This document provides information about vector spaces and subspaces. It defines a vector space as a set of objects called vectors that can be added together and multiplied by scalars, subject to certain rules. A subspace is a subset of a vector space that is closed under vector addition and scalar multiplication. The null space of a matrix is the set of solutions to the homogeneous equation Ax=0 and is a subspace. The column space of a matrix is the set of all linear combinations of its columns and is also a subspace. Examples are provided to illustrate these concepts.