 5k )
2k k 3k 6
k k 2k 11
4k 3k 5k 6
      
 
   
   
   
Linear Combination
1 2
2 1 3 1
2 1 3 6
1 1 2 11
4 3 5 6
Now, R R
1 1 2 11
2 1 3 6
4 3 5 6
Now doing R 2R and R 4R
 
 
 
  
 
  
 
 
  
  
Linear Combination
2
161
3 3
3 2
1 1 2 11
0 3 1 16
0 7 3 38
Now, R / ( 3)
1 1 2 11
0 1
0 7 3 38
Now doing R 7R
  
 
  
   
 
  
 
  
   
 
Linear Combination
161
3 3
2 2
3 3
3
3 2
161
3 3
3
1 1 2 11
0 1
0 0
Now, performing R ( )
1 1 2 11
0 1
0 0 1 1
So, we get
k 1
 
 
  
   
 
  
 
  
  

 
Linear Combination
2 1k 5 and k 4
Now,
(6,11,6)=4(3,2,5) ( 5)(2, 2,7) 1(4,6,7)
(6,11,6)=(6,11,6)
Which is proven.
   

   

Span
 
 
1 2 3
1 2 3
The set of all the vectors that are linear combination
of the vectors in the set S= v , v , v ,....., v is
called span of S and denoted by Span S or span
v , v , v ,....., v .
r
r

Span
2
1
2
2 3 2
2
1 2 3 2
1 1 2 2 3 3
2
1 2 3 1
:6 Determine whether the polynomial p 2 ,
p 1 , p 2 span P .
:6
- Choose an arbitary vector b b +b +b P
b=k p k p k p
b +b +b ) k (2
n
Ex x
x x x
Sol
x x
x x
 
    
 
 
  2 2
2 3
2
1 2 3 1 1 3 1 2 3
1 1
1 3 2
1 2 3 3
) k (1 ) k (2 )
b +b b ) (2k ) (2k k ) (2k 3k k )
2k b
2k k b
2k 3k k b
x x x x
x x
    
     
 
  
   
Span
3
1 2 3
Now, matrix will be
2 0 0
2 0 1
2 3 1
det(A)=6 0
Here det(A) 0 therefore matrix is non-Singular
therefore the system is consistent. And so, the
vectors v , v , v span R .

 
 
 
  
 
 
Span 2
1
2 2
2 3 2
2
1 2 3 2
1 1 2 2 3 3
1 2
:7 Determine whether the polynomial p 1 2 ,
p 5 4 , p 2 2 2 span P .
:7
- Choose an arbitary vector b b +b +b P
b=k p k p k p
b +b +
n
Ex x x
x x x x
Sol
x x
x
  
       
 
 
2 2 2
3 1 2
2
3
2
1 2 3 1 2 3 1 2 3
2
1 2 3
1 2
b k (1 2 ) k (5 4 )
k ( 2 2 2 )
b +b +b (k 5k 2k ) ( k k 2k )
(2k 4 k 2k )
k 5k 2k
x x x x x
x x
x x x
x
      
  
      
  
   3 1
1 2 3 2
1 2 3 3
b
k k 2k b
2k 4k 2k b

    
   
Span
1
2
3
1 3
3
2
1
2 1 3 1
Therefore,
2 1 2 4 b
1 0 1 1 b
1 1 0 1 b
Performing R R
1 1 0 1 b
1 0 1 1 b
2 1 2 4 b
Now, performing R R and R 2R

 
 
 
  
 
 
 
 
  
  
Span
3
2 3
1 3
3 2
3
2 3
1 2 3
1 2 3 4 2
1 1 0 1 b
0 1 1 2 b b
0 1 0 2 b 2b
Now, R R
1 1 0 1 b
0 1 1 2 b b
0 0 1 4 b b b
The system is consistent for all choices of b.
Therefore vectors p ,p ,p ,p span P .
 
 
 
   
 
 
 
 
   

Span
2
1
2 2
2 3 2
2
1 2 3 2
1 1 2 2 3 3
1 2
:8 Determine whether the polynomial p 1 2 ,
p 5 4 , p 2 2 2 span P .
:8
- Choose an arbitary vector b b +b +b P
b=k p k p k p
b +b +
n
Ex x x
x x x x
Sol
x x
x
  
       
 
 
2 2 2
3 1 2
2
3
2
1 2 3 1 2 3 1 2 3
2
1 2 3
1 2
b k (1 2 ) k (5 4 )
k ( 2 2 2 )
b +b +b (k 5k 2k ) ( k k 2k )
(2k 4 k 2k )
k 5k 2k
x x x x x
x x
x x x
x
      
  
      
  
   3 1
1 2 3 2
1 2 3 3
b
k k 2k b
2k 4k 2k b

    
   
Span
1 2
Now, matrix will be
1 5 2
1 1 2
2 4 2
det(A)=0
Here det(A)=0. Therefore matrix is Singular
therefore the system is consistent for some choices
of b. And so, the polynomials p , p

 
   
  


3 2, p span P .
Linear Dependence and Linear
Independence
 1 2 3
1 1 2 2 3 3
1
Let S= v , v , v ,...., v be the non-empty set
such that k v k v k v ...... k v 0 (1)
S is called Linearly Independent set if the system
of equation (1) has trivial solutions (means k 0
r
r r

     


2
,
k 0,....., k 0).
S is called Linearly dependent then the system of
equation (1) has non-trivial solution (means at least
one scalar which is non-zero).
r 

Linear Dependence and Linear
Independence
1 2 3
:9 Check whether the following vectors are
Linearly Independent or Linearly Dependent. (4,1, 2),
( 4,10,2), (4,0,1).
:9
- v (4,1, 2), v ( 4,10,2), v (4,0,1)
n
Ex
Sol


    
1 1 2 2 3 3
1 2 3
1 2 3 1 2 1 2 3
1 2 3
1 2
1 2 3
- Let k v k v k v 0
0 k (4,1, 2) k ( 4,10,2) k (4,0,1)
0 (4k 4k 4k ) (k 10k ) ( 2k 2k k )
4k 4k 4k 0
k 10k 0
-2k 2k k 0
  
    
         
   
  
   
Linear Dependence and Linear
Independence
1 2
2 1 3 1
Therefore,
4 4 4 0
1 10 2 0
2 2 1 0
Performing R R
1 10 2 0
4 4 4 0
2 2 1 0
Now, performing R 4R and R 2R

  
 
 
  
 
  
 
 
  
  
Linear Dependence and Linear
Independence
2
3 2
1 1 2 0
0 2 2 0
0 1 1 0
Performing R / ( 2)
1 1 2 0
0 1 1 0
0 1 1 0
Now, performing R 22R
 
 
  
  
 
 
 
 
  
 
Linear Dependence and Linear
Independence
3
11
3
3
11
1 10 2 0
0 1 0
0 0 3 0
Performing R / 3
1 10 2 0
0 1 0
0 0 1 0
Now,
  
 
 
  

  
 
 
  

Linear Dependence and Linear
Independence
1 2 3
3
2 311
3
2
1
1 2 3
k 10k 2k 0
k k 0
k 0
k 0
k 0
Here k , k , k all are of zero values. Therefore
the system of equation has trivial solution.
Therefore it is Linearly Independent.
   
  
 
 
 

Linear Dependence and Linear
Independence
 2 2 2
2
2 2 2
1 2 3
1 1 2 2 3 3
:10 S= 2 , 2 ,2 2 3 Check whether S is
Linearly Independent or Linearly Dependent in P .
:10
- p 2 , p 2 , p 2 3
- Let k p k p k p 0
n
Ex x x x x x x
Sol
x x x x x x
    
      
  
2 2 2
1 2 3
2
1 3 1 2 3 1 2 3
1 3
1 2
1 2 3
0 k (2 ) k ( 2 ) k (2 2 3 )
0 (2k 2k ) (k k 2k ) (k 2k 3k )
2k 2k 0
k 10k 0
k 2k 3k 0
x x x x x x
x x
       
       
  
  
   
Linear Dependence and Linear
Independence
1 2
2 1 3 1
Therefore,
2 0 2 0
1 1 2 0
1 2 3 0
Performing R R
1 1 2 0
2 0 2 0
1 2 3 0
Now, performing R 2R and R R

 
 
 
  
 
 
 
 
  
  
Linear Dependence and Linear
Independence
2
3 2
1 1 2 0
0 2 2 0
0 1 1 0
Performing R / ( 2)
1 1 2 0
0 1 1 0
0 1 1 0
Now, performingR 2R
 
 
  
  
 
 
 
 
  
 
Linear Dependence and Linear
Independence
2 3
1 2 3
3
2
1
1
1
2
3
k k 0
k +k +2k 0
- taking k t 0
k t
k ( t)+2t=0
k t
k 1
k t 1
k 1
Here the system has trivial solution.
Therefore it is Linearly Dependent
  
 
 
  
  
  
   
        
      


Linear Combination, Span And Linearly Independent, Dependent Set

  • 1.
    Linear Combination, Span and LinearlyIndependent and Linearly Dependent -by Dhaval Shukla(141080119050) Abhishek Singh(141080119051) Abhishek Singh(141080119052) Aman Singh(141080119053) Azhar Tai(141080119054) -Group No. 9 -Prof. Ketan Chavda -Mechanical Branch -2nd Semester
  • 2.
    Linear Combination 1 23 r 1 1 2 2 3 3 r i A vector V is called a Linear Combination of vectors v , v , v ,......., v if V can be expressed as v k k k ..... k where k are scalar such that 1 i r rv v v v      
  • 3.
    Linear Combination      .v,....,v,v,vofnCombinatio LinearaisVthenconsistentis1inequationofsystemtheIf2 1k.....kkkv v,.....,v,v,vofnCombinatioLinearaasVExpress1 :followasisv.....,,v,v,v orsgiven vectofnCombinatioLinearacalledisVvectoraIf r321 r332211 r321 r321  rvvvv
  • 4.
    Linear Combination 2 3 2 2 2 1 2 267p 4510p 592pofnCombinatioLinear aas1588ppolynomialtheExpress1: xx xx xx xxEx     1 12 2 3 3 2 2 2 1 2 2 3 :1 Let p k k k 8 8 15 k (2 9 5 ) k (10 5 4 ) k (7 6 2 ) n Sol p p p x x x x x x x x                
  • 5.
    Linear Combination 2 1 23 1 2 3 2 1 2 3 1 2 3 1 2 3 1 2 3 8 8 15 (2k 10k 7k ) (9k 5k 6k ) (5k 4k 2k ) by comparison we get, 2k 10k 7k 8 9k 5k 6k 8 5k 4k 2k 15 now, turning the above equatio x x x x                           ns into an Augmented Matrix: 82 10 7 89 5 6 155 4 2         
  • 6.
    Linear Combination 1 2 13 1 performing R / 2 7 1 5 42 9 5 6 8 5 4 2 15 performing R 9R , R 5R 7 1 5 2 4 51 0 50 28 2 5 31 0 21 2                                    
  • 7.
    Linear Combination 2 7 2 51 14 10025 31 2 3 2 7 2 51 14 100 25 479 169 100 25 1 performing R ( ) 50 1 5 4 0 1 0 21 5 now performing R 21R 1 5 4 0 1 0 0                          
  • 8.
    Linear Combination 100 3 479 7 2 5114 100 25 676 479 7 1 2 32 51 14 2 3100 25 676 3 479 performing R ( ) 1 5 4 0 1 0 0 1 Hence, here sysem is consistent k 5k k 4 k k k                        
  • 9.
    Linear Combination 613 2 479 7347 1479 by solving above equations k and k which is proven        
  • 10.
    Linear Combination 1 2 3 11 2 2 3 3 1 2 3 : 2 Express v (6,11,6) as Linear Combination of v (2,1,4), v (1, 1,3), v (3,2,5). : 2 - Let v k v k v k v (6,11,6) k (2,1,4) k (1, 1,3) k (3,2,5) (6,11,6 n Ex Sol             1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 ) (2k k 3k ) (k k 2k ) (4k 3k 5k ) 2k k 3k 6 k 2k 7k 11 5k 7k 7k 7                     
  • 11.
    Linear Combination 1 72 4 33 3 2 1 3 1 Therefore, 3 2 4 7 2 2 7 12 5 7 7 7 Performing R / 3 1 2 2 7 12 5 7 7 7 Now, performing R 2R and R 5R                        
  • 12.
    Linear Combination 72 4 33 3 10 13 22 3 3 3 11 1 14 3 3 3 2 72 4 3 3 3 13 11 10 5 11 1 14 3 3 3 11 3 23 1 0 0 Now, R ( 3/10) 1 0 1 0 Now doing R R                             
  • 13.
    Linear Combination 1 3 2 3 3 3 2 1 3 306 323 1 1 2 11 0 1 6 0 0 4 Now, performing R ( ) 1 1 2 11 0 1 6 0 0 1 1 So, we get k                          
  • 14.
    Linear Combination 13 11 2310 5 1978 23171 2 35 115 306 1978 23171 23 5 115 k k k and k Now, (7,12,7)= (3,2,5) (2, 2,7) (4,6,7) (7,12,7)=(7,12,7) Which is proven.            
  • 15.
    Linear Combination 1 23 1 1 2 2 3 3 1 2 5 1 :3 Express the matrix A= as a Linear Combination 1 9 1 1 1 1 2 2 of A , A and A . 0 3 0 2 1 1 :3 Let A=k A k A k A 5 1 1 1 1 1 k k 1 9 0 3 0 2 n Ex Sol                                          3 1 2 3 1 2 3 3 1 2 3 2 2 k 1 1 k k 2k k k 2k5 1 k 3k 2k k1 9                           
  • 16.
    Linear Combination 1 23 1 2 3 3 1 2 3 k k 2k 5 -k k 2k 1 -k 1 3k 2k k 9 The Augmented Matrix will be 1 1 2 5 1 1 2 1 0 0 1 1 3 2 1 9                              
  • 17.
    Linear Combination 2 14 1 2 Now, performing R R and R 3R 1 1 2 5 0 2 4 6 0 0 1 1 0 1 5 6 Now, doing R / 2 1 1 2 5 0 1 2 3 0 0 1 1 0 1 5 6                                    
  • 18.
    Linear Combination 1 4 12 3 Now, R R 1 1 2 5 0 1 2 3 0 0 1 1 0 0 3 3 The system is Inconsistent. Therefore the given matrix A is not the linear combination of all three matrices A , A , A .                  
  • 19.
    Linear Combination 2 2 1 2 2 2 3 : 4Express the polynomial p 9 7 15 as a Linear Combination of p 2 4 p 1 3 p 3 2 5 Ex x x x x x x x x              1 1 2 2 3 3 2 2 2 1 2 2 3 : 4 Let p k k k 9 7 15 k (2 4 ) k (1 3 ) k (3 2 5 ) n Sol p p p x x x x x x x x                
  • 20.
    Linear Combination 2 1 23 1 2 3 2 1 2 3 1 2 3 1 2 3 1 2 3 9 7 15 (2k k 3k ) (k k 2k ) (4k 3k 5k ) by comparison we get, 2k k 3k 9 k k 2k 7 4k 3k 5k 15 now, turning the above equations into x x x x                           an Augmented Matrix: 92 1 3 71 1 2 154 3 5         
  • 21.
    Linear Combination 1 2 21 3 1 performing R R 1 1 2 7 2 1 3 9 4 3 5 15 performing R 2R , R 4R 1 1 2 7 0 3 1 5 0 7 3 13                           
  • 22.
    Linear Combination 2 51 3 3 32 51 3 3 2 4 3 3 performing R / 3 1 1 2 7 0 1 0 7 3 13 now performing R 7R 1 1 2 7 0 1 0 0 Hence, the system is consistent.                         
  • 23.
    Linear Combination 3 3 1 23 k 5 2 3 3 2k 4 3 3 3 5 2 2 3 3 2 1 1 k k 2 k 7 k k 2 k k 1 k 1 2( 2) 7 k 2                         
  • 24.
    Linear Combination 2 22 2 2 2 Now, 9 7 15 =( 2)(2 4 ) (1)(1 3 ) ( 2)(3 2 5 ) 9 7 15 = 9 7 15 Which is proven. x x x x x x x x x x x x                    
  • 25.
    Linear Combination 1 23 1 1 2 2 3 3 1 2 3 :5 Check whether the following v (6,11,6) as Linear Combination of v (2,1,4), v (1, 1,3), v (3,2,5). :5 - Let v k v k v k v (6,11,6) k (2,1,4) k (1, 1,3) k (3, n Ex Sol             1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 2,5) (6,11,6) (2k k 3k ) (k k 2k ) (4k 3k 5k ) 2k k 3k 6 k k 2k 11 4k 3k 5k 6                     
  • 26.
    Linear Combination 1 2 21 3 1 2 1 3 6 1 1 2 11 4 3 5 6 Now, R R 1 1 2 11 2 1 3 6 4 3 5 6 Now doing R 2R and R 4R                        
  • 27.
    Linear Combination 2 161 3 3 32 1 1 2 11 0 3 1 16 0 7 3 38 Now, R / ( 3) 1 1 2 11 0 1 0 7 3 38 Now doing R 7R                            
  • 28.
    Linear Combination 161 3 3 22 3 3 3 3 2 161 3 3 3 1 1 2 11 0 1 0 0 Now, performing R ( ) 1 1 2 11 0 1 0 0 1 1 So, we get k 1                           
  • 29.
    Linear Combination 2 1k5 and k 4 Now, (6,11,6)=4(3,2,5) ( 5)(2, 2,7) 1(4,6,7) (6,11,6)=(6,11,6) Which is proven.          
  • 30.
    Span     12 3 1 2 3 The set of all the vectors that are linear combination of the vectors in the set S= v , v , v ,....., v is called span of S and denoted by Span S or span v , v , v ,....., v . r r 
  • 31.
    Span 2 1 2 2 3 2 2 12 3 2 1 1 2 2 3 3 2 1 2 3 1 :6 Determine whether the polynomial p 2 , p 1 , p 2 span P . :6 - Choose an arbitary vector b b +b +b P b=k p k p k p b +b +b ) k (2 n Ex x x x x Sol x x x x              2 2 2 3 2 1 2 3 1 1 3 1 2 3 1 1 1 3 2 1 2 3 3 ) k (1 ) k (2 ) b +b b ) (2k ) (2k k ) (2k 3k k ) 2k b 2k k b 2k 3k k b x x x x x x                    
  • 32.
    Span 3 1 2 3 Now,matrix will be 2 0 0 2 0 1 2 3 1 det(A)=6 0 Here det(A) 0 therefore matrix is non-Singular therefore the system is consistent. And so, the vectors v , v , v span R .              
  • 33.
    Span 2 1 2 2 23 2 2 1 2 3 2 1 1 2 2 3 3 1 2 :7 Determine whether the polynomial p 1 2 , p 5 4 , p 2 2 2 span P . :7 - Choose an arbitary vector b b +b +b P b=k p k p k p b +b + n Ex x x x x x x Sol x x x                2 2 2 3 1 2 2 3 2 1 2 3 1 2 3 1 2 3 2 1 2 3 1 2 b k (1 2 ) k (5 4 ) k ( 2 2 2 ) b +b +b (k 5k 2k ) ( k k 2k ) (2k 4 k 2k ) k 5k 2k x x x x x x x x x x x                        3 1 1 2 3 2 1 2 3 3 b k k 2k b 2k 4k 2k b          
  • 34.
    Span 1 2 3 1 3 3 2 1 2 13 1 Therefore, 2 1 2 4 b 1 0 1 1 b 1 1 0 1 b Performing R R 1 1 0 1 b 1 0 1 1 b 2 1 2 4 b Now, performing R R and R 2R                        
  • 35.
    Span 3 2 3 1 3 32 3 2 3 1 2 3 1 2 3 4 2 1 1 0 1 b 0 1 1 2 b b 0 1 0 2 b 2b Now, R R 1 1 0 1 b 0 1 1 2 b b 0 0 1 4 b b b The system is consistent for all choices of b. Therefore vectors p ,p ,p ,p span P .                       
  • 36.
    Span 2 1 2 2 2 32 2 1 2 3 2 1 1 2 2 3 3 1 2 :8 Determine whether the polynomial p 1 2 , p 5 4 , p 2 2 2 span P . :8 - Choose an arbitary vector b b +b +b P b=k p k p k p b +b + n Ex x x x x x x Sol x x x                2 2 2 3 1 2 2 3 2 1 2 3 1 2 3 1 2 3 2 1 2 3 1 2 b k (1 2 ) k (5 4 ) k ( 2 2 2 ) b +b +b (k 5k 2k ) ( k k 2k ) (2k 4 k 2k ) k 5k 2k x x x x x x x x x x x                        3 1 1 2 3 2 1 2 3 3 b k k 2k b 2k 4k 2k b          
  • 37.
    Span 1 2 Now, matrixwill be 1 5 2 1 1 2 2 4 2 det(A)=0 Here det(A)=0. Therefore matrix is Singular therefore the system is consistent for some choices of b. And so, the polynomials p , p             3 2, p span P .
  • 38.
    Linear Dependence andLinear Independence  1 2 3 1 1 2 2 3 3 1 Let S= v , v , v ,...., v be the non-empty set such that k v k v k v ...... k v 0 (1) S is called Linearly Independent set if the system of equation (1) has trivial solutions (means k 0 r r r          2 , k 0,....., k 0). S is called Linearly dependent then the system of equation (1) has non-trivial solution (means at least one scalar which is non-zero). r  
  • 39.
    Linear Dependence andLinear Independence 1 2 3 :9 Check whether the following vectors are Linearly Independent or Linearly Dependent. (4,1, 2), ( 4,10,2), (4,0,1). :9 - v (4,1, 2), v ( 4,10,2), v (4,0,1) n Ex Sol        1 1 2 2 3 3 1 2 3 1 2 3 1 2 1 2 3 1 2 3 1 2 1 2 3 - Let k v k v k v 0 0 k (4,1, 2) k ( 4,10,2) k (4,0,1) 0 (4k 4k 4k ) (k 10k ) ( 2k 2k k ) 4k 4k 4k 0 k 10k 0 -2k 2k k 0                             
  • 40.
    Linear Dependence andLinear Independence 1 2 2 1 3 1 Therefore, 4 4 4 0 1 10 2 0 2 2 1 0 Performing R R 1 10 2 0 4 4 4 0 2 2 1 0 Now, performing R 4R and R 2R                          
  • 41.
    Linear Dependence andLinear Independence 2 3 2 1 1 2 0 0 2 2 0 0 1 1 0 Performing R / ( 2) 1 1 2 0 0 1 1 0 0 1 1 0 Now, performing R 22R                       
  • 42.
    Linear Dependence andLinear Independence 3 11 3 3 11 1 10 2 0 0 1 0 0 0 3 0 Performing R / 3 1 10 2 0 0 1 0 0 0 1 0 Now,                      
  • 43.
    Linear Dependence andLinear Independence 1 2 3 3 2 311 3 2 1 1 2 3 k 10k 2k 0 k k 0 k 0 k 0 k 0 Here k , k , k all are of zero values. Therefore the system of equation has trivial solution. Therefore it is Linearly Independent.              
  • 44.
    Linear Dependence andLinear Independence  2 2 2 2 2 2 2 1 2 3 1 1 2 2 3 3 :10 S= 2 , 2 ,2 2 3 Check whether S is Linearly Independent or Linearly Dependent in P . :10 - p 2 , p 2 , p 2 3 - Let k p k p k p 0 n Ex x x x x x x Sol x x x x x x                2 2 2 1 2 3 2 1 3 1 2 3 1 2 3 1 3 1 2 1 2 3 0 k (2 ) k ( 2 ) k (2 2 3 ) 0 (2k 2k ) (k k 2k ) (k 2k 3k ) 2k 2k 0 k 10k 0 k 2k 3k 0 x x x x x x x x                          
  • 45.
    Linear Dependence andLinear Independence 1 2 2 1 3 1 Therefore, 2 0 2 0 1 1 2 0 1 2 3 0 Performing R R 1 1 2 0 2 0 2 0 1 2 3 0 Now, performing R 2R and R R                        
  • 46.
    Linear Dependence andLinear Independence 2 3 2 1 1 2 0 0 2 2 0 0 1 1 0 Performing R / ( 2) 1 1 2 0 0 1 1 0 0 1 1 0 Now, performingR 2R                       
  • 47.
    Linear Dependence andLinear Independence 2 3 1 2 3 3 2 1 1 1 2 3 k k 0 k +k +2k 0 - taking k t 0 k t k ( t)+2t=0 k t k 1 k t 1 k 1 Here the system has trivial solution. Therefore it is Linearly Dependent                                     