Dr. K Hussain
Associate Professor and Head
Dept. of Electrical Engineering
SITCOE
Advantages of State Space Approach
Classical/Transfer function
Approach
State space approach/Modern
Control Approach
 Transfer Function Approach
 Linear Time Invariant System,
SISO
 Laplace Transform, Frequency
domain
 Only Input-output Description:
Less Detail Description on System
Dynamics
 Doesn’t take all ICs
 Taking specific inputs like step,
ramp and parabolic etc…
 State Variable Approach
 Linear Time Varying, Nonlinear,
Time Invariant, MIMO
 Time domain
 Detailed description of Internal
behaviour in addition to I-O
properties
 Consider all ICs
 Taking all inputs
2
CLASSICAL APPROACH (TRANSFER FUNCTION)
 The classical approach or frequency domain
technique is based on converting a system’s
differential equation to a transfer function.
 It relates a representation of the output to a
representation of the input.
 It can be applied only to linear, time-invariant
systems.
 It rapidly provides stability and transient response
information.
3
 The state-space approach (also referred to as the modern, or
time-domain, approach) is a unified method for modeling,
analyzing, and designing a wide range of systems.
 The state-space approach can be used to represent nonlinear
systems. Also, it can handle, conveniently, systems with
nonzero initial conditions and time varying.
 The state-space approach is also attractive because of the
availability of numerous state-space software package for the
personal computer.
MODERN APPROACH (STATE-SPACE)
4
MODERN APPROACH (STATE-SPACE)
 It can be used to model and analyze nonlinear
(backlash, saturation), time-varying (missiles with
varying fuel levels), multi-input multi-output
systems (i.e., an airplane) with nonzero initial
conditions.
 But it is not as intuitive as the classical approach.
The designer has to engage in several calculations
before the physical interpretation of the model is
apparent.
5
STATE-SPACE REPRESENTATION
 Select a particular subset of all possible system
variables and call them state variables.
 For an nth-order system, write n simultaneous
first-order differential equations in terms of state
variables.
 If we know the initial conditions of all state
variables at t0 and the system input for tt0, we can
solve the simultaneous differential equations for
the state variables for tt0.
6
Concept of State Variables
 State: The state of a dynamic system is the smallest set of
variables (called state variables) so that the knowledge of
these variables at t = t0, together with the knowledge of the
input for t  t0, determines the behavior of the system for any
time t  t0.
 State Variables: The state variables of a dynamic system are
the variables making up the smallest set of variables that
determine the state of the dynamic system.
 State Vector: If n state variables are needed to describe the
behavior of a given system, then the n state variables can be
considered the n components of a vector x. Such vector is
called a state vector.
 State Space: The n-dimensional space whose coordinates
axes consist of the x1 axis, x2 axis, .., xn axis, where x1, x2, .., xn
are state variables, is called a state space.
7
Block Diagram Representation of Continuous
Time Control System in State space:
8
Time Varying/Invariant Systems
9
Time Varying System:
Time Invariant System:
State & Output Equation:
Matrices/Vectors
10
A(t)= State/System Matrix
B(t)= Input Matrix
C(t)=Output Matrix
D(t)=Direct Transmission Matrix
The general form of state and output equations for a linear,
time-invariant system can be written as
Du+Cx=yBu+Ax=x
Where x is the n x 1 state vector,
u is r x 1 input vector,
y is the m x 1 output vector,
A is nxn System Matrix,
B is nxr Input Matrix,
C is mxn Output Matrix and
D is mxr Transition Matrix. 11
RLC Circuit
12
13
EXAMPLE:
+ i(t)
Lv(t)
R
L
di
dt
Ri v t
v t Ri t
 

( )
( ) ( ) ( )
(state equation)
Output equation
tLRtLR
L
R
L
R
eie
R
ti
s
i
ssR
sI
sVissIL
)/()/(
)0()1(
1
)(
)0(111
)(
)()]0()([












Assuming that v(t) is a unit step and knowing i(0), taking the LT of the state
equation
14
Writing the equations in matrix-vector form


i
v 0
i
v 0
v(t)
c
R
L
1
L
1
C c
1
L




 
 












 






Assuming the voltage across the resistor as the output
 v (t) Ri(t) R 0
i
vR
c
 






15
Example: Given the electric network, find a state-space representation.
(Hint: state variables and , output )Cv Li
)(
/1
0
0/1
/1)/(1
tv
Li
v
L
CRC
i
v
L
C
L
C




























  






L
C
R
i
v
Ri 0/1
Ri
  0=D;0R=C
;
0
=B;
0
--
=A;
v
i
=x L
R
1
L
1
L
R
c


















C
16
17
Transfer function From State space :
DuCxy
BuAxx


Given the state and output equations
Take the Laplace transform assuming zero initial conditions:
(1)
(2)
Solving for in Eq. (1),
or
(3)
Substitutin Eq. (3) into Eq. (2) yields
The transfer function is
)()()(
)()()(
sss
ssss
DUCXY
BUAXX


)(sX
)()()( sss BUXAI 
)()()( 1
sss BUAIX 

)()()()( 1
ssss DUBUAICY  
)(])([ 1
ss UDBAIC  
DBAIC
U
Y
 1
)(
)(
)(
s
s
s
18
Ex. Find the transfer from the state-space representation
u























0
0
10
321
100
010
xx
 x001y





































321
10
01
321
100
010
00
00
00
)(
s
s
s
s
s
s
s AI
Solution:
123
12
31
1323
)det(
)(
)( 23
2
2
2
1

















 
sss
sss
sss
sss
s
sadj
s
AI
AI
AI
123
)23(10
)(
)(
23
2



sss
ss
s
s
U
Y
19
Solution of State Equations:
20
21
22
State Transition Matrix
23
Laplace Transform Method (STM Computation)
24
25
Total Response
26
Natural Modes
27
Diagonalization
28
29
30
STATE SPACE REPRESENTATION OF DYNAMIC
SYSTEMS
Consider the following n-th order differential equation in which the forcing
function does not involve derivative terms.
d y
dt
a
d y
dt
a
dy
dt
a y b u
Y s
U s
b
s a s a s a
n
n
n
n n n
n n
n n
    

   

 


1
1
1 1 0
0
1
1
1


( )
( )
Choosing the state variables as
x y, x y, x y, , x
d y
dt
x x , x x , ,x x
x a x a x a x b u
1 2 3 n
n 1
n 1
1 2 2 3 n-1 n
n n 1 n 1 2 1 n 0
   
  
     



 
  




31






x
x
x
x
x
x
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
a a a a a
x
x
x
x
x
x
1
2
3
n 2
n 1
n n n 1 n 2 2 1
1
2
3
n 2
n 1
n




 



 

























    



































































0
0
0
0
0
b
u
y = [1 0 0 0 0]x
0


32
State Space Representation of system with
forcing function involves Derivatives
Consider the following n-th order differential equation in
which the forcing function involves derivative terms.
d y
dt
a
d y
dt
a
dy
dt
a y
b
d u
dt
b
d u
dt
b
du
dt
b u
Y s
U s
b s b s b s b
s a s a s a
n
n
n
n n n
n
n
n
n n n
n n
n n
n n
n n
   
    

   
   

 

 




1
1
1 1
0 1
1
1 1
0 1
1
1
1
1
1




( )
( )
33
Define the following n variables as a set of n state variables
uxu
dt
du
dt
ud
dt
ud
dt
yd
x
uxuuuyx
uxuuyx
uyx
nnnnn
n
n
n
n
n
n 11122
2
11
1
0
222103
11102
01
















34


.
.
.


. . . .
. . . .
. . . .
.
.
.
.
.
.
x
x
x
x a a a a
x
x
x
x
n
n n n n
n
n
n
1
2
1
1 2 1
1
2
1
1
2
1
0 1 0 0
0 0 1 0
0 0 0 1
 
 























   




















































 


n
n
u
y
x
x
x
u









































1 0 0
1
2
0
.
.
.
35
CONTROLLABLE CANONICAL FORM
d y
dt
a
d y
dt
a
dy
dt
a y
b
d u
dt
b
d u
dt
b
du
dt
b u
Y s
U s
b s b s b s b
s a s a s a
n
n
n
n n n
n
n
n
n n n
n n
n n
n n
n n
   
    

   
   

 

 




1
1
1 1
0 1
1
1 1
0 1
1
1
1
1
1




( )
( )
36
Y s
U s
b
b a b s b a b b a b
s a s a s a
Y s b U s Y s
Y s
b a b s b a b b a b
s a s a s a
n
n n n n
n n
n n
n
n n n n
n n
n n
( )
( )
( ) ( ) ( )
( ) ( ) ( )
( )
( ) ( ) ( )
 
     
   
 

     
   

 



 


0
1 1 0
1
1 1 0 0
1
1
1
0
1 1 0
1
1 1 0 0
1
1
1




U s
Y s
b a b s b a b b a b
U s
s a s a s a
Q s
n
n n n n
n n
n n
( )
( )
( ) ( ) ( )
( )
( )
1 1 0
1
1 1 0 0
1
1
1
     

   


 




37
s Q s a s Q s a sQ s a Q s U s
Y s b a b s Q s b a b sQ s
b a b Q s
n n
n n
n
n n
n n
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( )
     
    
 



 
1
1
1
1 1 0
1
1 1 0
0


Defining state variables as follows:
X s Q s
X s sQ s
X s s Q s
X s s Q s
n
n
n
n
1
2
1
2
1
( ) ( )
( ) ( )
( ) ( )
( ) ( )








sX s X s
sX s X s
sX s X sn n
1 2
2 3
1
( ) ( )
( ) ( )
( ) ( )







x x
x x
x xn n
1 2
2 3
1




38
sX s a X s a X s a X s U s
x a x a x a x u
Y s b U s b a b s Q s b a b sQ s
b a b Q s
b U s b a b X s
n n n n
n n n n
n
n n
n n
n
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( )
     
     
     

  



 
1 1 2 1
1 1 2 1
0 1 1 0
1
1 1 0
0
0 1 1 0



+
= 

 

       
 
 
( ) ( )
( ) ( )
( ) ( ) ( )
b a b X s
b a b X s
y b a b x b a b x b a b x b u
n n
n n
n n n n n
1 1 0 2
0 1
0 1 1 1 0 2 1 1 0 0
+
39
  ub
x
x
x
babbabbaby
u
x
x
x
x
aaaax
x
x
x
n
nnnn
n
n
nnnn
n
0
2
1
0110110
1
2
1
121
1
2
1
.
.
.
1
0
.
.
.
0
0
.
.
.
1000
....
....
....
0100
0010
.
.
.






























































































































40
BLOCK DIAGRAM
u +
b0
+ + +
+ + + +
+
y
+
+
+
+
+
+
+
b1-a1b0 b2-a2b0 bn-1-an-1 b0 bn-an b0
  
a1 a2
an-1 an
xn xn-1
x2 x1
41
OBSERVABLE CANONICAL FORM
s Y s b U s s a Y s bU s
s a Y s b U s a Y s b U s
Y s b U s bU s a Y s
b U s a Y s b U s a Y s
X s
n n
n n n n
s
s n n s n n
n s
n n
[ ( ) ( )] [ ( ) ( )]
[ ( ) ( )] ( ) ( )
( ) ( ) [ ( ) ( )]
[ ( ) ( )] [ ( ) ( )]
( ) [
   
    
   
   


 
 
0
1
1 1
1 1
0
1
1 1
1
1 1
1
1
0
1


bU s a Y s X s
X s b U s a Y s X s
X s b U s a Y s X s
X s b U s a Y s
Y s b U s X s
n
n s n
s n n
s n n
n
1 1 1
1
1
2 2 2
2
1
1 1 1
1
1
0
( ) ( ) ( )]
( ) [ ( ) ( ) ( )]
( ) [ ( ) ( ) ( )]
( ) [ ( ) ( )]
( ) ( ) ( )
 
  
  
 
 

 
 

42
sX s X s a X s b a b U s
sX s X s a X s b a b U s
sX s X s a X s b a b U s
sX s a X s b a b U s
x a x b
n n n
n n n
n n n n
n n n n
n n
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
 (
   
   
   
   
  

 
  
1 1 1 1 0
1 2 2 2 2 0
2 1 1 1 1 0
1 0
1

n n
n n n n
n n n
n
a b u
x x a x b a b u
x x a x b a b u
y x b u

   
   
 
  

0
2 1 1 1 1 0
1 1 1 1 0
0
)
 ( )
 ( )

43


.
.
.


. . .
. . . .
. . . .
.
.
.
.
x
x
x
x
a
a
a
a
x
x
x
x
b a b
b a
n
n
n
n
n
n
n n
n n
1
2
1
1
2
1
1
2
1
0
1
0 0 0
1 0 0
0 0
0 0 1



 













































































 
1 0
1 1 0
1
2
00 0 1
b
b a b
u
y
x
x
b u
.
.
.
.
.
.
.









































44
BLOCK DIAGRAM
b0
a1an-1
an
+
+
+
+
+
+
+
  
y
u
bn-anb0 bn-1-an-1b0 b1-a1b0
x1
x2 xn-1 xn
45
DIAGONAL CANONICAL FORM
Consider that the denominator polynomial involves only
distinct roots. Then,
Y s
U s
b s b s b s b
s p s p s p
b
c
s p
c
s p
c
s p
n n
n n
n
n
n
( )
( ) ( )( ) ( )

   
  
 



 


0 1
1
1
1 2
0
1
1
2
2



where, ci, i=1,2, …, n are the residues corresponding pi
46
Y s b U s
c
s p
U s
c
s p
U s
c
s p
X s
s p
U s sX s p X s U s
X s
s p
U s sX s p X s U s
X s
s p
U s sX s p X s U s
n
n
n
n
n n n
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
 



 



   


   


   
0
1
1
2
2
1
1
1 1 1
2
2
2 2 2
1
1
1


47



( ) ( ) ( ) ( ) ( )
x p x u
x p x u
x p x u
Y s b U s c X s c X s c X s
y c x c x c x b u
n n n
n n
n n
1 1 1
2 2 2
0 1 1 2 2
1 1 2 2 0
  
  
  
    
    



48
 


.
.
.

.
.
.
.
.
.
.
.
.
.
.
x
x
x
p
p
p
x
x
x
u
y c c c
x
x
x
b u
n
n
n
n
n
1
2
1
2
1
2
1 2
1
2
0
0
0
1
1
1































































































49
BLOCK DIAGRAM
y
u
x1
x2
xn
c1
b0
c2
cn
+
+
+
+
+
1
1s p
1
2s p
1
s pn
50
JORDAN CANONICAL FORM
Consider the case where the denominator polynomial involves multiple roots.
Suppose that the pi’s are different from one another, except that the first three are
equal.
Y s
U s
b s bs b s b
s p s p s p s p
Y s
U s
b
c
s p
c
s p
c
s p
c
s p
c
s p
n n
n n
n
n
n
( )
( ) ( ) ( )( ) ( )
( )
( ) ( ) ( )

   
   
 







 


0 1
1
1
1
3
4 5
0
1
1
3
2
1
2
3
1
4
4



51
Y s b U s
c
s p
U s
c
s p
U s
c
s p
U s
c
s p
U s
c
s p
U s
X s
c
s p
U s
X s
c
s p
U s
X s
X s s p
X s
c
s p
U s
X s
X
n
n
( ) ( )
( )
( )
( )
( )
( ) ( ) ( )
( )
( )
( )
( )
( )
( )
( )
( )
( ) ( )
( )
 






 





 




0
1
1
3
2
1
2
3
1
4
4
1
1
1
3
2
2
1
2
1
2 1
3
3
1
2
1
+ 
3 1
4
4
4
1
( )
( ) ( )
( ) ( )
s s p
X s
c
s p
U s
X s
c
s p
U sn
n
n







52
sX s p X s X s x p x x
sX s p X s X s x p x x
sX s p X s U s x p x u
sX s p X s U s x p x u
sX s p X s U s xn n n
1 1 1 2 1 1 1 2
2 1 2 3 2 1 2 3
3 1 3 3 1 3
4 4 4 4 4 4
( ) ( ) ( ) 
( ) ( ) ( ) 
( ) ( ) ( ) 
( ) ( ) ( ) 
( ) ( ) ( ) 
      
      
      
      
   

n n n
n n
n n
p x u
Y s b U s c X s c X s c X s c X s
y b u c x c x c x c x
  
     
     
( ) ( ) ( ) ( ) ( ) ( )0 1 1 2 2 3 3
0 1 1 2 2 3 3


53
BLOCK DIAGRAM
b0
c3
c2
c1
c4
cn
x3
x2 x1
x4
xn
.
.
.
..
.
1
1s p
1
1s p
1
4s p
1
1s p
1
s pn
u y
+
+
+
+
+
+
+
+
+
54





. .
.
x
x
x
x
x
p
p
p
p
p
x
x
x
x
x
u
y c c
n n n
1
2
3
4
1
1
1
4
1
2
3
4
1 2
1 0 0 0
0 1
0 0 0 0
0 0
0 0 0
0
0
1
1
1




 

 















































































  

c
x
x
x
b un
n
1
2
0













55
Example: Express in CCF/OCF/DCF
56
CCF
OCF
DCF
Converting a Transfer Function to State Space
A set of state variables is called phase variables, where each
subsequent state variable is defined to be the derivative of the
previous state variable.
Consider the differential equation
Choosing the state variables
ubya
dt
dy
a
dt
yd
a
dt
yd
n
n
nn
n
0011
1
1  

 
ubxaxaxa
dt
yd
x
dt
yd
x
x
dt
yd
x
dt
yd
x
x
dt
yd
x
dt
dy
x
x
dt
dy
xyx
nnn
n
nn
n
n 0121101
1
43
3
32
2
3
32
2
22
211











57
u
bx
x
x
x
x
aaaaaax
x
x
x
x
n
n
nn
n






















































































0
1
3
2
1
143210
1
3
2
1
0
0
0
0
100000
001000
000100
000010













 






















n
n
x
x
x
x
x
y
1
3
2
1
00001


58
Converting a transfer function with constant term in numerator
 Step 1. Find the associated differential equation.
 Step 2. Select the state variables.
Choosing the state variables as successive derivatives.
24269
24
)(
)(
23


ssssR
sC
rcccc
sRsCsss
2424269
)(24)()24269( 23



cx
cx
cx





3
2
1
1
3213
32
21
2492624
xy
rxxxx
xx
xx








59
Converting a transfer function with polynomial in numerator
Step1. Decomposing a transfer function.
Step 2. Converting the transfer function with constant term in numerator.
Step 3. Inverse Laplace transform.
01
2
2
3
3
1 1
)(
)(
asasasasR
sX

 )()()()( 101
2
2 sXbsbsbsCsY 
10
1
12
1
2
2)( xb
dt
dx
b
dt
xd
bty 
01
2
2
3
3
1 1
)(
)(
asasasasR
sX


)()()()( 101
2
2 sXbsbsbsCsY 
322110)( xbxbxbty  60
Ex. Find the transfer from the state-space representation
u























0
0
10
321
100
010
xx
 x001y





































321
10
01
321
100
010
00
00
00
)(
s
s
s
s
s
s
s AI
Solution:
123
12
31
1323
)det(
)(
)( 23
2
2
2
1

















 
sss
sss
sss
sss
s
sadj
s
AI
AI
AI
123
)23(10
)(
)(
23
2



sss
ss
s
s
U
Y
61
62
63
Output Eq. modifies to
64

STate Space Analysis

  • 1.
    Dr. K Hussain AssociateProfessor and Head Dept. of Electrical Engineering SITCOE
  • 2.
    Advantages of StateSpace Approach Classical/Transfer function Approach State space approach/Modern Control Approach  Transfer Function Approach  Linear Time Invariant System, SISO  Laplace Transform, Frequency domain  Only Input-output Description: Less Detail Description on System Dynamics  Doesn’t take all ICs  Taking specific inputs like step, ramp and parabolic etc…  State Variable Approach  Linear Time Varying, Nonlinear, Time Invariant, MIMO  Time domain  Detailed description of Internal behaviour in addition to I-O properties  Consider all ICs  Taking all inputs 2
  • 3.
    CLASSICAL APPROACH (TRANSFERFUNCTION)  The classical approach or frequency domain technique is based on converting a system’s differential equation to a transfer function.  It relates a representation of the output to a representation of the input.  It can be applied only to linear, time-invariant systems.  It rapidly provides stability and transient response information. 3
  • 4.
     The state-spaceapproach (also referred to as the modern, or time-domain, approach) is a unified method for modeling, analyzing, and designing a wide range of systems.  The state-space approach can be used to represent nonlinear systems. Also, it can handle, conveniently, systems with nonzero initial conditions and time varying.  The state-space approach is also attractive because of the availability of numerous state-space software package for the personal computer. MODERN APPROACH (STATE-SPACE) 4
  • 5.
    MODERN APPROACH (STATE-SPACE) It can be used to model and analyze nonlinear (backlash, saturation), time-varying (missiles with varying fuel levels), multi-input multi-output systems (i.e., an airplane) with nonzero initial conditions.  But it is not as intuitive as the classical approach. The designer has to engage in several calculations before the physical interpretation of the model is apparent. 5
  • 6.
    STATE-SPACE REPRESENTATION  Selecta particular subset of all possible system variables and call them state variables.  For an nth-order system, write n simultaneous first-order differential equations in terms of state variables.  If we know the initial conditions of all state variables at t0 and the system input for tt0, we can solve the simultaneous differential equations for the state variables for tt0. 6
  • 7.
    Concept of StateVariables  State: The state of a dynamic system is the smallest set of variables (called state variables) so that the knowledge of these variables at t = t0, together with the knowledge of the input for t  t0, determines the behavior of the system for any time t  t0.  State Variables: The state variables of a dynamic system are the variables making up the smallest set of variables that determine the state of the dynamic system.  State Vector: If n state variables are needed to describe the behavior of a given system, then the n state variables can be considered the n components of a vector x. Such vector is called a state vector.  State Space: The n-dimensional space whose coordinates axes consist of the x1 axis, x2 axis, .., xn axis, where x1, x2, .., xn are state variables, is called a state space. 7
  • 8.
    Block Diagram Representationof Continuous Time Control System in State space: 8
  • 9.
    Time Varying/Invariant Systems 9 TimeVarying System: Time Invariant System:
  • 10.
    State & OutputEquation: Matrices/Vectors 10 A(t)= State/System Matrix B(t)= Input Matrix C(t)=Output Matrix D(t)=Direct Transmission Matrix
  • 11.
    The general formof state and output equations for a linear, time-invariant system can be written as Du+Cx=yBu+Ax=x Where x is the n x 1 state vector, u is r x 1 input vector, y is the m x 1 output vector, A is nxn System Matrix, B is nxr Input Matrix, C is mxn Output Matrix and D is mxr Transition Matrix. 11
  • 12.
  • 13.
  • 14.
    EXAMPLE: + i(t) Lv(t) R L di dt Ri vt v t Ri t    ( ) ( ) ( ) ( ) (state equation) Output equation tLRtLR L R L R eie R ti s i ssR sI sVissIL )/()/( )0()1( 1 )( )0(111 )( )()]0()([             Assuming that v(t) is a unit step and knowing i(0), taking the LT of the state equation 14
  • 15.
    Writing the equationsin matrix-vector form   i v 0 i v 0 v(t) c R L 1 L 1 C c 1 L                             Assuming the voltage across the resistor as the output  v (t) Ri(t) R 0 i vR c         15
  • 16.
    Example: Given theelectric network, find a state-space representation. (Hint: state variables and , output )Cv Li )( /1 0 0/1 /1)/(1 tv Li v L CRC i v L C L C                                      L C R i v Ri 0/1 Ri   0=D;0R=C ; 0 =B; 0 -- =A; v i =x L R 1 L 1 L R c                   C 16
  • 17.
  • 18.
    Transfer function FromState space : DuCxy BuAxx   Given the state and output equations Take the Laplace transform assuming zero initial conditions: (1) (2) Solving for in Eq. (1), or (3) Substitutin Eq. (3) into Eq. (2) yields The transfer function is )()()( )()()( sss ssss DUCXY BUAXX   )(sX )()()( sss BUXAI  )()()( 1 sss BUAIX   )()()()( 1 ssss DUBUAICY   )(])([ 1 ss UDBAIC   DBAIC U Y  1 )( )( )( s s s 18
  • 19.
    Ex. Find thetransfer from the state-space representation u                        0 0 10 321 100 010 xx  x001y                                      321 10 01 321 100 010 00 00 00 )( s s s s s s s AI Solution: 123 12 31 1323 )det( )( )( 23 2 2 2 1                    sss sss sss sss s sadj s AI AI AI 123 )23(10 )( )( 23 2    sss ss s s U Y 19
  • 20.
    Solution of StateEquations: 20
  • 21.
  • 22.
  • 23.
  • 24.
    Laplace Transform Method(STM Computation) 24
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
    STATE SPACE REPRESENTATIONOF DYNAMIC SYSTEMS Consider the following n-th order differential equation in which the forcing function does not involve derivative terms. d y dt a d y dt a dy dt a y b u Y s U s b s a s a s a n n n n n n n n n n                1 1 1 1 0 0 1 1 1   ( ) ( ) Choosing the state variables as x y, x y, x y, , x d y dt x x , x x , ,x x x a x a x a x b u 1 2 3 n n 1 n 1 1 2 2 3 n-1 n n n 1 n 1 2 1 n 0                          31
  • 32.
          x x x x x x 0 1 00 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 a a a a a x x x x x x 1 2 3 n 2 n 1 n n n 1 n 2 2 1 1 2 3 n 2 n 1 n                                                                                                             0 0 0 0 0 b u y = [1 0 0 0 0]x 0   32
  • 33.
    State Space Representationof system with forcing function involves Derivatives Consider the following n-th order differential equation in which the forcing function involves derivative terms. d y dt a d y dt a dy dt a y b d u dt b d u dt b du dt b u Y s U s b s b s b s b s a s a s a n n n n n n n n n n n n n n n n n n n n                             1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1     ( ) ( ) 33
  • 34.
    Define the followingn variables as a set of n state variables uxu dt du dt ud dt ud dt yd x uxuuuyx uxuuyx uyx nnnnn n n n n n n 11122 2 11 1 0 222103 11102 01                 34
  • 35.
      . . .   . . .. . . . . . . . . . . . . . . x x x x a a a a x x x x n n n n n n n n 1 2 1 1 2 1 1 2 1 1 2 1 0 1 0 0 0 0 1 0 0 0 0 1                                                                                        n n u y x x x u                                          1 0 0 1 2 0 . . . 35
  • 36.
    CONTROLLABLE CANONICAL FORM dy dt a d y dt a dy dt a y b d u dt b d u dt b du dt b u Y s U s b s b s b s b s a s a s a n n n n n n n n n n n n n n n n n n n n                             1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1     ( ) ( ) 36
  • 37.
    Y s U s b ba b s b a b b a b s a s a s a Y s b U s Y s Y s b a b s b a b b a b s a s a s a n n n n n n n n n n n n n n n n n n ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                    0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1     U s Y s b a b s b a b b a b U s s a s a s a Q s n n n n n n n n n ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 0 1 1 1 0 0 1 1 1                    37
  • 38.
    s Q sa s Q s a sQ s a Q s U s Y s b a b s Q s b a b sQ s b a b Q s n n n n n n n n n ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                   1 1 1 1 1 0 1 1 1 0 0   Defining state variables as follows: X s Q s X s sQ s X s s Q s X s s Q s n n n n 1 2 1 2 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )         sX s X s sX s X s sX s X sn n 1 2 2 3 1 ( ) ( ) ( ) ( ) ( ) ( )        x x x x x xn n 1 2 2 3 1     38
  • 39.
    sX s aX s a X s a X s U s x a x a x a x u Y s b U s b a b s Q s b a b sQ s b a b Q s b U s b a b X s n n n n n n n n n n n n n n ( ) ( ) ( ) ( ) ( )  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                            1 1 2 1 1 1 2 1 0 1 1 0 1 1 1 0 0 0 1 1 0    + =                  ( ) ( ) ( ) ( ) ( ) ( ) ( ) b a b X s b a b X s y b a b x b a b x b a b x b u n n n n n n n n n 1 1 0 2 0 1 0 1 1 1 0 2 1 1 0 0 + 39
  • 40.
  • 41.
    BLOCK DIAGRAM u + b0 ++ + + + + + + y + + + + + + + b1-a1b0 b2-a2b0 bn-1-an-1 b0 bn-an b0    a1 a2 an-1 an xn xn-1 x2 x1 41
  • 42.
    OBSERVABLE CANONICAL FORM sY s b U s s a Y s bU s s a Y s b U s a Y s b U s Y s b U s bU s a Y s b U s a Y s b U s a Y s X s n n n n n n s s n n s n n n s n n [ ( ) ( )] [ ( ) ( )] [ ( ) ( )] ( ) ( ) ( ) ( ) [ ( ) ( )] [ ( ) ( )] [ ( ) ( )] ( ) [                        0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1   bU s a Y s X s X s b U s a Y s X s X s b U s a Y s X s X s b U s a Y s Y s b U s X s n n s n s n n s n n n 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 0 ( ) ( ) ( )] ( ) [ ( ) ( ) ( )] ( ) [ ( ) ( ) ( )] ( ) [ ( ) ( )] ( ) ( ) ( )                   42
  • 43.
    sX s Xs a X s b a b U s sX s X s a X s b a b U s sX s X s a X s b a b U s sX s a X s b a b U s x a x b n n n n n n n n n n n n n n n n ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  (                          1 1 1 1 0 1 2 2 2 2 0 2 1 1 1 1 0 1 0 1  n n n n n n n n n n a b u x x a x b a b u x x a x b a b u y x b u                0 2 1 1 1 1 0 1 1 1 1 0 0 )  ( )  ( )  43
  • 44.
      . . .   . . . .. . . . . . . . . . . x x x x a a a a x x x x b a b b a n n n n n n n n n n 1 2 1 1 2 1 1 2 1 0 1 0 0 0 1 0 0 0 0 0 0 1                                                                                     1 0 1 1 0 1 2 00 0 1 b b a b u y x x b u . . . . . . .                                          44
  • 45.
    BLOCK DIAGRAM b0 a1an-1 an + + + + + + +   y u bn-anb0 bn-1-an-1b0 b1-a1b0 x1 x2 xn-1 xn 45
  • 46.
    DIAGONAL CANONICAL FORM Considerthat the denominator polynomial involves only distinct roots. Then, Y s U s b s b s b s b s p s p s p b c s p c s p c s p n n n n n n n ( ) ( ) ( )( ) ( )                  0 1 1 1 1 2 0 1 1 2 2    where, ci, i=1,2, …, n are the residues corresponding pi 46
  • 47.
    Y s bU s c s p U s c s p U s c s p X s s p U s sX s p X s U s X s s p U s sX s p X s U s X s s p U s sX s p X s U s n n n n n n n ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                           0 1 1 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1   47
  • 48.
       ( ) () ( ) ( ) ( ) x p x u x p x u x p x u Y s b U s c X s c X s c X s y c x c x c x b u n n n n n n n 1 1 1 2 2 2 0 1 1 2 2 1 1 2 2 0                       48
  • 49.
        . . .  . . . . . . . . . . . x x x p p p x x x u y cc c x x x b u n n n n n 1 2 1 2 1 2 1 2 1 2 0 0 0 1 1 1                                                                                                49
  • 50.
  • 51.
    JORDAN CANONICAL FORM Considerthe case where the denominator polynomial involves multiple roots. Suppose that the pi’s are different from one another, except that the first three are equal. Y s U s b s bs b s b s p s p s p s p Y s U s b c s p c s p c s p c s p c s p n n n n n n n ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )                       0 1 1 1 1 3 4 5 0 1 1 3 2 1 2 3 1 4 4    51
  • 52.
    Y s bU s c s p U s c s p U s c s p U s c s p U s c s p U s X s c s p U s X s c s p U s X s X s s p X s c s p U s X s X n n ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                      0 1 1 3 2 1 2 3 1 4 4 1 1 1 3 2 2 1 2 1 2 1 3 3 1 2 1 +  3 1 4 4 4 1 ( ) ( ) ( ) ( ) ( ) s s p X s c s p U s X s c s p U sn n n        52
  • 53.
    sX s pX s X s x p x x sX s p X s X s x p x x sX s p X s U s x p x u sX s p X s U s x p x u sX s p X s U s xn n n 1 1 1 2 1 1 1 2 2 1 2 3 2 1 2 3 3 1 3 3 1 3 4 4 4 4 4 4 ( ) ( ) ( )  ( ) ( ) ( )  ( ) ( ) ( )  ( ) ( ) ( )  ( ) ( ) ( )                                   n n n n n n n p x u Y s b U s c X s c X s c X s c X s y b u c x c x c x c x                ( ) ( ) ( ) ( ) ( ) ( )0 1 1 2 2 3 3 0 1 1 2 2 3 3   53
  • 54.
    BLOCK DIAGRAM b0 c3 c2 c1 c4 cn x3 x2 x1 x4 xn . . . .. . 1 1sp 1 1s p 1 4s p 1 1s p 1 s pn u y + + + + + + + + + 54
  • 55.
         . . . x x x x x p p p p p x x x x x u y cc n n n 1 2 3 4 1 1 1 4 1 2 3 4 1 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1                                                                                             c x x x b un n 1 2 0              55
  • 56.
    Example: Express inCCF/OCF/DCF 56 CCF OCF DCF
  • 57.
    Converting a TransferFunction to State Space A set of state variables is called phase variables, where each subsequent state variable is defined to be the derivative of the previous state variable. Consider the differential equation Choosing the state variables ubya dt dy a dt yd a dt yd n n nn n 0011 1 1      ubxaxaxa dt yd x dt yd x x dt yd x dt yd x x dt yd x dt dy x x dt dy xyx nnn n nn n n 0121101 1 43 3 32 2 3 32 2 22 211            57
  • 58.
  • 59.
    Converting a transferfunction with constant term in numerator  Step 1. Find the associated differential equation.  Step 2. Select the state variables. Choosing the state variables as successive derivatives. 24269 24 )( )( 23   ssssR sC rcccc sRsCsss 2424269 )(24)()24269( 23    cx cx cx      3 2 1 1 3213 32 21 2492624 xy rxxxx xx xx         59
  • 60.
    Converting a transferfunction with polynomial in numerator Step1. Decomposing a transfer function. Step 2. Converting the transfer function with constant term in numerator. Step 3. Inverse Laplace transform. 01 2 2 3 3 1 1 )( )( asasasasR sX   )()()()( 101 2 2 sXbsbsbsCsY  10 1 12 1 2 2)( xb dt dx b dt xd bty  01 2 2 3 3 1 1 )( )( asasasasR sX   )()()()( 101 2 2 sXbsbsbsCsY  322110)( xbxbxbty  60
  • 61.
    Ex. Find thetransfer from the state-space representation u                        0 0 10 321 100 010 xx  x001y                                      321 10 01 321 100 010 00 00 00 )( s s s s s s s AI Solution: 123 12 31 1323 )det( )( )( 23 2 2 2 1                    sss sss sss sss s sadj s AI AI AI 123 )23(10 )( )( 23 2    sss ss s s U Y 61
  • 62.
  • 63.
  • 64.