TUTORIAL 7
MTH3201 LINEAR ALGEBRA
1(a)
              3/7   −6/7   2/7
        𝐴 𝑇 = 2/7    3/7   6/7
              6/7    2/7   −3/7

       3/7 2/7 6/7 3/7 −6/7 2/7    1            0 0
   𝑇
 𝐴𝐴 = −6/7 3/7 2/7 2/7 3/7   6/7 = 0            1 0 = 𝐼
       2/7 6/7 −3/7 6/7 2/7 −3/7   0            0 1

  𝐴𝐴 𝑇 = 𝐼
  𝐴𝐴 𝑇 = 𝐴𝐴−1
  ∴ 𝐴 𝑇 = 𝐴−1
  Since 𝐴 𝑇 = 𝐴−1 , 𝐴 is an orthogonal matrix
1(b)



𝑅𝑜𝑤 𝑠𝑝𝑎𝑐𝑒 𝑜𝑓 𝐴:           𝑟1 = 3/7 2/7 6/7
                          𝑟2 = −6/7 3/7 2/7
                          𝑟3 = 2/7 6/7 −3/7
 𝑟1 , 𝑟2 = 3/7 −6/7 + (2/7)(3/7) + 6/7 2/7 = 0
  𝑟1 , 𝑟3 = 3/7 2/7 + (2/7)(6/7) + 6/7 −3/7 = 0
𝑟2 , 𝑟3 = −6/7 2/7 + (3/7)(6/7) + 2/7 −3/7 = 0
  𝑟1 = 𝑟1 , 𝑟1 1/2 =        3/7 2 + 2/7 2 + 6/7 2 = 1
 𝑟2 = 𝑟2 , 𝑟2 1/2 =         −6/7 2 + 3/7 2 + 2/7 2 = 1
 𝑟3 = 𝑟3 , 𝑟3   1/2   =     2/7   2   + 6/7   2   + −3/7   2   =1
  ∴ r1 , r2 , r3 is an orthonormal set. Hence, it is an orthogonal matrix
1(c)


                          3/7
  𝐶𝑜𝑙𝑢𝑚𝑛 𝑠𝑝𝑎𝑐𝑒 𝑜𝑓 𝐴:𝑐1 = −6/7      ,
                          2/7
      2/7         6/7
𝑐2 = 3/7 , 𝑐3 = 2/7
      6/7        −3/7

 𝑐1 , 𝑐2 = 3/7 2/7 + (−6/7)(3/7) + 2/7 6/7 = 0
 𝑐1 , 𝑐3 = 3/7 6/7 + (−6/7)(2/7) + 2/7 −3/7 = 0
  𝑐2 , 𝑐3 = 2/7 6/7 + (3/7)(2/7) + 6/7 −3/7 = 0

   𝑐1 = 𝑟1 , 𝑟1 1/2 = 1
  𝑐2 = 𝑟2 , 𝑟2 1/2 = 1
  𝑐3 = 𝑟3 , 𝑟3   1/2   =1
∴ c1 , c2 , c3 is an orthonormal set. Hence, it is an orthogonal matrix
2. Inverse of matrix A
     𝐴 𝐼         𝐼 𝐴−1
      3/7     2/7 6/7 1       0   0          𝑖 7𝑅1 , 7𝑅2 , 7𝑅3
     −6/7     3/7 2/7 0       1   0          𝑖𝑖 𝑅1 − 𝑅2 , 2𝑅1 + 𝑅2 , 𝑅2 + 3𝑅3
      2/7     6/7 −3/7 0      0   1               𝑅2
                                             𝑖𝑖𝑖     , 3𝑅2 − 𝑅3
                                                  7
                                                  𝑅3
                                             𝑖𝑣
                                                 49
                                              𝑣 𝑅2 − 2𝑅3
                                              𝑣𝑖 𝑅1 + 4𝑅2 − 9𝑅3
    1      0 0 3/7 −6/7 2/7
    0      1 0 2/7 3/7  6/7
    0      0 1 6/7 2/7 −3/7

    ∴ A is an orthogonal matrix from question 1
                      𝐴 𝑇 = 𝐴−1
3(a) Transition matrix B to B′
         1 2            2 3
  𝑀𝐵 =        , 𝑀 𝐵′ =
         3 2            1 −4
    𝑀 𝐵′ 𝑀 𝐵        𝐼 𝑃
   2 3 1 2           𝑖 𝑅1 ↔ 𝑅2          𝑖𝑖 2𝑅1 − 𝑅2                     1 0 13/11       14/11
  1   −4 3   2               −𝑅2                                        0 1 −5/11       −2/11
                      𝑖𝑖𝑖               𝑖𝑣        𝑅1 + 4𝑅2
                             11                                                 13/11   14/11
                                                    ∴ Transition matrix , P =
                                                                                −5/11   −2/11
3(b) Transition matrix B′ to B
   𝑀 𝐵 𝑀 𝐵′      𝐼 𝑄                              −𝑅2
                  𝑖         𝑅2 − 3𝑅1         𝑖𝑖
 1    2 2 3                                        4                    1 0 −1/2 −7/2
 3    2 1 −4                𝑖𝑖𝑖   𝑅1 − 2𝑅2                              0 1 5/4 13/4

                                  −1/2 −7/2
∴ Transition matrix , Q =
                                  5/4 13/4
−1         From 3(a)
3(c) Find 𝑤   𝐵′   𝑖𝑓 𝑤           𝐵   =
                                        3                  𝑀 𝐵′ 𝑀 𝐵         𝐼 𝑃

using equation      𝑣             = 𝑃 𝑣                                     13/11   14/11
                            𝐵′            𝐵       Transition matrix , P =
                                                                            −5/11   −2/11
                    𝑤        𝐵′   = 𝑃 𝑤       𝐵
                           13/11 14/11 −1
                        𝑤    𝐵′ =
                           −5/11 −2/11 3
                           29/11
                    𝑤 𝐵′ =
                           −1/11
4(a) Transition matrix B to B′
            1    −1 −1                 3 0   1
       𝑀𝐵 = 2    −1 1      , 𝑀 𝐵′   = 7 4    0       𝑀 𝐵′ 𝑀 𝐵        𝐼 𝑃
            1     1  7                −2 1   0
3     0   1 1 −1     −1             ERO       1 0 0 −2/15        −1/3      −9/5
7     4   0 2 −1      1                       0 1 0 11/15        1/3       17/5
−2    1   0 1 1       7                       0 0 1 7/5           0        22/5

                                                        ∴ Transition matrix , P
     4(b) Transition matrix B′ to B
        𝑀 𝐵 𝑀 𝐵′      𝐼 𝑄
 1 −1       −1 3 0 1                ERO          1 0 0 11           11   −4
 2 −1        1 7 4 0                             0 1 0 23/2        29/2 −13/2
 1 1         7 −2 1 0                            0 0 1 −7/2        −7/2  3/2
                           11          11     −4
∴ Transition matrix , Q = 23/2        29/2   −13/2
                          −7/2        −7/2    3/2
From 4(a)
4(c) Find w   B′   first and then find w                       B
                                                                                𝑀 𝐵′ 𝑀 𝐵     𝐼 𝑃
 𝑀 𝐵′ 𝑤             𝐼 w             B′                                                        13/11   14/11
                                                                      Transition matrix , P =
 3 0      1 −2                                               1 0   0 −22/15                   −5/11   −2/11
                                ERO
 7 4      0 −6                                               0 1   0 16/15
−2 1      0 4                                                0 0   1 12/5

                                                                       w   B′
using equation      𝑣       𝐵       =    𝑃−1   𝑣   𝐵′

                        𝑤       𝐵   = 𝑃−1 𝑤             𝐵′
                        𝑤= 𝑄 𝑤 𝐵′
                                𝐵
                            11    11  −4   −22/15
                     𝑤 𝐵 = 23/2 29/2 −13/2 16/15
                           −7/2 −7/2  3/2   12/5
                           −14
                     𝑤 𝐵 = −17
                            5
4(d) Find w    B   directly

     𝑀𝐵 𝑤                𝐼 w   B

1     −1      −1 −2       −2𝑅1 + 𝑅2   1   −1     −1 −2     𝑅1 + 𝑅2   1 0   2 −4
2     −1       1 −6                   0    1      3 −2               0 1   3 −2
                           −𝑅1 + 𝑅3                      −2𝑅2 + 𝑅3
1      1       7 4                    0    2      8 6                0 0   2 10

      𝑅3 /2        1 0         2 −4   𝑅1 − 2𝑅2    1   0 0 −14
                   0 1         3 −2   𝑅2 − 3𝑅3    0   1 0 −17
                   0 0         1 5                0   0 1 5

                        −14
              ∴   𝑤 𝐵 = −17
                         5
5(a) Transition matrix B to B′
         3 −4            2 1
 𝑀𝐵 =           , 𝑀 𝐵′ =
         1 2             0 3
    𝑀 𝐵′ 𝑀 𝐵       𝐼 𝑃
  2 1 3 −4
  0 3 1 2
           𝑖     𝑅1 /2
           𝑖𝑖    𝑅2 /3
                       𝑅2
           𝑖𝑖𝑖    𝑅1 −
                       2

   1   0 4/3 −7/3
   0   1 1/3 2/3
                            4/3 −7/3
∴ Transition matrix , P =
                            1/3 2/3
5(b) Find q   B   first and then find q         B′


     𝑀𝐵 𝑞               𝐼 q       B

3     −4 −1           ERO                      1 0 7/5
1     2 4                                      0 1 13/10

                                                    q    B


    using equation       𝑣       𝐵′    = 𝑃 𝑣   𝐵

                             𝑞    = 𝑃 𝑞 𝐵
                                  𝐵′
                                    4/3 −7/3 7/5
                             𝑞 𝐵′ =
                                    1/3 2/3 13/10
                                    −7/6
                             𝑞 𝐵′ =
                                     4/3
5(c) Find q      B′   directly

 𝑀 𝐵′ 𝑞                 𝐼 q   B′

2 1 −1            𝑅1 /2
                                   1   1/2 −1/2
0 3 4             𝑅2 /3            0    1 4/3

−𝑅2
    + 𝑅1
 2               1 0 −7/6
                 0 1 4/3

                 −7/6
  ∴ 𝑞     𝐵′ =
                  4/3
Tutorial 7 mth 3201

Tutorial 7 mth 3201

  • 2.
  • 3.
    1(a) 3/7 −6/7 2/7 𝐴 𝑇 = 2/7 3/7 6/7 6/7 2/7 −3/7 3/7 2/7 6/7 3/7 −6/7 2/7 1 0 0 𝑇 𝐴𝐴 = −6/7 3/7 2/7 2/7 3/7 6/7 = 0 1 0 = 𝐼 2/7 6/7 −3/7 6/7 2/7 −3/7 0 0 1 𝐴𝐴 𝑇 = 𝐼 𝐴𝐴 𝑇 = 𝐴𝐴−1 ∴ 𝐴 𝑇 = 𝐴−1 Since 𝐴 𝑇 = 𝐴−1 , 𝐴 is an orthogonal matrix
  • 4.
    1(b) 𝑅𝑜𝑤 𝑠𝑝𝑎𝑐𝑒 𝑜𝑓𝐴: 𝑟1 = 3/7 2/7 6/7 𝑟2 = −6/7 3/7 2/7 𝑟3 = 2/7 6/7 −3/7 𝑟1 , 𝑟2 = 3/7 −6/7 + (2/7)(3/7) + 6/7 2/7 = 0 𝑟1 , 𝑟3 = 3/7 2/7 + (2/7)(6/7) + 6/7 −3/7 = 0 𝑟2 , 𝑟3 = −6/7 2/7 + (3/7)(6/7) + 2/7 −3/7 = 0 𝑟1 = 𝑟1 , 𝑟1 1/2 = 3/7 2 + 2/7 2 + 6/7 2 = 1 𝑟2 = 𝑟2 , 𝑟2 1/2 = −6/7 2 + 3/7 2 + 2/7 2 = 1 𝑟3 = 𝑟3 , 𝑟3 1/2 = 2/7 2 + 6/7 2 + −3/7 2 =1 ∴ r1 , r2 , r3 is an orthonormal set. Hence, it is an orthogonal matrix
  • 5.
    1(c) 3/7 𝐶𝑜𝑙𝑢𝑚𝑛 𝑠𝑝𝑎𝑐𝑒 𝑜𝑓 𝐴:𝑐1 = −6/7 , 2/7 2/7 6/7 𝑐2 = 3/7 , 𝑐3 = 2/7 6/7 −3/7 𝑐1 , 𝑐2 = 3/7 2/7 + (−6/7)(3/7) + 2/7 6/7 = 0 𝑐1 , 𝑐3 = 3/7 6/7 + (−6/7)(2/7) + 2/7 −3/7 = 0 𝑐2 , 𝑐3 = 2/7 6/7 + (3/7)(2/7) + 6/7 −3/7 = 0 𝑐1 = 𝑟1 , 𝑟1 1/2 = 1 𝑐2 = 𝑟2 , 𝑟2 1/2 = 1 𝑐3 = 𝑟3 , 𝑟3 1/2 =1 ∴ c1 , c2 , c3 is an orthonormal set. Hence, it is an orthogonal matrix
  • 6.
    2. Inverse ofmatrix A 𝐴 𝐼 𝐼 𝐴−1 3/7 2/7 6/7 1 0 0 𝑖 7𝑅1 , 7𝑅2 , 7𝑅3 −6/7 3/7 2/7 0 1 0 𝑖𝑖 𝑅1 − 𝑅2 , 2𝑅1 + 𝑅2 , 𝑅2 + 3𝑅3 2/7 6/7 −3/7 0 0 1 𝑅2 𝑖𝑖𝑖 , 3𝑅2 − 𝑅3 7 𝑅3 𝑖𝑣 49 𝑣 𝑅2 − 2𝑅3 𝑣𝑖 𝑅1 + 4𝑅2 − 9𝑅3 1 0 0 3/7 −6/7 2/7 0 1 0 2/7 3/7 6/7 0 0 1 6/7 2/7 −3/7 ∴ A is an orthogonal matrix from question 1 𝐴 𝑇 = 𝐴−1
  • 7.
    3(a) Transition matrixB to B′ 1 2 2 3 𝑀𝐵 = , 𝑀 𝐵′ = 3 2 1 −4 𝑀 𝐵′ 𝑀 𝐵 𝐼 𝑃 2 3 1 2 𝑖 𝑅1 ↔ 𝑅2 𝑖𝑖 2𝑅1 − 𝑅2 1 0 13/11 14/11 1 −4 3 2 −𝑅2 0 1 −5/11 −2/11 𝑖𝑖𝑖 𝑖𝑣 𝑅1 + 4𝑅2 11 13/11 14/11 ∴ Transition matrix , P = −5/11 −2/11 3(b) Transition matrix B′ to B 𝑀 𝐵 𝑀 𝐵′ 𝐼 𝑄 −𝑅2 𝑖 𝑅2 − 3𝑅1 𝑖𝑖 1 2 2 3 4 1 0 −1/2 −7/2 3 2 1 −4 𝑖𝑖𝑖 𝑅1 − 2𝑅2 0 1 5/4 13/4 −1/2 −7/2 ∴ Transition matrix , Q = 5/4 13/4
  • 8.
    −1 From 3(a) 3(c) Find 𝑤 𝐵′ 𝑖𝑓 𝑤 𝐵 = 3 𝑀 𝐵′ 𝑀 𝐵 𝐼 𝑃 using equation 𝑣 = 𝑃 𝑣 13/11 14/11 𝐵′ 𝐵 Transition matrix , P = −5/11 −2/11 𝑤 𝐵′ = 𝑃 𝑤 𝐵 13/11 14/11 −1 𝑤 𝐵′ = −5/11 −2/11 3 29/11 𝑤 𝐵′ = −1/11
  • 9.
    4(a) Transition matrixB to B′ 1 −1 −1 3 0 1 𝑀𝐵 = 2 −1 1 , 𝑀 𝐵′ = 7 4 0 𝑀 𝐵′ 𝑀 𝐵 𝐼 𝑃 1 1 7 −2 1 0 3 0 1 1 −1 −1 ERO 1 0 0 −2/15 −1/3 −9/5 7 4 0 2 −1 1 0 1 0 11/15 1/3 17/5 −2 1 0 1 1 7 0 0 1 7/5 0 22/5 ∴ Transition matrix , P 4(b) Transition matrix B′ to B 𝑀 𝐵 𝑀 𝐵′ 𝐼 𝑄 1 −1 −1 3 0 1 ERO 1 0 0 11 11 −4 2 −1 1 7 4 0 0 1 0 23/2 29/2 −13/2 1 1 7 −2 1 0 0 0 1 −7/2 −7/2 3/2 11 11 −4 ∴ Transition matrix , Q = 23/2 29/2 −13/2 −7/2 −7/2 3/2
  • 10.
    From 4(a) 4(c) Findw B′ first and then find w B 𝑀 𝐵′ 𝑀 𝐵 𝐼 𝑃 𝑀 𝐵′ 𝑤 𝐼 w B′ 13/11 14/11 Transition matrix , P = 3 0 1 −2 1 0 0 −22/15 −5/11 −2/11 ERO 7 4 0 −6 0 1 0 16/15 −2 1 0 4 0 0 1 12/5 w B′ using equation 𝑣 𝐵 = 𝑃−1 𝑣 𝐵′ 𝑤 𝐵 = 𝑃−1 𝑤 𝐵′ 𝑤= 𝑄 𝑤 𝐵′ 𝐵 11 11 −4 −22/15 𝑤 𝐵 = 23/2 29/2 −13/2 16/15 −7/2 −7/2 3/2 12/5 −14 𝑤 𝐵 = −17 5
  • 11.
    4(d) Find w B directly 𝑀𝐵 𝑤 𝐼 w B 1 −1 −1 −2 −2𝑅1 + 𝑅2 1 −1 −1 −2 𝑅1 + 𝑅2 1 0 2 −4 2 −1 1 −6 0 1 3 −2 0 1 3 −2 −𝑅1 + 𝑅3 −2𝑅2 + 𝑅3 1 1 7 4 0 2 8 6 0 0 2 10 𝑅3 /2 1 0 2 −4 𝑅1 − 2𝑅2 1 0 0 −14 0 1 3 −2 𝑅2 − 3𝑅3 0 1 0 −17 0 0 1 5 0 0 1 5 −14 ∴ 𝑤 𝐵 = −17 5
  • 12.
    5(a) Transition matrixB to B′ 3 −4 2 1 𝑀𝐵 = , 𝑀 𝐵′ = 1 2 0 3 𝑀 𝐵′ 𝑀 𝐵 𝐼 𝑃 2 1 3 −4 0 3 1 2 𝑖 𝑅1 /2 𝑖𝑖 𝑅2 /3 𝑅2 𝑖𝑖𝑖 𝑅1 − 2 1 0 4/3 −7/3 0 1 1/3 2/3 4/3 −7/3 ∴ Transition matrix , P = 1/3 2/3
  • 13.
    5(b) Find q B first and then find q B′ 𝑀𝐵 𝑞 𝐼 q B 3 −4 −1 ERO 1 0 7/5 1 2 4 0 1 13/10 q B using equation 𝑣 𝐵′ = 𝑃 𝑣 𝐵 𝑞 = 𝑃 𝑞 𝐵 𝐵′ 4/3 −7/3 7/5 𝑞 𝐵′ = 1/3 2/3 13/10 −7/6 𝑞 𝐵′ = 4/3
  • 14.
    5(c) Find q B′ directly 𝑀 𝐵′ 𝑞 𝐼 q B′ 2 1 −1 𝑅1 /2 1 1/2 −1/2 0 3 4 𝑅2 /3 0 1 4/3 −𝑅2 + 𝑅1 2 1 0 −7/6 0 1 4/3 −7/6 ∴ 𝑞 𝐵′ = 4/3