SlideShare a Scribd company logo
Control Systems (CS)
Dr. K. Hussain
Associate Professor & Head
Dept. of EE, SITCOE
Unit-5:
PID Controllers
Lecture Outline
Introduction
• PID Stands for
– P  Proportional
– I  Integral
– D  Derivative
Introduction
• The usefulness of PID controls lies in their general
applicability to most control systems.
• In particular, when the mathematical model of the plant
is not known and therefore analytical design methods
cannot be used, PID controls prove to be most useful.
• In the field of process control systems, it is well known
that the basic and modified PID control schemes have
proved their usefulness in providing satisfactory control,
although in many given situations they may not provide
optimal control.
Introduction
• It is interesting to note that more than half of the
industrial controllers in use today are PID controllers or
modified PID controllers.
• Because most PID controllers are adjusted on-site, many
different types of tuning rules have been proposed in the
literature.
• Using these tuning rules, delicate and fine tuning of PID
controllers can be made on-site.
6
Four Modes of Controllers
• Each mode of control has specific advantages and
limitations.
• On-Off (Bang Bang) Control
• Proportional (P)
• Proportional plus Integral (PI)
• Proportional plus Derivative (PD)
• Proportional plus Integral plus Derivative (PID)
On-Off Control
• This is the simplest form of control.
Set point
Error
Output
8
Proportional Control (P)
• In proportional mode, there is a continuous linear relation
between value of the controlled variable and position of the
final control element.
• Output of proportional controller is
• The transfer function can be written as
-
9
Proportional Controllers (P)
• As the gain is increased the system responds faster to
changes in set-point but becomes progressively
underdamped and eventually unstable.
10
Proportional Plus Integral Controllers (PI)
• Integral control describes a controller in which the output
rate of change is dependent on the magnitude of the
input.
• Specifically, a smaller amplitude input causes a slower
rate of change of the output.
11
Proportional Plus Integral Controllers (PI)
• The major advantage of integral controllers is that they have
the unique ability to return the controlled variable back to the
exact set point following a disturbance.
• Disadvantages of the integral control mode are that it
responds relatively slowly to an error signal and that it can
initially allow a large deviation at the instant the error is
produced.
• This can lead to system instability and cyclic operation. For
this reason, the integral control mode is not normally used
alone, but is combined with another control mode.
12
Proportional Plus Integral Control (PI)
-
+
+
13
Proportional Plus Integral Control (PI)
• The transfer function can be written as
14
Proportional Plus derivative Control (PD)
-
+
+
15
Proportional Plus derivative Control (PD)
• The transfer function can be written as
16
Proportional Plus derivative Control (PD)
• The stability and overshoot problems that arise when a
proportional controller is used at high gain can be mitigated by
adding a term proportional to the time-derivative of the error signal.
The value of the damping can be adjusted to achieve a critically
damped response.
17
Proportional Plus derivative Control (PD)
• The higher the error signal rate of change, the sooner the final
control element is positioned to the desired value.
• The added derivative action reduces initial overshoot of the
measured variable, and therefore aids in stabilizing the process
sooner.
• This control mode is called proportional plus derivative (PD) control
because the derivative section responds to the rate of change of the
error signal
18
Proportional Plus Integral Plus Derivative Control (PID)
-
+
+
+
19
Proportional Plus Integral Plus Derivative Control (PID)
Proportional Plus Integral Plus Derivative Control (PID)
• Although PD control deals neatly with the overshoot and ringing
problems associated with proportional control it does not cure the
problem with the steady-state error. Fortunately it is possible to
eliminate this while using relatively low gain by adding an integral
term to the control function which becomes
20
P – controller
The transfer function of this controller is KP.
The main disadvantage in P – controllers is that as KP value
increases, decreases & hence overshoot increases.
As overshoot increases system stability decreases.
I – controller
The transfer function of this controller is Ki/s.
It introduces a pole at origin and hence type is increased and
as type increases, the SS error decrease but system stability
is affected.
D – controller
It’s purpose is to improve the stability.
The transfer function of this controller is sKD.
It introduces a zero at origin so system type is decreased but
steady state error increases.
Effect of P,I,PI,PD & PID Controller on systems
Effect of P,I,PI,PD and PID on system
• PI – controller
• It’s purpose SS error without affection stability.
• It adds pole at origin, so type increases & SS error decreases.
• It adds a zero in LHP, so stability is not affected.
• Effects:
• o Improves damping and reduces maximum overshoot.
• o Increases rise time.
• o Decreases BW.
• o Improves Gain Margin, Phase margin & Mr.
• o Filter out high frequency noise.
PD controller
Its purpose is to improve stability without affecting stability.
Transfer function: KP+sKD
It adds a zero in LHP, so stability improved.
Effects:
o Improves damping and maximum overshoot.
o Reduces rise time & setting time.
o Increases BW.
o Improves GM, PM, Mr.
o May attenuate high frequency noise.
PID controller
Its purpose is to improve stability as well as to decrease ess.
o If adds a pole at origin which increases type & hence
steady state error decreases.
o If adds 2 zeroes in LHP, one finite zero to avoid effect on
stability & other zero to improve stability of system.
CL RESPONSE RISE TIME OVERSHOOT SETTLING TIME S-S ERROR
Kp Decrease Increase Small Change Decrease
Ki Decrease Increase Increase Eliminate
Kd
Small
Change
Decrease Decrease
Small
Change
The Characteristics of P, I, and D controllers

More Related Content

What's hot

Pid controller
Pid controllerPid controller
Pid controller
Anjushree Sukumaran
 
PID Controller and its design
PID Controller and its designPID Controller and its design
PID Controller and its design
KonirDom1
 
PID Control System
PID Control System PID Control System
PID Control System
Asheesh Kumar Shahi
 
Introduction to Control System : Open Loop System and Close Loop System
Introduction to Control System : Open Loop System and Close Loop SystemIntroduction to Control System : Open Loop System and Close Loop System
Introduction to Control System : Open Loop System and Close Loop System
Kazim Marfatiya
 
Ch5 transient and steady state response analyses(control)
Ch5  transient and steady state response analyses(control)Ch5  transient and steady state response analyses(control)
Ch5 transient and steady state response analyses(control)
Elaf A.Saeed
 
Stability ppt
Stability pptStability ppt
Stability ppt
SONALIBARAL1
 
Proportional integral and derivative PID controller
Proportional integral and derivative PID controller Proportional integral and derivative PID controller
Proportional integral and derivative PID controller
Mostafa Ragab
 
Stability of Control System
Stability of Control SystemStability of Control System
Stability of Control System
vaibhav jindal
 
P, PI AND PID CONTROLLER
P, PI AND PID CONTROLLERP, PI AND PID CONTROLLER
P, PI AND PID CONTROLLER
karan sati
 
Control Systems Basics
Control Systems BasicsControl Systems Basics
Control Systems Basics
John Todora
 
NONLINEAR CONTROL SYSTEM (Phase plane & Phase Trajectory Method)
NONLINEAR CONTROL SYSTEM(Phase plane & Phase Trajectory Method)NONLINEAR CONTROL SYSTEM(Phase plane & Phase Trajectory Method)
NONLINEAR CONTROL SYSTEM (Phase plane & Phase Trajectory Method)
Niraj Solanki
 
4470838.ppt
4470838.ppt4470838.ppt
4470838.ppt
MuhammadMubeen58
 
Control system lectures
Control system lectures Control system lectures
Control system lectures
Naqqash Sajid
 
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
Amr E. Mohamed
 
Open Loop and Closed Loop Control System.pptx
Open Loop and Closed Loop Control System.pptxOpen Loop and Closed Loop Control System.pptx
Open Loop and Closed Loop Control System.pptx
Delower Sumon
 
Lecture 2 transfer-function
Lecture 2 transfer-functionLecture 2 transfer-function
Lecture 2 transfer-function
Saifullah Memon
 
Simulation and Comparison of P, PI, PID Controllers on MATLAB/ Simulink
Simulation and Comparison of P, PI, PID Controllers on MATLAB/ SimulinkSimulation and Comparison of P, PI, PID Controllers on MATLAB/ Simulink
Simulation and Comparison of P, PI, PID Controllers on MATLAB/ Simulink
HarshKumar649
 
Control systems engineering
Control systems engineeringControl systems engineering
Control systems engineering
Anisur Rahman
 
PID Controllers
PID ControllersPID Controllers
PID Controllers
Ankit Basera
 
Basic elements in control systems
Basic elements in control systemsBasic elements in control systems
Basic elements in control systems
SatheeshCS2
 

What's hot (20)

Pid controller
Pid controllerPid controller
Pid controller
 
PID Controller and its design
PID Controller and its designPID Controller and its design
PID Controller and its design
 
PID Control System
PID Control System PID Control System
PID Control System
 
Introduction to Control System : Open Loop System and Close Loop System
Introduction to Control System : Open Loop System and Close Loop SystemIntroduction to Control System : Open Loop System and Close Loop System
Introduction to Control System : Open Loop System and Close Loop System
 
Ch5 transient and steady state response analyses(control)
Ch5  transient and steady state response analyses(control)Ch5  transient and steady state response analyses(control)
Ch5 transient and steady state response analyses(control)
 
Stability ppt
Stability pptStability ppt
Stability ppt
 
Proportional integral and derivative PID controller
Proportional integral and derivative PID controller Proportional integral and derivative PID controller
Proportional integral and derivative PID controller
 
Stability of Control System
Stability of Control SystemStability of Control System
Stability of Control System
 
P, PI AND PID CONTROLLER
P, PI AND PID CONTROLLERP, PI AND PID CONTROLLER
P, PI AND PID CONTROLLER
 
Control Systems Basics
Control Systems BasicsControl Systems Basics
Control Systems Basics
 
NONLINEAR CONTROL SYSTEM (Phase plane & Phase Trajectory Method)
NONLINEAR CONTROL SYSTEM(Phase plane & Phase Trajectory Method)NONLINEAR CONTROL SYSTEM(Phase plane & Phase Trajectory Method)
NONLINEAR CONTROL SYSTEM (Phase plane & Phase Trajectory Method)
 
4470838.ppt
4470838.ppt4470838.ppt
4470838.ppt
 
Control system lectures
Control system lectures Control system lectures
Control system lectures
 
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
 
Open Loop and Closed Loop Control System.pptx
Open Loop and Closed Loop Control System.pptxOpen Loop and Closed Loop Control System.pptx
Open Loop and Closed Loop Control System.pptx
 
Lecture 2 transfer-function
Lecture 2 transfer-functionLecture 2 transfer-function
Lecture 2 transfer-function
 
Simulation and Comparison of P, PI, PID Controllers on MATLAB/ Simulink
Simulation and Comparison of P, PI, PID Controllers on MATLAB/ SimulinkSimulation and Comparison of P, PI, PID Controllers on MATLAB/ Simulink
Simulation and Comparison of P, PI, PID Controllers on MATLAB/ Simulink
 
Control systems engineering
Control systems engineeringControl systems engineering
Control systems engineering
 
PID Controllers
PID ControllersPID Controllers
PID Controllers
 
Basic elements in control systems
Basic elements in control systemsBasic elements in control systems
Basic elements in control systems
 

Similar to Pid controllers

Screenshot 2021-02-23 at 2.46.02 PM.pdf
Screenshot 2021-02-23 at 2.46.02 PM.pdfScreenshot 2021-02-23 at 2.46.02 PM.pdf
Screenshot 2021-02-23 at 2.46.02 PM.pdf
muhammadsubhan626458
 
control technology of bachlor of engineering technology
control technology of bachlor of engineering technologycontrol technology of bachlor of engineering technology
control technology of bachlor of engineering technology
engineerfazi245
 
Use of different types of Controllers in Chemical Industry.pptx
Use of different types of Controllers in Chemical Industry.pptxUse of different types of Controllers in Chemical Industry.pptx
Use of different types of Controllers in Chemical Industry.pptx
KetanKulkarni49
 
Pid controller bp ganthia
Pid controller bp ganthiaPid controller bp ganthia
Pid controller bp ganthia
Dr. Bibhu Prasad Ganthia
 
PID controller, P, I and D control Comparison PI, PD and PID Controller P, I,...
PID controller, P, I and D control Comparison PI, PD and PID Controller P, I,...PID controller, P, I and D control Comparison PI, PD and PID Controller P, I,...
PID controller, P, I and D control Comparison PI, PD and PID Controller P, I,...
Waqas Afzal
 
Pid control by Adarsh singh
Pid control  by Adarsh singhPid control  by Adarsh singh
Pid control by Adarsh singh
Adarsh Singh
 
P I D CONTOLLER
P I D CONTOLLERP I D CONTOLLER
P I D CONTOLLER
hammama syed
 
p i d controller
p i d controllerp i d controller
p i d controller
hammama syed
 
Mechatroincs universitty for students .ppt
Mechatroincs universitty for students .pptMechatroincs universitty for students .ppt
Mechatroincs universitty for students .ppt
mohamed abd elrazek
 
Mechatroincs universitty for students .ppt
Mechatroincs universitty for students .pptMechatroincs universitty for students .ppt
Mechatroincs universitty for students .ppt
mohamed abd elrazek
 
Pid controllers
Pid controllersPid controllers
Pid controllers
Abhishek Mehta
 
Basics On Process Control and PID's.pdf
Basics On Process Control and PID's.pdfBasics On Process Control and PID's.pdf
Basics On Process Control and PID's.pdf
boyrindrawan1
 
Controller tuning.pptx
Controller tuning.pptxController tuning.pptx
Controller tuning.pptx
SuvenduMondal12
 
UNIT-V.ppt
UNIT-V.pptUNIT-V.ppt
Tuning of pid controller
Tuning of pid controllerTuning of pid controller
Tuning of pid controller
Subhankar Sau
 
Week 14 pid may 24 2016 pe 3032
Week  14 pid  may 24 2016 pe 3032Week  14 pid  may 24 2016 pe 3032
Week 14 pid may 24 2016 pe 3032
Charlton Inao
 
Paper id 21201482
Paper id 21201482Paper id 21201482
Paper id 21201482
IJRAT
 
Control system
Control systemControl system
Control system
Abdul Sattar
 
Meeting w12 chapter 4 part 2
Meeting w12   chapter 4 part 2Meeting w12   chapter 4 part 2
Meeting w12 chapter 4 part 2
Hattori Sidek
 
Pid controller bp ganthia
Pid controller bp ganthiaPid controller bp ganthia
Pid controller bp ganthia
Dr. Bibhu Prasad Ganthia
 

Similar to Pid controllers (20)

Screenshot 2021-02-23 at 2.46.02 PM.pdf
Screenshot 2021-02-23 at 2.46.02 PM.pdfScreenshot 2021-02-23 at 2.46.02 PM.pdf
Screenshot 2021-02-23 at 2.46.02 PM.pdf
 
control technology of bachlor of engineering technology
control technology of bachlor of engineering technologycontrol technology of bachlor of engineering technology
control technology of bachlor of engineering technology
 
Use of different types of Controllers in Chemical Industry.pptx
Use of different types of Controllers in Chemical Industry.pptxUse of different types of Controllers in Chemical Industry.pptx
Use of different types of Controllers in Chemical Industry.pptx
 
Pid controller bp ganthia
Pid controller bp ganthiaPid controller bp ganthia
Pid controller bp ganthia
 
PID controller, P, I and D control Comparison PI, PD and PID Controller P, I,...
PID controller, P, I and D control Comparison PI, PD and PID Controller P, I,...PID controller, P, I and D control Comparison PI, PD and PID Controller P, I,...
PID controller, P, I and D control Comparison PI, PD and PID Controller P, I,...
 
Pid control by Adarsh singh
Pid control  by Adarsh singhPid control  by Adarsh singh
Pid control by Adarsh singh
 
P I D CONTOLLER
P I D CONTOLLERP I D CONTOLLER
P I D CONTOLLER
 
p i d controller
p i d controllerp i d controller
p i d controller
 
Mechatroincs universitty for students .ppt
Mechatroincs universitty for students .pptMechatroincs universitty for students .ppt
Mechatroincs universitty for students .ppt
 
Mechatroincs universitty for students .ppt
Mechatroincs universitty for students .pptMechatroincs universitty for students .ppt
Mechatroincs universitty for students .ppt
 
Pid controllers
Pid controllersPid controllers
Pid controllers
 
Basics On Process Control and PID's.pdf
Basics On Process Control and PID's.pdfBasics On Process Control and PID's.pdf
Basics On Process Control and PID's.pdf
 
Controller tuning.pptx
Controller tuning.pptxController tuning.pptx
Controller tuning.pptx
 
UNIT-V.ppt
UNIT-V.pptUNIT-V.ppt
UNIT-V.ppt
 
Tuning of pid controller
Tuning of pid controllerTuning of pid controller
Tuning of pid controller
 
Week 14 pid may 24 2016 pe 3032
Week  14 pid  may 24 2016 pe 3032Week  14 pid  may 24 2016 pe 3032
Week 14 pid may 24 2016 pe 3032
 
Paper id 21201482
Paper id 21201482Paper id 21201482
Paper id 21201482
 
Control system
Control systemControl system
Control system
 
Meeting w12 chapter 4 part 2
Meeting w12   chapter 4 part 2Meeting w12   chapter 4 part 2
Meeting w12 chapter 4 part 2
 
Pid controller bp ganthia
Pid controller bp ganthiaPid controller bp ganthia
Pid controller bp ganthia
 

More from Hussain K

NA-Duality& Dual Networks.pptx
NA-Duality& Dual Networks.pptxNA-Duality& Dual Networks.pptx
NA-Duality& Dual Networks.pptx
Hussain K
 
Tellegen’s-Substitution-Reciprocity-Theorem.ppt
Tellegen’s-Substitution-Reciprocity-Theorem.pptTellegen’s-Substitution-Reciprocity-Theorem.ppt
Tellegen’s-Substitution-Reciprocity-Theorem.ppt
Hussain K
 
NAS-Unit-5_Two Port Networks
NAS-Unit-5_Two Port NetworksNAS-Unit-5_Two Port Networks
NAS-Unit-5_Two Port Networks
Hussain K
 
NAS-Ch4-Application of Laplace Transform
NAS-Ch4-Application of Laplace TransformNAS-Ch4-Application of Laplace Transform
NAS-Ch4-Application of Laplace Transform
Hussain K
 
NAS-Ch3-Solutions of Equations
NAS-Ch3-Solutions of EquationsNAS-Ch3-Solutions of Equations
NAS-Ch3-Solutions of Equations
Hussain K
 
NAS-Ch2-Network Equations
NAS-Ch2-Network EquationsNAS-Ch2-Network Equations
NAS-Ch2-Network Equations
Hussain K
 
NAS-Ch2-Network-Theorems
NAS-Ch2-Network-TheoremsNAS-Ch2-Network-Theorems
NAS-Ch2-Network-Theorems
Hussain K
 
NAS-Ch1-Part1-Circuit Elements
NAS-Ch1-Part1-Circuit ElementsNAS-Ch1-Part1-Circuit Elements
NAS-Ch1-Part1-Circuit Elements
Hussain K
 
Bode Plots
Bode Plots Bode Plots
Bode Plots
Hussain K
 
Nyquist Stability Criterion
Nyquist  Stability CriterionNyquist  Stability Criterion
Nyquist Stability Criterion
Hussain K
 
Polar Plot
Polar PlotPolar Plot
Polar Plot
Hussain K
 
Frequency Response Analysis
Frequency Response AnalysisFrequency Response Analysis
Frequency Response Analysis
Hussain K
 
Root Locus Plot
Root Locus Plot Root Locus Plot
Root Locus Plot
Hussain K
 
Stabiltiy & R-H Ccriterion
Stabiltiy & R-H CcriterionStabiltiy & R-H Ccriterion
Stabiltiy & R-H Ccriterion
Hussain K
 
Control systems formula book
Control systems formula bookControl systems formula book
Control systems formula book
Hussain K
 
Time domain analysis
Time domain analysisTime domain analysis
Time domain analysis
Hussain K
 
STate Space Analysis
STate Space AnalysisSTate Space Analysis
STate Space Analysis
Hussain K
 
Block diagrams and signal flow graphs
Block diagrams and signal flow graphsBlock diagrams and signal flow graphs
Block diagrams and signal flow graphs
Hussain K
 

More from Hussain K (18)

NA-Duality& Dual Networks.pptx
NA-Duality& Dual Networks.pptxNA-Duality& Dual Networks.pptx
NA-Duality& Dual Networks.pptx
 
Tellegen’s-Substitution-Reciprocity-Theorem.ppt
Tellegen’s-Substitution-Reciprocity-Theorem.pptTellegen’s-Substitution-Reciprocity-Theorem.ppt
Tellegen’s-Substitution-Reciprocity-Theorem.ppt
 
NAS-Unit-5_Two Port Networks
NAS-Unit-5_Two Port NetworksNAS-Unit-5_Two Port Networks
NAS-Unit-5_Two Port Networks
 
NAS-Ch4-Application of Laplace Transform
NAS-Ch4-Application of Laplace TransformNAS-Ch4-Application of Laplace Transform
NAS-Ch4-Application of Laplace Transform
 
NAS-Ch3-Solutions of Equations
NAS-Ch3-Solutions of EquationsNAS-Ch3-Solutions of Equations
NAS-Ch3-Solutions of Equations
 
NAS-Ch2-Network Equations
NAS-Ch2-Network EquationsNAS-Ch2-Network Equations
NAS-Ch2-Network Equations
 
NAS-Ch2-Network-Theorems
NAS-Ch2-Network-TheoremsNAS-Ch2-Network-Theorems
NAS-Ch2-Network-Theorems
 
NAS-Ch1-Part1-Circuit Elements
NAS-Ch1-Part1-Circuit ElementsNAS-Ch1-Part1-Circuit Elements
NAS-Ch1-Part1-Circuit Elements
 
Bode Plots
Bode Plots Bode Plots
Bode Plots
 
Nyquist Stability Criterion
Nyquist  Stability CriterionNyquist  Stability Criterion
Nyquist Stability Criterion
 
Polar Plot
Polar PlotPolar Plot
Polar Plot
 
Frequency Response Analysis
Frequency Response AnalysisFrequency Response Analysis
Frequency Response Analysis
 
Root Locus Plot
Root Locus Plot Root Locus Plot
Root Locus Plot
 
Stabiltiy & R-H Ccriterion
Stabiltiy & R-H CcriterionStabiltiy & R-H Ccriterion
Stabiltiy & R-H Ccriterion
 
Control systems formula book
Control systems formula bookControl systems formula book
Control systems formula book
 
Time domain analysis
Time domain analysisTime domain analysis
Time domain analysis
 
STate Space Analysis
STate Space AnalysisSTate Space Analysis
STate Space Analysis
 
Block diagrams and signal flow graphs
Block diagrams and signal flow graphsBlock diagrams and signal flow graphs
Block diagrams and signal flow graphs
 

Recently uploaded

4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
Gino153088
 
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
nedcocy
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
Anant Corporation
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
ijaia
 
Zener Diode and its V-I Characteristics and Applications
Zener Diode and its V-I Characteristics and ApplicationsZener Diode and its V-I Characteristics and Applications
Zener Diode and its V-I Characteristics and Applications
Shiny Christobel
 
SCALING OF MOS CIRCUITS m .pptx
SCALING OF MOS CIRCUITS m                 .pptxSCALING OF MOS CIRCUITS m                 .pptx
SCALING OF MOS CIRCUITS m .pptx
harshapolam10
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
Atif Razi
 
An Introduction to the Compiler Designss
An Introduction to the Compiler DesignssAn Introduction to the Compiler Designss
An Introduction to the Compiler Designss
ElakkiaU
 
Accident detection system project report.pdf
Accident detection system project report.pdfAccident detection system project report.pdf
Accident detection system project report.pdf
Kamal Acharya
 
smart pill dispenser is designed to improve medication adherence and safety f...
smart pill dispenser is designed to improve medication adherence and safety f...smart pill dispenser is designed to improve medication adherence and safety f...
smart pill dispenser is designed to improve medication adherence and safety f...
um7474492
 
Height and depth gauge linear metrology.pdf
Height and depth gauge linear metrology.pdfHeight and depth gauge linear metrology.pdf
Height and depth gauge linear metrology.pdf
q30122000
 
Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
Divyanshu
 
Data Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason WebinarData Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason Webinar
UReason
 
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
ydzowc
 
Digital Twins Computer Networking Paper Presentation.pptx
Digital Twins Computer Networking Paper Presentation.pptxDigital Twins Computer Networking Paper Presentation.pptx
Digital Twins Computer Networking Paper Presentation.pptx
aryanpankaj78
 
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
MadhavJungKarki
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Sinan KOZAK
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
VANDANAMOHANGOUDA
 
Blood finder application project report (1).pdf
Blood finder application project report (1).pdfBlood finder application project report (1).pdf
Blood finder application project report (1).pdf
Kamal Acharya
 
Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...
Prakhyath Rai
 

Recently uploaded (20)

4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
 
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
 
Zener Diode and its V-I Characteristics and Applications
Zener Diode and its V-I Characteristics and ApplicationsZener Diode and its V-I Characteristics and Applications
Zener Diode and its V-I Characteristics and Applications
 
SCALING OF MOS CIRCUITS m .pptx
SCALING OF MOS CIRCUITS m                 .pptxSCALING OF MOS CIRCUITS m                 .pptx
SCALING OF MOS CIRCUITS m .pptx
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
 
An Introduction to the Compiler Designss
An Introduction to the Compiler DesignssAn Introduction to the Compiler Designss
An Introduction to the Compiler Designss
 
Accident detection system project report.pdf
Accident detection system project report.pdfAccident detection system project report.pdf
Accident detection system project report.pdf
 
smart pill dispenser is designed to improve medication adherence and safety f...
smart pill dispenser is designed to improve medication adherence and safety f...smart pill dispenser is designed to improve medication adherence and safety f...
smart pill dispenser is designed to improve medication adherence and safety f...
 
Height and depth gauge linear metrology.pdf
Height and depth gauge linear metrology.pdfHeight and depth gauge linear metrology.pdf
Height and depth gauge linear metrology.pdf
 
Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
 
Data Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason WebinarData Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason Webinar
 
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
 
Digital Twins Computer Networking Paper Presentation.pptx
Digital Twins Computer Networking Paper Presentation.pptxDigital Twins Computer Networking Paper Presentation.pptx
Digital Twins Computer Networking Paper Presentation.pptx
 
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
 
Blood finder application project report (1).pdf
Blood finder application project report (1).pdfBlood finder application project report (1).pdf
Blood finder application project report (1).pdf
 
Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...
 

Pid controllers

  • 1. Control Systems (CS) Dr. K. Hussain Associate Professor & Head Dept. of EE, SITCOE Unit-5: PID Controllers
  • 3. Introduction • PID Stands for – P  Proportional – I  Integral – D  Derivative
  • 4. Introduction • The usefulness of PID controls lies in their general applicability to most control systems. • In particular, when the mathematical model of the plant is not known and therefore analytical design methods cannot be used, PID controls prove to be most useful. • In the field of process control systems, it is well known that the basic and modified PID control schemes have proved their usefulness in providing satisfactory control, although in many given situations they may not provide optimal control.
  • 5. Introduction • It is interesting to note that more than half of the industrial controllers in use today are PID controllers or modified PID controllers. • Because most PID controllers are adjusted on-site, many different types of tuning rules have been proposed in the literature. • Using these tuning rules, delicate and fine tuning of PID controllers can be made on-site.
  • 6. 6 Four Modes of Controllers • Each mode of control has specific advantages and limitations. • On-Off (Bang Bang) Control • Proportional (P) • Proportional plus Integral (PI) • Proportional plus Derivative (PD) • Proportional plus Integral plus Derivative (PID)
  • 7. On-Off Control • This is the simplest form of control. Set point Error Output
  • 8. 8 Proportional Control (P) • In proportional mode, there is a continuous linear relation between value of the controlled variable and position of the final control element. • Output of proportional controller is • The transfer function can be written as -
  • 9. 9 Proportional Controllers (P) • As the gain is increased the system responds faster to changes in set-point but becomes progressively underdamped and eventually unstable.
  • 10. 10 Proportional Plus Integral Controllers (PI) • Integral control describes a controller in which the output rate of change is dependent on the magnitude of the input. • Specifically, a smaller amplitude input causes a slower rate of change of the output.
  • 11. 11 Proportional Plus Integral Controllers (PI) • The major advantage of integral controllers is that they have the unique ability to return the controlled variable back to the exact set point following a disturbance. • Disadvantages of the integral control mode are that it responds relatively slowly to an error signal and that it can initially allow a large deviation at the instant the error is produced. • This can lead to system instability and cyclic operation. For this reason, the integral control mode is not normally used alone, but is combined with another control mode.
  • 12. 12 Proportional Plus Integral Control (PI) - + +
  • 13. 13 Proportional Plus Integral Control (PI) • The transfer function can be written as
  • 14. 14 Proportional Plus derivative Control (PD) - + +
  • 15. 15 Proportional Plus derivative Control (PD) • The transfer function can be written as
  • 16. 16 Proportional Plus derivative Control (PD) • The stability and overshoot problems that arise when a proportional controller is used at high gain can be mitigated by adding a term proportional to the time-derivative of the error signal. The value of the damping can be adjusted to achieve a critically damped response.
  • 17. 17 Proportional Plus derivative Control (PD) • The higher the error signal rate of change, the sooner the final control element is positioned to the desired value. • The added derivative action reduces initial overshoot of the measured variable, and therefore aids in stabilizing the process sooner. • This control mode is called proportional plus derivative (PD) control because the derivative section responds to the rate of change of the error signal
  • 18. 18 Proportional Plus Integral Plus Derivative Control (PID) - + + +
  • 19. 19 Proportional Plus Integral Plus Derivative Control (PID)
  • 20. Proportional Plus Integral Plus Derivative Control (PID) • Although PD control deals neatly with the overshoot and ringing problems associated with proportional control it does not cure the problem with the steady-state error. Fortunately it is possible to eliminate this while using relatively low gain by adding an integral term to the control function which becomes 20
  • 21. P – controller The transfer function of this controller is KP. The main disadvantage in P – controllers is that as KP value increases, decreases & hence overshoot increases. As overshoot increases system stability decreases. I – controller The transfer function of this controller is Ki/s. It introduces a pole at origin and hence type is increased and as type increases, the SS error decrease but system stability is affected. D – controller It’s purpose is to improve the stability. The transfer function of this controller is sKD. It introduces a zero at origin so system type is decreased but steady state error increases. Effect of P,I,PI,PD & PID Controller on systems
  • 22. Effect of P,I,PI,PD and PID on system • PI – controller • It’s purpose SS error without affection stability. • It adds pole at origin, so type increases & SS error decreases. • It adds a zero in LHP, so stability is not affected. • Effects: • o Improves damping and reduces maximum overshoot. • o Increases rise time. • o Decreases BW. • o Improves Gain Margin, Phase margin & Mr. • o Filter out high frequency noise.
  • 23. PD controller Its purpose is to improve stability without affecting stability. Transfer function: KP+sKD It adds a zero in LHP, so stability improved. Effects: o Improves damping and maximum overshoot. o Reduces rise time & setting time. o Increases BW. o Improves GM, PM, Mr. o May attenuate high frequency noise. PID controller Its purpose is to improve stability as well as to decrease ess. o If adds a pole at origin which increases type & hence steady state error decreases. o If adds 2 zeroes in LHP, one finite zero to avoid effect on stability & other zero to improve stability of system.
  • 24. CL RESPONSE RISE TIME OVERSHOOT SETTLING TIME S-S ERROR Kp Decrease Increase Small Change Decrease Ki Decrease Increase Increase Eliminate Kd Small Change Decrease Decrease Small Change The Characteristics of P, I, and D controllers