SlideShare a Scribd company logo
1 of 64
Dr. K Hussain
Associate Professor and Head
Dept. of Electrical Engineering
SITCOE
Advantages of State Space Approach
Classical/Transfer function
Approach
State space approach/Modern
Control Approach
 Transfer Function Approach
 Linear Time Invariant System,
SISO
 Laplace Transform, Frequency
domain
 Only Input-output Description:
Less Detail Description on System
Dynamics
 Doesn’t take all ICs
 Taking specific inputs like step,
ramp and parabolic etc…
 State Variable Approach
 Linear Time Varying, Nonlinear,
Time Invariant, MIMO
 Time domain
 Detailed description of Internal
behaviour in addition to I-O
properties
 Consider all ICs
 Taking all inputs
2
CLASSICAL APPROACH (TRANSFER FUNCTION)
 The classical approach or frequency domain
technique is based on converting a system’s
differential equation to a transfer function.
 It relates a representation of the output to a
representation of the input.
 It can be applied only to linear, time-invariant
systems.
 It rapidly provides stability and transient response
information.
3
 The state-space approach (also referred to as the modern, or
time-domain, approach) is a unified method for modeling,
analyzing, and designing a wide range of systems.
 The state-space approach can be used to represent nonlinear
systems. Also, it can handle, conveniently, systems with
nonzero initial conditions and time varying.
 The state-space approach is also attractive because of the
availability of numerous state-space software package for the
personal computer.
MODERN APPROACH (STATE-SPACE)
4
MODERN APPROACH (STATE-SPACE)
 It can be used to model and analyze nonlinear
(backlash, saturation), time-varying (missiles with
varying fuel levels), multi-input multi-output
systems (i.e., an airplane) with nonzero initial
conditions.
 But it is not as intuitive as the classical approach.
The designer has to engage in several calculations
before the physical interpretation of the model is
apparent.
5
STATE-SPACE REPRESENTATION
 Select a particular subset of all possible system
variables and call them state variables.
 For an nth-order system, write n simultaneous
first-order differential equations in terms of state
variables.
 If we know the initial conditions of all state
variables at t0 and the system input for tt0, we can
solve the simultaneous differential equations for
the state variables for tt0.
6
Concept of State Variables
 State: The state of a dynamic system is the smallest set of
variables (called state variables) so that the knowledge of
these variables at t = t0, together with the knowledge of the
input for t  t0, determines the behavior of the system for any
time t  t0.
 State Variables: The state variables of a dynamic system are
the variables making up the smallest set of variables that
determine the state of the dynamic system.
 State Vector: If n state variables are needed to describe the
behavior of a given system, then the n state variables can be
considered the n components of a vector x. Such vector is
called a state vector.
 State Space: The n-dimensional space whose coordinates
axes consist of the x1 axis, x2 axis, .., xn axis, where x1, x2, .., xn
are state variables, is called a state space.
7
Block Diagram Representation of Continuous
Time Control System in State space:
8
Time Varying/Invariant Systems
9
Time Varying System:
Time Invariant System:
State & Output Equation:
Matrices/Vectors
10
A(t)= State/System Matrix
B(t)= Input Matrix
C(t)=Output Matrix
D(t)=Direct Transmission Matrix
The general form of state and output equations for a linear,
time-invariant system can be written as
Du+Cx=yBu+Ax=x
Where x is the n x 1 state vector,
u is r x 1 input vector,
y is the m x 1 output vector,
A is nxn System Matrix,
B is nxr Input Matrix,
C is mxn Output Matrix and
D is mxr Transition Matrix. 11
RLC Circuit
12
13
EXAMPLE:
+ i(t)
Lv(t)
R
L
di
dt
Ri v t
v t Ri t
 

( )
( ) ( ) ( )
(state equation)
Output equation
tLRtLR
L
R
L
R
eie
R
ti
s
i
ssR
sI
sVissIL
)/()/(
)0()1(
1
)(
)0(111
)(
)()]0()([












Assuming that v(t) is a unit step and knowing i(0), taking the LT of the state
equation
14
Writing the equations in matrix-vector form


i
v 0
i
v 0
v(t)
c
R
L
1
L
1
C c
1
L




 
 












 






Assuming the voltage across the resistor as the output
 v (t) Ri(t) R 0
i
vR
c
 






15
Example: Given the electric network, find a state-space representation.
(Hint: state variables and , output )Cv Li
)(
/1
0
0/1
/1)/(1
tv
Li
v
L
CRC
i
v
L
C
L
C




























  






L
C
R
i
v
Ri 0/1
Ri
  0=D;0R=C
;
0
=B;
0
--
=A;
v
i
=x L
R
1
L
1
L
R
c


















C
16
17
Transfer function From State space :
DuCxy
BuAxx


Given the state and output equations
Take the Laplace transform assuming zero initial conditions:
(1)
(2)
Solving for in Eq. (1),
or
(3)
Substitutin Eq. (3) into Eq. (2) yields
The transfer function is
)()()(
)()()(
sss
ssss
DUCXY
BUAXX


)(sX
)()()( sss BUXAI 
)()()( 1
sss BUAIX 

)()()()( 1
ssss DUBUAICY  
)(])([ 1
ss UDBAIC  
DBAIC
U
Y
 1
)(
)(
)(
s
s
s
18
Ex. Find the transfer from the state-space representation
u























0
0
10
321
100
010
xx
 x001y





































321
10
01
321
100
010
00
00
00
)(
s
s
s
s
s
s
s AI
Solution:
123
12
31
1323
)det(
)(
)( 23
2
2
2
1

















 
sss
sss
sss
sss
s
sadj
s
AI
AI
AI
123
)23(10
)(
)(
23
2



sss
ss
s
s
U
Y
19
Solution of State Equations:
20
21
22
State Transition Matrix
23
Laplace Transform Method (STM Computation)
24
25
Total Response
26
Natural Modes
27
Diagonalization
28
29
30
STATE SPACE REPRESENTATION OF DYNAMIC
SYSTEMS
Consider the following n-th order differential equation in which the forcing
function does not involve derivative terms.
d y
dt
a
d y
dt
a
dy
dt
a y b u
Y s
U s
b
s a s a s a
n
n
n
n n n
n n
n n
    

   

 


1
1
1 1 0
0
1
1
1


( )
( )
Choosing the state variables as
x y, x y, x y, , x
d y
dt
x x , x x , ,x x
x a x a x a x b u
1 2 3 n
n 1
n 1
1 2 2 3 n-1 n
n n 1 n 1 2 1 n 0
   
  
     



 
  




31






x
x
x
x
x
x
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
a a a a a
x
x
x
x
x
x
1
2
3
n 2
n 1
n n n 1 n 2 2 1
1
2
3
n 2
n 1
n




 



 

























    



































































0
0
0
0
0
b
u
y = [1 0 0 0 0]x
0


32
State Space Representation of system with
forcing function involves Derivatives
Consider the following n-th order differential equation in
which the forcing function involves derivative terms.
d y
dt
a
d y
dt
a
dy
dt
a y
b
d u
dt
b
d u
dt
b
du
dt
b u
Y s
U s
b s b s b s b
s a s a s a
n
n
n
n n n
n
n
n
n n n
n n
n n
n n
n n
   
    

   
   

 

 




1
1
1 1
0 1
1
1 1
0 1
1
1
1
1
1




( )
( )
33
Define the following n variables as a set of n state variables
uxu
dt
du
dt
ud
dt
ud
dt
yd
x
uxuuuyx
uxuuyx
uyx
nnnnn
n
n
n
n
n
n 11122
2
11
1
0
222103
11102
01
















34


.
.
.


. . . .
. . . .
. . . .
.
.
.
.
.
.
x
x
x
x a a a a
x
x
x
x
n
n n n n
n
n
n
1
2
1
1 2 1
1
2
1
1
2
1
0 1 0 0
0 0 1 0
0 0 0 1
 
 























   




















































 


n
n
u
y
x
x
x
u









































1 0 0
1
2
0
.
.
.
35
CONTROLLABLE CANONICAL FORM
d y
dt
a
d y
dt
a
dy
dt
a y
b
d u
dt
b
d u
dt
b
du
dt
b u
Y s
U s
b s b s b s b
s a s a s a
n
n
n
n n n
n
n
n
n n n
n n
n n
n n
n n
   
    

   
   

 

 




1
1
1 1
0 1
1
1 1
0 1
1
1
1
1
1




( )
( )
36
Y s
U s
b
b a b s b a b b a b
s a s a s a
Y s b U s Y s
Y s
b a b s b a b b a b
s a s a s a
n
n n n n
n n
n n
n
n n n n
n n
n n
( )
( )
( ) ( ) ( )
( ) ( ) ( )
( )
( ) ( ) ( )
 
     
   
 

     
   

 



 


0
1 1 0
1
1 1 0 0
1
1
1
0
1 1 0
1
1 1 0 0
1
1
1




U s
Y s
b a b s b a b b a b
U s
s a s a s a
Q s
n
n n n n
n n
n n
( )
( )
( ) ( ) ( )
( )
( )
1 1 0
1
1 1 0 0
1
1
1
     

   


 




37
s Q s a s Q s a sQ s a Q s U s
Y s b a b s Q s b a b sQ s
b a b Q s
n n
n n
n
n n
n n
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( )
     
    
 



 
1
1
1
1 1 0
1
1 1 0
0


Defining state variables as follows:
X s Q s
X s sQ s
X s s Q s
X s s Q s
n
n
n
n
1
2
1
2
1
( ) ( )
( ) ( )
( ) ( )
( ) ( )








sX s X s
sX s X s
sX s X sn n
1 2
2 3
1
( ) ( )
( ) ( )
( ) ( )







x x
x x
x xn n
1 2
2 3
1




38
sX s a X s a X s a X s U s
x a x a x a x u
Y s b U s b a b s Q s b a b sQ s
b a b Q s
b U s b a b X s
n n n n
n n n n
n
n n
n n
n
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( )
     
     
     

  



 
1 1 2 1
1 1 2 1
0 1 1 0
1
1 1 0
0
0 1 1 0



+
= 

 

       
 
 
( ) ( )
( ) ( )
( ) ( ) ( )
b a b X s
b a b X s
y b a b x b a b x b a b x b u
n n
n n
n n n n n
1 1 0 2
0 1
0 1 1 1 0 2 1 1 0 0
+
39
  ub
x
x
x
babbabbaby
u
x
x
x
x
aaaax
x
x
x
n
nnnn
n
n
nnnn
n
0
2
1
0110110
1
2
1
121
1
2
1
.
.
.
1
0
.
.
.
0
0
.
.
.
1000
....
....
....
0100
0010
.
.
.






























































































































40
BLOCK DIAGRAM
u +
b0
+ + +
+ + + +
+
y
+
+
+
+
+
+
+
b1-a1b0 b2-a2b0 bn-1-an-1 b0 bn-an b0
  
a1 a2
an-1 an
xn xn-1
x2 x1
41
OBSERVABLE CANONICAL FORM
s Y s b U s s a Y s bU s
s a Y s b U s a Y s b U s
Y s b U s bU s a Y s
b U s a Y s b U s a Y s
X s
n n
n n n n
s
s n n s n n
n s
n n
[ ( ) ( )] [ ( ) ( )]
[ ( ) ( )] ( ) ( )
( ) ( ) [ ( ) ( )]
[ ( ) ( )] [ ( ) ( )]
( ) [
   
    
   
   


 
 
0
1
1 1
1 1
0
1
1 1
1
1 1
1
1
0
1


bU s a Y s X s
X s b U s a Y s X s
X s b U s a Y s X s
X s b U s a Y s
Y s b U s X s
n
n s n
s n n
s n n
n
1 1 1
1
1
2 2 2
2
1
1 1 1
1
1
0
( ) ( ) ( )]
( ) [ ( ) ( ) ( )]
( ) [ ( ) ( ) ( )]
( ) [ ( ) ( )]
( ) ( ) ( )
 
  
  
 
 

 
 

42
sX s X s a X s b a b U s
sX s X s a X s b a b U s
sX s X s a X s b a b U s
sX s a X s b a b U s
x a x b
n n n
n n n
n n n n
n n n n
n n
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
 (
   
   
   
   
  

 
  
1 1 1 1 0
1 2 2 2 2 0
2 1 1 1 1 0
1 0
1

n n
n n n n
n n n
n
a b u
x x a x b a b u
x x a x b a b u
y x b u

   
   
 
  

0
2 1 1 1 1 0
1 1 1 1 0
0
)
 ( )
 ( )

43


.
.
.


. . .
. . . .
. . . .
.
.
.
.
x
x
x
x
a
a
a
a
x
x
x
x
b a b
b a
n
n
n
n
n
n
n n
n n
1
2
1
1
2
1
1
2
1
0
1
0 0 0
1 0 0
0 0
0 0 1



 













































































 
1 0
1 1 0
1
2
00 0 1
b
b a b
u
y
x
x
b u
.
.
.
.
.
.
.









































44
BLOCK DIAGRAM
b0
a1an-1
an
+
+
+
+
+
+
+
  
y
u
bn-anb0 bn-1-an-1b0 b1-a1b0
x1
x2 xn-1 xn
45
DIAGONAL CANONICAL FORM
Consider that the denominator polynomial involves only
distinct roots. Then,
Y s
U s
b s b s b s b
s p s p s p
b
c
s p
c
s p
c
s p
n n
n n
n
n
n
( )
( ) ( )( ) ( )

   
  
 



 


0 1
1
1
1 2
0
1
1
2
2



where, ci, i=1,2, …, n are the residues corresponding pi
46
Y s b U s
c
s p
U s
c
s p
U s
c
s p
X s
s p
U s sX s p X s U s
X s
s p
U s sX s p X s U s
X s
s p
U s sX s p X s U s
n
n
n
n
n n n
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
 



 



   


   


   
0
1
1
2
2
1
1
1 1 1
2
2
2 2 2
1
1
1


47



( ) ( ) ( ) ( ) ( )
x p x u
x p x u
x p x u
Y s b U s c X s c X s c X s
y c x c x c x b u
n n n
n n
n n
1 1 1
2 2 2
0 1 1 2 2
1 1 2 2 0
  
  
  
    
    



48
 


.
.
.

.
.
.
.
.
.
.
.
.
.
.
x
x
x
p
p
p
x
x
x
u
y c c c
x
x
x
b u
n
n
n
n
n
1
2
1
2
1
2
1 2
1
2
0
0
0
1
1
1































































































49
BLOCK DIAGRAM
y
u
x1
x2
xn
c1
b0
c2
cn
+
+
+
+
+
1
1s p
1
2s p
1
s pn
50
JORDAN CANONICAL FORM
Consider the case where the denominator polynomial involves multiple roots.
Suppose that the pi’s are different from one another, except that the first three are
equal.
Y s
U s
b s bs b s b
s p s p s p s p
Y s
U s
b
c
s p
c
s p
c
s p
c
s p
c
s p
n n
n n
n
n
n
( )
( ) ( ) ( )( ) ( )
( )
( ) ( ) ( )

   
   
 







 


0 1
1
1
1
3
4 5
0
1
1
3
2
1
2
3
1
4
4



51
Y s b U s
c
s p
U s
c
s p
U s
c
s p
U s
c
s p
U s
c
s p
U s
X s
c
s p
U s
X s
c
s p
U s
X s
X s s p
X s
c
s p
U s
X s
X
n
n
( ) ( )
( )
( )
( )
( )
( ) ( ) ( )
( )
( )
( )
( )
( )
( )
( )
( )
( ) ( )
( )
 






 





 




0
1
1
3
2
1
2
3
1
4
4
1
1
1
3
2
2
1
2
1
2 1
3
3
1
2
1
+ 
3 1
4
4
4
1
( )
( ) ( )
( ) ( )
s s p
X s
c
s p
U s
X s
c
s p
U sn
n
n







52
sX s p X s X s x p x x
sX s p X s X s x p x x
sX s p X s U s x p x u
sX s p X s U s x p x u
sX s p X s U s xn n n
1 1 1 2 1 1 1 2
2 1 2 3 2 1 2 3
3 1 3 3 1 3
4 4 4 4 4 4
( ) ( ) ( ) 
( ) ( ) ( ) 
( ) ( ) ( ) 
( ) ( ) ( ) 
( ) ( ) ( ) 
      
      
      
      
   

n n n
n n
n n
p x u
Y s b U s c X s c X s c X s c X s
y b u c x c x c x c x
  
     
     
( ) ( ) ( ) ( ) ( ) ( )0 1 1 2 2 3 3
0 1 1 2 2 3 3


53
BLOCK DIAGRAM
b0
c3
c2
c1
c4
cn
x3
x2 x1
x4
xn
.
.
.
..
.
1
1s p
1
1s p
1
4s p
1
1s p
1
s pn
u y
+
+
+
+
+
+
+
+
+
54





. .
.
x
x
x
x
x
p
p
p
p
p
x
x
x
x
x
u
y c c
n n n
1
2
3
4
1
1
1
4
1
2
3
4
1 2
1 0 0 0
0 1
0 0 0 0
0 0
0 0 0
0
0
1
1
1




 

 















































































  

c
x
x
x
b un
n
1
2
0













55
Example: Express in CCF/OCF/DCF
56
CCF
OCF
DCF
Converting a Transfer Function to State Space
A set of state variables is called phase variables, where each
subsequent state variable is defined to be the derivative of the
previous state variable.
Consider the differential equation
Choosing the state variables
ubya
dt
dy
a
dt
yd
a
dt
yd
n
n
nn
n
0011
1
1  

 
ubxaxaxa
dt
yd
x
dt
yd
x
x
dt
yd
x
dt
yd
x
x
dt
yd
x
dt
dy
x
x
dt
dy
xyx
nnn
n
nn
n
n 0121101
1
43
3
32
2
3
32
2
22
211











57
u
bx
x
x
x
x
aaaaaax
x
x
x
x
n
n
nn
n






















































































0
1
3
2
1
143210
1
3
2
1
0
0
0
0
100000
001000
000100
000010













 






















n
n
x
x
x
x
x
y
1
3
2
1
00001


58
Converting a transfer function with constant term in numerator
 Step 1. Find the associated differential equation.
 Step 2. Select the state variables.
Choosing the state variables as successive derivatives.
24269
24
)(
)(
23


ssssR
sC
rcccc
sRsCsss
2424269
)(24)()24269( 23



cx
cx
cx





3
2
1
1
3213
32
21
2492624
xy
rxxxx
xx
xx








59
Converting a transfer function with polynomial in numerator
Step1. Decomposing a transfer function.
Step 2. Converting the transfer function with constant term in numerator.
Step 3. Inverse Laplace transform.
01
2
2
3
3
1 1
)(
)(
asasasasR
sX

 )()()()( 101
2
2 sXbsbsbsCsY 
10
1
12
1
2
2)( xb
dt
dx
b
dt
xd
bty 
01
2
2
3
3
1 1
)(
)(
asasasasR
sX


)()()()( 101
2
2 sXbsbsbsCsY 
322110)( xbxbxbty  60
Ex. Find the transfer from the state-space representation
u























0
0
10
321
100
010
xx
 x001y





































321
10
01
321
100
010
00
00
00
)(
s
s
s
s
s
s
s AI
Solution:
123
12
31
1323
)det(
)(
)( 23
2
2
2
1

















 
sss
sss
sss
sss
s
sadj
s
AI
AI
AI
123
)23(10
)(
)(
23
2



sss
ss
s
s
U
Y
61
62
63
Output Eq. modifies to
64

More Related Content

What's hot

Modern Control - Lec 01 - Introduction to Control System
Modern Control - Lec 01 - Introduction to Control SystemModern Control - Lec 01 - Introduction to Control System
Modern Control - Lec 01 - Introduction to Control SystemAmr E. Mohamed
 
Time Response Analysis
Time Response AnalysisTime Response Analysis
Time Response AnalysisManthan Kanani
 
State space analysis.pptx
State space analysis.pptxState space analysis.pptx
State space analysis.pptxRaviMuthamala1
 
Controllability and observability
Controllability and observabilityControllability and observability
Controllability and observabilityjawaharramaya
 
Root Locus Plot
Root Locus Plot Root Locus Plot
Root Locus Plot Hussain K
 
state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...Waqas Afzal
 
State space analysis, eign values and eign vectors
State space analysis, eign values and eign vectorsState space analysis, eign values and eign vectors
State space analysis, eign values and eign vectorsShilpa Shukla
 
Ch5 transient and steady state response analyses(control)
Ch5  transient and steady state response analyses(control)Ch5  transient and steady state response analyses(control)
Ch5 transient and steady state response analyses(control)Elaf A.Saeed
 
Week 17 digital control sytem
Week 17 digital control sytemWeek 17 digital control sytem
Week 17 digital control sytemCharlton Inao
 
Unit 1 Power System Stability
Unit 1 Power System Stability Unit 1 Power System Stability
Unit 1 Power System Stability SANTOSH GADEKAR
 
Transfer function of Electrical system
Transfer function of Electrical system Transfer function of Electrical system
Transfer function of Electrical system KALPANA K
 
Digital control systems
Digital control systemsDigital control systems
Digital control systemsavenkatram
 
Root locus method
Root locus methodRoot locus method
Root locus methodRavi Patel
 
Control Engineering "Force Voltage Analogy"
Control Engineering "Force Voltage Analogy"Control Engineering "Force Voltage Analogy"
Control Engineering "Force Voltage Analogy"Harsh Pathak
 

What's hot (20)

Lyapunov stability
Lyapunov stability Lyapunov stability
Lyapunov stability
 
Modern Control - Lec 01 - Introduction to Control System
Modern Control - Lec 01 - Introduction to Control SystemModern Control - Lec 01 - Introduction to Control System
Modern Control - Lec 01 - Introduction to Control System
 
Time Response Analysis
Time Response AnalysisTime Response Analysis
Time Response Analysis
 
State space analysis.pptx
State space analysis.pptxState space analysis.pptx
State space analysis.pptx
 
Controllability and observability
Controllability and observabilityControllability and observability
Controllability and observability
 
Root Locus Plot
Root Locus Plot Root Locus Plot
Root Locus Plot
 
Bode Plots
Bode Plots Bode Plots
Bode Plots
 
state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...
 
Polar Plot
Polar PlotPolar Plot
Polar Plot
 
State space analysis, eign values and eign vectors
State space analysis, eign values and eign vectorsState space analysis, eign values and eign vectors
State space analysis, eign values and eign vectors
 
Fault analysis using z bus
Fault analysis using z busFault analysis using z bus
Fault analysis using z bus
 
Ch5 transient and steady state response analyses(control)
Ch5  transient and steady state response analyses(control)Ch5  transient and steady state response analyses(control)
Ch5 transient and steady state response analyses(control)
 
Week 17 digital control sytem
Week 17 digital control sytemWeek 17 digital control sytem
Week 17 digital control sytem
 
Unit 1 Power System Stability
Unit 1 Power System Stability Unit 1 Power System Stability
Unit 1 Power System Stability
 
Transfer function of Electrical system
Transfer function of Electrical system Transfer function of Electrical system
Transfer function of Electrical system
 
Digital control systems
Digital control systemsDigital control systems
Digital control systems
 
Compensators
CompensatorsCompensators
Compensators
 
Root locus method
Root locus methodRoot locus method
Root locus method
 
Control Engineering "Force Voltage Analogy"
Control Engineering "Force Voltage Analogy"Control Engineering "Force Voltage Analogy"
Control Engineering "Force Voltage Analogy"
 
Bode plot
Bode plotBode plot
Bode plot
 

Similar to STate Space Analysis

Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical SystemPurnima Pandit
 
BEC- 26 control systems_unit-II
BEC- 26 control systems_unit-IIBEC- 26 control systems_unit-II
BEC- 26 control systems_unit-IIShadab Siddiqui
 
lecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).pptlecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).pptHebaEng
 
STATE_SPACE_ANALYSIS.pdf
STATE_SPACE_ANALYSIS.pdfSTATE_SPACE_ANALYSIS.pdf
STATE_SPACE_ANALYSIS.pdfBhuvaneshwariTr
 
Lec4 State Variable Models are used for modeing
Lec4 State Variable Models are used for modeingLec4 State Variable Models are used for modeing
Lec4 State Variable Models are used for modeingShehzadAhmed90
 
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...ijtsrd
 
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...ijtsrd
 
Chapter_3_State_Variable_Models.ppt
Chapter_3_State_Variable_Models.pptChapter_3_State_Variable_Models.ppt
Chapter_3_State_Variable_Models.pptkhinmuyaraye
 
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...IOSR Journals
 
SPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSyeilendra Pramuditya
 
Notions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsNotions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsStavros Vologiannidis
 
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...nutkoon
 
State space courses
State space coursesState space courses
State space coursesKAMEL HEMSAS
 
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEMSTATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEMijistjournal
 
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEMSTATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEMijistjournal
 

Similar to STate Space Analysis (20)

Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical System
 
BEC- 26 control systems_unit-II
BEC- 26 control systems_unit-IIBEC- 26 control systems_unit-II
BEC- 26 control systems_unit-II
 
Intro Class.ppt
Intro Class.pptIntro Class.ppt
Intro Class.ppt
 
control systems.pdf
control systems.pdfcontrol systems.pdf
control systems.pdf
 
lecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).pptlecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).ppt
 
STATE_SPACE_ANALYSIS.pdf
STATE_SPACE_ANALYSIS.pdfSTATE_SPACE_ANALYSIS.pdf
STATE_SPACE_ANALYSIS.pdf
 
Lec4 State Variable Models are used for modeing
Lec4 State Variable Models are used for modeingLec4 State Variable Models are used for modeing
Lec4 State Variable Models are used for modeing
 
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
 
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
 
Chapter_3_State_Variable_Models.ppt
Chapter_3_State_Variable_Models.pptChapter_3_State_Variable_Models.ppt
Chapter_3_State_Variable_Models.ppt
 
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
 
A02402001011
A02402001011A02402001011
A02402001011
 
df_lesson_01.ppt
df_lesson_01.pptdf_lesson_01.ppt
df_lesson_01.ppt
 
SPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta Methods
 
Notions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsNotions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systems
 
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
 
State space courses
State space coursesState space courses
State space courses
 
14599404.ppt
14599404.ppt14599404.ppt
14599404.ppt
 
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEMSTATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
 
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEMSTATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
 

More from Hussain K

NA-Duality& Dual Networks.pptx
NA-Duality& Dual Networks.pptxNA-Duality& Dual Networks.pptx
NA-Duality& Dual Networks.pptxHussain K
 
Tellegen’s-Substitution-Reciprocity-Theorem.ppt
Tellegen’s-Substitution-Reciprocity-Theorem.pptTellegen’s-Substitution-Reciprocity-Theorem.ppt
Tellegen’s-Substitution-Reciprocity-Theorem.pptHussain K
 
NAS-Unit-5_Two Port Networks
NAS-Unit-5_Two Port NetworksNAS-Unit-5_Two Port Networks
NAS-Unit-5_Two Port NetworksHussain K
 
NAS-Ch4-Application of Laplace Transform
NAS-Ch4-Application of Laplace TransformNAS-Ch4-Application of Laplace Transform
NAS-Ch4-Application of Laplace TransformHussain K
 
NAS-Ch3-Solutions of Equations
NAS-Ch3-Solutions of EquationsNAS-Ch3-Solutions of Equations
NAS-Ch3-Solutions of EquationsHussain K
 
NAS-Ch2-Network Equations
NAS-Ch2-Network EquationsNAS-Ch2-Network Equations
NAS-Ch2-Network EquationsHussain K
 
NAS-Ch2-Network-Theorems
NAS-Ch2-Network-TheoremsNAS-Ch2-Network-Theorems
NAS-Ch2-Network-TheoremsHussain K
 
NAS-Ch1-Part1-Circuit Elements
NAS-Ch1-Part1-Circuit ElementsNAS-Ch1-Part1-Circuit Elements
NAS-Ch1-Part1-Circuit ElementsHussain K
 
PID Controllers
PID Controllers PID Controllers
PID Controllers Hussain K
 
Nyquist Stability Criterion
Nyquist  Stability CriterionNyquist  Stability Criterion
Nyquist Stability CriterionHussain K
 
Stabiltiy & R-H Ccriterion
Stabiltiy & R-H CcriterionStabiltiy & R-H Ccriterion
Stabiltiy & R-H CcriterionHussain K
 
Control systems formula book
Control systems formula bookControl systems formula book
Control systems formula bookHussain K
 
Time domain analysis
Time domain analysisTime domain analysis
Time domain analysisHussain K
 
Pid controllers
Pid controllersPid controllers
Pid controllersHussain K
 
Block diagrams and signal flow graphs
Block diagrams and signal flow graphsBlock diagrams and signal flow graphs
Block diagrams and signal flow graphsHussain K
 

More from Hussain K (15)

NA-Duality& Dual Networks.pptx
NA-Duality& Dual Networks.pptxNA-Duality& Dual Networks.pptx
NA-Duality& Dual Networks.pptx
 
Tellegen’s-Substitution-Reciprocity-Theorem.ppt
Tellegen’s-Substitution-Reciprocity-Theorem.pptTellegen’s-Substitution-Reciprocity-Theorem.ppt
Tellegen’s-Substitution-Reciprocity-Theorem.ppt
 
NAS-Unit-5_Two Port Networks
NAS-Unit-5_Two Port NetworksNAS-Unit-5_Two Port Networks
NAS-Unit-5_Two Port Networks
 
NAS-Ch4-Application of Laplace Transform
NAS-Ch4-Application of Laplace TransformNAS-Ch4-Application of Laplace Transform
NAS-Ch4-Application of Laplace Transform
 
NAS-Ch3-Solutions of Equations
NAS-Ch3-Solutions of EquationsNAS-Ch3-Solutions of Equations
NAS-Ch3-Solutions of Equations
 
NAS-Ch2-Network Equations
NAS-Ch2-Network EquationsNAS-Ch2-Network Equations
NAS-Ch2-Network Equations
 
NAS-Ch2-Network-Theorems
NAS-Ch2-Network-TheoremsNAS-Ch2-Network-Theorems
NAS-Ch2-Network-Theorems
 
NAS-Ch1-Part1-Circuit Elements
NAS-Ch1-Part1-Circuit ElementsNAS-Ch1-Part1-Circuit Elements
NAS-Ch1-Part1-Circuit Elements
 
PID Controllers
PID Controllers PID Controllers
PID Controllers
 
Nyquist Stability Criterion
Nyquist  Stability CriterionNyquist  Stability Criterion
Nyquist Stability Criterion
 
Stabiltiy & R-H Ccriterion
Stabiltiy & R-H CcriterionStabiltiy & R-H Ccriterion
Stabiltiy & R-H Ccriterion
 
Control systems formula book
Control systems formula bookControl systems formula book
Control systems formula book
 
Time domain analysis
Time domain analysisTime domain analysis
Time domain analysis
 
Pid controllers
Pid controllersPid controllers
Pid controllers
 
Block diagrams and signal flow graphs
Block diagrams and signal flow graphsBlock diagrams and signal flow graphs
Block diagrams and signal flow graphs
 

Recently uploaded

UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...ranjana rawat
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 

Recently uploaded (20)

UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 

STate Space Analysis

  • 1. Dr. K Hussain Associate Professor and Head Dept. of Electrical Engineering SITCOE
  • 2. Advantages of State Space Approach Classical/Transfer function Approach State space approach/Modern Control Approach  Transfer Function Approach  Linear Time Invariant System, SISO  Laplace Transform, Frequency domain  Only Input-output Description: Less Detail Description on System Dynamics  Doesn’t take all ICs  Taking specific inputs like step, ramp and parabolic etc…  State Variable Approach  Linear Time Varying, Nonlinear, Time Invariant, MIMO  Time domain  Detailed description of Internal behaviour in addition to I-O properties  Consider all ICs  Taking all inputs 2
  • 3. CLASSICAL APPROACH (TRANSFER FUNCTION)  The classical approach or frequency domain technique is based on converting a system’s differential equation to a transfer function.  It relates a representation of the output to a representation of the input.  It can be applied only to linear, time-invariant systems.  It rapidly provides stability and transient response information. 3
  • 4.  The state-space approach (also referred to as the modern, or time-domain, approach) is a unified method for modeling, analyzing, and designing a wide range of systems.  The state-space approach can be used to represent nonlinear systems. Also, it can handle, conveniently, systems with nonzero initial conditions and time varying.  The state-space approach is also attractive because of the availability of numerous state-space software package for the personal computer. MODERN APPROACH (STATE-SPACE) 4
  • 5. MODERN APPROACH (STATE-SPACE)  It can be used to model and analyze nonlinear (backlash, saturation), time-varying (missiles with varying fuel levels), multi-input multi-output systems (i.e., an airplane) with nonzero initial conditions.  But it is not as intuitive as the classical approach. The designer has to engage in several calculations before the physical interpretation of the model is apparent. 5
  • 6. STATE-SPACE REPRESENTATION  Select a particular subset of all possible system variables and call them state variables.  For an nth-order system, write n simultaneous first-order differential equations in terms of state variables.  If we know the initial conditions of all state variables at t0 and the system input for tt0, we can solve the simultaneous differential equations for the state variables for tt0. 6
  • 7. Concept of State Variables  State: The state of a dynamic system is the smallest set of variables (called state variables) so that the knowledge of these variables at t = t0, together with the knowledge of the input for t  t0, determines the behavior of the system for any time t  t0.  State Variables: The state variables of a dynamic system are the variables making up the smallest set of variables that determine the state of the dynamic system.  State Vector: If n state variables are needed to describe the behavior of a given system, then the n state variables can be considered the n components of a vector x. Such vector is called a state vector.  State Space: The n-dimensional space whose coordinates axes consist of the x1 axis, x2 axis, .., xn axis, where x1, x2, .., xn are state variables, is called a state space. 7
  • 8. Block Diagram Representation of Continuous Time Control System in State space: 8
  • 9. Time Varying/Invariant Systems 9 Time Varying System: Time Invariant System:
  • 10. State & Output Equation: Matrices/Vectors 10 A(t)= State/System Matrix B(t)= Input Matrix C(t)=Output Matrix D(t)=Direct Transmission Matrix
  • 11. The general form of state and output equations for a linear, time-invariant system can be written as Du+Cx=yBu+Ax=x Where x is the n x 1 state vector, u is r x 1 input vector, y is the m x 1 output vector, A is nxn System Matrix, B is nxr Input Matrix, C is mxn Output Matrix and D is mxr Transition Matrix. 11
  • 13. 13
  • 14. EXAMPLE: + i(t) Lv(t) R L di dt Ri v t v t Ri t    ( ) ( ) ( ) ( ) (state equation) Output equation tLRtLR L R L R eie R ti s i ssR sI sVissIL )/()/( )0()1( 1 )( )0(111 )( )()]0()([             Assuming that v(t) is a unit step and knowing i(0), taking the LT of the state equation 14
  • 15. Writing the equations in matrix-vector form   i v 0 i v 0 v(t) c R L 1 L 1 C c 1 L                             Assuming the voltage across the resistor as the output  v (t) Ri(t) R 0 i vR c         15
  • 16. Example: Given the electric network, find a state-space representation. (Hint: state variables and , output )Cv Li )( /1 0 0/1 /1)/(1 tv Li v L CRC i v L C L C                                      L C R i v Ri 0/1 Ri   0=D;0R=C ; 0 =B; 0 -- =A; v i =x L R 1 L 1 L R c                   C 16
  • 17. 17
  • 18. Transfer function From State space : DuCxy BuAxx   Given the state and output equations Take the Laplace transform assuming zero initial conditions: (1) (2) Solving for in Eq. (1), or (3) Substitutin Eq. (3) into Eq. (2) yields The transfer function is )()()( )()()( sss ssss DUCXY BUAXX   )(sX )()()( sss BUXAI  )()()( 1 sss BUAIX   )()()()( 1 ssss DUBUAICY   )(])([ 1 ss UDBAIC   DBAIC U Y  1 )( )( )( s s s 18
  • 19. Ex. Find the transfer from the state-space representation u                        0 0 10 321 100 010 xx  x001y                                      321 10 01 321 100 010 00 00 00 )( s s s s s s s AI Solution: 123 12 31 1323 )det( )( )( 23 2 2 2 1                    sss sss sss sss s sadj s AI AI AI 123 )23(10 )( )( 23 2    sss ss s s U Y 19
  • 20. Solution of State Equations: 20
  • 21. 21
  • 22. 22
  • 24. Laplace Transform Method (STM Computation) 24
  • 25. 25
  • 29. 29
  • 30. 30
  • 31. STATE SPACE REPRESENTATION OF DYNAMIC SYSTEMS Consider the following n-th order differential equation in which the forcing function does not involve derivative terms. d y dt a d y dt a dy dt a y b u Y s U s b s a s a s a n n n n n n n n n n                1 1 1 1 0 0 1 1 1   ( ) ( ) Choosing the state variables as x y, x y, x y, , x d y dt x x , x x , ,x x x a x a x a x b u 1 2 3 n n 1 n 1 1 2 2 3 n-1 n n n 1 n 1 2 1 n 0                          31
  • 32.       x x x x x x 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 a a a a a x x x x x x 1 2 3 n 2 n 1 n n n 1 n 2 2 1 1 2 3 n 2 n 1 n                                                                                                             0 0 0 0 0 b u y = [1 0 0 0 0]x 0   32
  • 33. State Space Representation of system with forcing function involves Derivatives Consider the following n-th order differential equation in which the forcing function involves derivative terms. d y dt a d y dt a dy dt a y b d u dt b d u dt b du dt b u Y s U s b s b s b s b s a s a s a n n n n n n n n n n n n n n n n n n n n                             1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1     ( ) ( ) 33
  • 34. Define the following n variables as a set of n state variables uxu dt du dt ud dt ud dt yd x uxuuuyx uxuuyx uyx nnnnn n n n n n n 11122 2 11 1 0 222103 11102 01                 34
  • 35.   . . .   . . . . . . . . . . . . . . . . . . x x x x a a a a x x x x n n n n n n n n 1 2 1 1 2 1 1 2 1 1 2 1 0 1 0 0 0 0 1 0 0 0 0 1                                                                                        n n u y x x x u                                          1 0 0 1 2 0 . . . 35
  • 36. CONTROLLABLE CANONICAL FORM d y dt a d y dt a dy dt a y b d u dt b d u dt b du dt b u Y s U s b s b s b s b s a s a s a n n n n n n n n n n n n n n n n n n n n                             1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1     ( ) ( ) 36
  • 37. Y s U s b b a b s b a b b a b s a s a s a Y s b U s Y s Y s b a b s b a b b a b s a s a s a n n n n n n n n n n n n n n n n n n ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                    0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1     U s Y s b a b s b a b b a b U s s a s a s a Q s n n n n n n n n n ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 0 1 1 1 0 0 1 1 1                    37
  • 38. s Q s a s Q s a sQ s a Q s U s Y s b a b s Q s b a b sQ s b a b Q s n n n n n n n n n ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                   1 1 1 1 1 0 1 1 1 0 0   Defining state variables as follows: X s Q s X s sQ s X s s Q s X s s Q s n n n n 1 2 1 2 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )         sX s X s sX s X s sX s X sn n 1 2 2 3 1 ( ) ( ) ( ) ( ) ( ) ( )        x x x x x xn n 1 2 2 3 1     38
  • 39. sX s a X s a X s a X s U s x a x a x a x u Y s b U s b a b s Q s b a b sQ s b a b Q s b U s b a b X s n n n n n n n n n n n n n n ( ) ( ) ( ) ( ) ( )  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                            1 1 2 1 1 1 2 1 0 1 1 0 1 1 1 0 0 0 1 1 0    + =                  ( ) ( ) ( ) ( ) ( ) ( ) ( ) b a b X s b a b X s y b a b x b a b x b a b x b u n n n n n n n n n 1 1 0 2 0 1 0 1 1 1 0 2 1 1 0 0 + 39
  • 41. BLOCK DIAGRAM u + b0 + + + + + + + + y + + + + + + + b1-a1b0 b2-a2b0 bn-1-an-1 b0 bn-an b0    a1 a2 an-1 an xn xn-1 x2 x1 41
  • 42. OBSERVABLE CANONICAL FORM s Y s b U s s a Y s bU s s a Y s b U s a Y s b U s Y s b U s bU s a Y s b U s a Y s b U s a Y s X s n n n n n n s s n n s n n n s n n [ ( ) ( )] [ ( ) ( )] [ ( ) ( )] ( ) ( ) ( ) ( ) [ ( ) ( )] [ ( ) ( )] [ ( ) ( )] ( ) [                        0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1   bU s a Y s X s X s b U s a Y s X s X s b U s a Y s X s X s b U s a Y s Y s b U s X s n n s n s n n s n n n 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 0 ( ) ( ) ( )] ( ) [ ( ) ( ) ( )] ( ) [ ( ) ( ) ( )] ( ) [ ( ) ( )] ( ) ( ) ( )                   42
  • 43. sX s X s a X s b a b U s sX s X s a X s b a b U s sX s X s a X s b a b U s sX s a X s b a b U s x a x b n n n n n n n n n n n n n n n n ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  (                          1 1 1 1 0 1 2 2 2 2 0 2 1 1 1 1 0 1 0 1  n n n n n n n n n n a b u x x a x b a b u x x a x b a b u y x b u                0 2 1 1 1 1 0 1 1 1 1 0 0 )  ( )  ( )  43
  • 44.   . . .   . . . . . . . . . . . . . . . x x x x a a a a x x x x b a b b a n n n n n n n n n n 1 2 1 1 2 1 1 2 1 0 1 0 0 0 1 0 0 0 0 0 0 1                                                                                     1 0 1 1 0 1 2 00 0 1 b b a b u y x x b u . . . . . . .                                          44
  • 45. BLOCK DIAGRAM b0 a1an-1 an + + + + + + +    y u bn-anb0 bn-1-an-1b0 b1-a1b0 x1 x2 xn-1 xn 45
  • 46. DIAGONAL CANONICAL FORM Consider that the denominator polynomial involves only distinct roots. Then, Y s U s b s b s b s b s p s p s p b c s p c s p c s p n n n n n n n ( ) ( ) ( )( ) ( )                  0 1 1 1 1 2 0 1 1 2 2    where, ci, i=1,2, …, n are the residues corresponding pi 46
  • 47. Y s b U s c s p U s c s p U s c s p X s s p U s sX s p X s U s X s s p U s sX s p X s U s X s s p U s sX s p X s U s n n n n n n n ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                           0 1 1 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1   47
  • 48.    ( ) ( ) ( ) ( ) ( ) x p x u x p x u x p x u Y s b U s c X s c X s c X s y c x c x c x b u n n n n n n n 1 1 1 2 2 2 0 1 1 2 2 1 1 2 2 0                       48
  • 49.     . . .  . . . . . . . . . . . x x x p p p x x x u y c c c x x x b u n n n n n 1 2 1 2 1 2 1 2 1 2 0 0 0 1 1 1                                                                                                49
  • 51. JORDAN CANONICAL FORM Consider the case where the denominator polynomial involves multiple roots. Suppose that the pi’s are different from one another, except that the first three are equal. Y s U s b s bs b s b s p s p s p s p Y s U s b c s p c s p c s p c s p c s p n n n n n n n ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )                       0 1 1 1 1 3 4 5 0 1 1 3 2 1 2 3 1 4 4    51
  • 52. Y s b U s c s p U s c s p U s c s p U s c s p U s c s p U s X s c s p U s X s c s p U s X s X s s p X s c s p U s X s X n n ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                      0 1 1 3 2 1 2 3 1 4 4 1 1 1 3 2 2 1 2 1 2 1 3 3 1 2 1 +  3 1 4 4 4 1 ( ) ( ) ( ) ( ) ( ) s s p X s c s p U s X s c s p U sn n n        52
  • 53. sX s p X s X s x p x x sX s p X s X s x p x x sX s p X s U s x p x u sX s p X s U s x p x u sX s p X s U s xn n n 1 1 1 2 1 1 1 2 2 1 2 3 2 1 2 3 3 1 3 3 1 3 4 4 4 4 4 4 ( ) ( ) ( )  ( ) ( ) ( )  ( ) ( ) ( )  ( ) ( ) ( )  ( ) ( ) ( )                                   n n n n n n n p x u Y s b U s c X s c X s c X s c X s y b u c x c x c x c x                ( ) ( ) ( ) ( ) ( ) ( )0 1 1 2 2 3 3 0 1 1 2 2 3 3   53
  • 54. BLOCK DIAGRAM b0 c3 c2 c1 c4 cn x3 x2 x1 x4 xn . . . .. . 1 1s p 1 1s p 1 4s p 1 1s p 1 s pn u y + + + + + + + + + 54
  • 55.      . . . x x x x x p p p p p x x x x x u y c c n n n 1 2 3 4 1 1 1 4 1 2 3 4 1 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1                                                                                             c x x x b un n 1 2 0              55
  • 56. Example: Express in CCF/OCF/DCF 56 CCF OCF DCF
  • 57. Converting a Transfer Function to State Space A set of state variables is called phase variables, where each subsequent state variable is defined to be the derivative of the previous state variable. Consider the differential equation Choosing the state variables ubya dt dy a dt yd a dt yd n n nn n 0011 1 1      ubxaxaxa dt yd x dt yd x x dt yd x dt yd x x dt yd x dt dy x x dt dy xyx nnn n nn n n 0121101 1 43 3 32 2 3 32 2 22 211            57
  • 59. Converting a transfer function with constant term in numerator  Step 1. Find the associated differential equation.  Step 2. Select the state variables. Choosing the state variables as successive derivatives. 24269 24 )( )( 23   ssssR sC rcccc sRsCsss 2424269 )(24)()24269( 23    cx cx cx      3 2 1 1 3213 32 21 2492624 xy rxxxx xx xx         59
  • 60. Converting a transfer function with polynomial in numerator Step1. Decomposing a transfer function. Step 2. Converting the transfer function with constant term in numerator. Step 3. Inverse Laplace transform. 01 2 2 3 3 1 1 )( )( asasasasR sX   )()()()( 101 2 2 sXbsbsbsCsY  10 1 12 1 2 2)( xb dt dx b dt xd bty  01 2 2 3 3 1 1 )( )( asasasasR sX   )()()()( 101 2 2 sXbsbsbsCsY  322110)( xbxbxbty  60
  • 61. Ex. Find the transfer from the state-space representation u                        0 0 10 321 100 010 xx  x001y                                      321 10 01 321 100 010 00 00 00 )( s s s s s s s AI Solution: 123 12 31 1323 )det( )( )( 23 2 2 2 1                    sss sss sss sss s sadj s AI AI AI 123 )23(10 )( )( 23 2    sss ss s s U Y 61
  • 62. 62
  • 63. 63