SlideShare a Scribd company logo
1 of 27
Row Space, Column Space, Null Space
And
Rank Nullity Theorem
A part of active learning assignment.
An initiative by GTU.
Prepared by,
Ronak Machhi (130410109042)
(130410109044)
(130410109046)
(130410109048)
(130410109050)
Guided by:
Prof. Harshad R. Patel
Prof. J. B. Patel
Vector Calculus and Linear
Algebra
Outline
 Row Space
 Column Space
 Null space
 Rank And Nullity
Definition
11 12 1
21 22 2
1 2
1 11 12 1
2 21 22 2
For an m n matrix
...
...
A=
: : :
...
the vectors
[ ]
[ ]
:
n
n
m m mn
n
n
a a a
a a a
a a a
a a a
a a a
×
 
 
 
 
 
  
=
=
r
r
...
...
m 1 2
n
11 12 1
21 22 2
1 2
1 2
[ ]
in R formed form the rows of Aare called the row vectors of A, and the vectors
, , ...,
: : :
in
m m mn
n
n
n
m m mn
a a a
a a a
a a a
a a a
=
     
     
     = = =
     
     
          
r
c c c
...
m
R formed from the columns of A are called the column vectors of A.
Example 1
Row and Column Vectors in a 2×3
Matrix
 Let
The row vectors of A are
and the column vectors of A are
2 1 0
3 1 4
A
 
=  − 
[ ] [ ]1 22 1 0 and 3 1 4= = −r r
2 1 0
, , and
3 1 4
     
= = =     −     
1 2 3c c c
Definition
 If A is an m×n matrix, then the
subspace of Rn
spanned by the row
vectors of A is called the row space of
A, and the subspace of Rm
spanned by
the column vectors is called the column
space of A. The solution space of the
homogeneous system of equation
Ax=0, which is a subspace of Rn
, is
called the nullsapce of A.
Theorem
 Elementary row operations do not
change the nullspace of a matrix.
Example 4
Basis for Nullspace
 Find a basis for the nullspace of
Solution.
The nullspace of A is the solution space of the homogeneous
system
After solution we find that the vectors
Form a basis for this space.
2 2 1 0 1
1 1 2 3 1
1 1 2 0 1
0 0 1 1 1
A
− 
 − − − =
 − −
 
 
1 2 3 5
1 2 3 4 5
1 2 3 5
3 4 5
2 2 0
2 3 0
2 0
0
x x x x
x x x x x
x x x x
x x x
+ − + =
− − + − + =
+ − − =
+ + =
1 2
1 1
1 0
and0 1
0 0
0 1
− −   
   
   
   = = −
   
   
      
v v
Theorem
 Elementary row operations do not
change the row space of a matrix.
Theorem
 If a matrix R is in row echelon form,
then the row vectors with the leading
1’s (i.e., the nonzero row vectors) form
a basis for the row space of R, and the
column vectors with the leading 1’s of
the row vectors form a basis for the
column space of R.
Example 5
Bases for Row and Column Spaces
1
2
3
The matrix
1 2 5 0 3
0 1 3 0 0
0 0 0 1 0
0 0 0 0 0
is in row-echelon form. From Theorem 5.5.6 the vectors
[1 -2 5 0 3]
[0 1 3 0 0]
[0 0 0 1 0]
form a
R
− 
 
 =
 
 
 
=
=
=
r
r
r
1 2 4
basis for the row space of R, and the vectors
1 2 0
0 1 0
, ,
0 0 1
0 0 0
form a basis for the column space of R.
−     
     
     = = =
     
     
     
c c c
Example 6
Bases for Row and Column Spaces
(1/2)
 Find bases for the row and column spaces of
Solution.
Reducing A to row-echelon form we obtain
By Theorem 5.5.6 the nonzero row vectors of R form a basis for row space
of R, and hence form a basis for the row space of A. These basis
vectors are
1 3 4 2 5 4
2 6 9 1 8 2
2 6 9 1 9 7
1 3 4 2 5 4
A
− − 
 − − =
 − −
 
− − − − 
1 3 4 2 5 4
0 0 1 3 2 6
0 0 0 0 1 5
0 0 0 0 0 0
R
− − 
 − − =
 
 
 
[ ]
[ ]
[ ]
1
2
3
r 1 3 4 2 5 4
r 0 0 1 3 2 6
r 0 0 0 0 1 5
= − −
= − −
=
Example 6
Bases for Row and Column Spaces
(2/2)
We can find a set of column vectors of R that forms a basis for the column
space of R, then the corresponding column vectors of A will form a basis
for the column space of A.
The first, third, and fifth columns of R contain the leading 1’s of the row
vector , so
Form a basis for the column space of R; thus
Form a basis for the column space of A.
1 4 5
0 1 2
, ,
0 0 1
0 0 0
     
     −     = = =
     
     
     
' ' '
1 5 5c c c
1 4 5
2 9 8
, ,
2 9 9
1 4 5
     
     
     = = =
     
     
− − −     
1 3 5c c c
Example 7
Basis for a Vector Space Using Row
Operations (1/2)
 Find a basis for the space spanned by the vectors
v1=(1, -2, 0, 0, 3), v2=(2, -5, -3, -2, 6), v3=(0, 5, 15, 10, 0), v4=(2, 6,
18, 8, 6)
Solution.
Except for a variation in notation, the space spanned by these
vectors is row space of the matrix
Reducing this matrix to row-echelon form we obtain
1 2 0 0 3
2 5 3 2 6
0 5 15 10 0
2 6 18 8 6
− 
 − − − 
 
 
 
1 2 0 0 3
0 1 3 2 0
0 0 1 1 0
0 0 0 0 0
− 
 
 
 
 
 
Example 7
Basis for a Vector Space Using Row
Operations (2/2)
The nonzero row vectors in this matrix are
w1=(1, -2, 0, 0, 3), w2=(0, 1, 3, 2, 0),
w3=(0, 0, 1, 1, 0)
These vectors form a basis for the row
space and consequently form a basis
for the subspace of R5
spanned by v1,
v2, v3, and v4.
Example 8
Basis for the Row Space of a Matrix
(1/2)
 Find a basis for the row space of
Consisting entirely of row vectors from A.
Solution.
Transposing A yields
1 2 0 0 3
2 5 3 2 6
0 5 15 10 0
2 6 18 8 6
A
− 
 − − − =
 
 
 
1 2 0 2
2 5 5 6
0 3 15 18
0 2 10 8
3 6 0 6
T
A
 
 − − 
 = −
 
− 
  
Example 8
Basis for the Row Space of a Matrix
(2/2)
Reducing this matrix to row-echelon form yields
The first, second, and fourth columns contain the leading 1’s, so the
corresponding column vectors in AT
form a basis for the column
space of ; these are
Transposing again and adjusting the notation appropriately yields the
basis vectors
r1=[1 -2 0 0 3], r2=[2 -5 -3 -2 6], and r3=[2 -5 -3 -2 6]
for the row space of A.
1 2 0 2
0 1 5 10
0 0 0 1
0 0 0 0
0 0 0 0
 
 − 
 
 
 
  
1 2 2
2 5 6
, , and0 3 18
0 2 8
3 6 6
     
     − −     
     = = =−
     
−     
          
1 2 4c c c
Rank And Nullity
Theorem
 If A is any matrix, then the row space
and column space of A have the same
dimension.
Definition
 The common dimension of the row and
column space of a matrix A is called the
rank of A and is denoted by rank(A); the
dimension of the nullspace of a is called
the nullity of A and is denoted by
nullity(A).
Example 1
Rank and Nullity of a 4×6 Matrix
(1/2)
 Find the rank and nullity of the matrix
Solution.
The reduced row-echelon form of A is
Since there are two nonzero rows, the row space and column space
are both two-dimensional, so rank(A)=2.
1 2 0 4 5 3
3 7 2 0 1 4
2 5 2 4 6 1
4 9 2 4 4 7
A
− − 
 − =
 −
 
− − − 
1 0 4 28 37 13
0 1 2 12 16 5
0 0 0 0 0 0
0 0 0 0 0 0
− − − 
 − − − 
 
 
 
Example 1
Rank and Nullity of a 4×6 Matrix
(2/2)
The corresponding system of equations will be
x1-4x3-28x4-37x5+13x6=0
x2-2x3-12x4-16x5+5x6=0
It follows that the general solution of the system is
x1=4r+28s+37t-13u; x2=2r+12s+16t-5u; x3=r; x4=s; x5=t; x6=u
Or
So that nullity(A)=4.
1
2
3
4
5
6
4 28 37 13
2 12 16 5
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
x
x
x
r s t u
x
x
x
−         
         −         
         
= + + +         
         
         
         
                 
Theorem
 If A is any matrix, then rank(A)=
rank(AT
).
Theorem 5.6.3
Dimension Theorem for Matrices
 If A is a matrix with n columns, then
rank(A)+nullity(A)=n
Theorem
 If A is an m×n matrix, then:
a) rank(A)=the number of leading
variables in the solution of Ax=0.
b) nullity(A)=the number of parameters in
the general solution of Ax=0.
Example 2
The Sum of Rank and Nullity
 The matrix
has 6 columns, so
rank(A)+nullity(A)=6
This is consistent with Example 1, where we should
showed that
rank(A)=2 and nullity(A)=4
1 2 0 4 5 3
3 7 2 0 1 4
2 5 2 4 6 1
4 9 2 4 4 7
A
− − 
 − =
 −
 
− − − 
References:
 Textbook of Vector Calculus and
Linear Algebra (Atul Publications)
Note: All the excerpts taken from the
respective book were used only for
academic purpose. NO commercial
purpose was entertained.
Thank you. 

More Related Content

What's hot

Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimensionATUL KUMAR YADAV
 
system linear equations and matrices
 system linear equations and matrices system linear equations and matrices
system linear equations and matricesAditya Vaishampayan
 
linear transformation
linear transformationlinear transformation
linear transformationmansi acharya
 
Vector calculus
Vector calculusVector calculus
Vector calculusraghu ram
 
Eigenvalue problems .ppt
Eigenvalue problems .pptEigenvalue problems .ppt
Eigenvalue problems .pptSelf-employed
 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and EigenvectorsVinod Srivastava
 
Linear dependence(ld) &linear independence(li)
Linear dependence(ld)  &linear independence(li)Linear dependence(ld)  &linear independence(li)
Linear dependence(ld) &linear independence(li)Digvijaysinh Gohil
 
Matrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptMatrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptDrazzer_Dhruv
 
vector space and subspace
vector space and subspacevector space and subspace
vector space and subspace2461998
 
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalharshid panchal
 
Linear transformation and application
Linear transformation and applicationLinear transformation and application
Linear transformation and applicationshreyansp
 
Vector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,BasisVector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,BasisRavi Gelani
 
Vector space - subspace By Jatin Dhola
Vector space - subspace By Jatin DholaVector space - subspace By Jatin Dhola
Vector space - subspace By Jatin DholaJatin Dhola
 
Lu decomposition
Lu decompositionLu decomposition
Lu decompositiongilandio
 
System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equationssaahil kshatriya
 
Eigen values and eigen vectors
Eigen values and eigen vectorsEigen values and eigen vectors
Eigen values and eigen vectorsRiddhi Patel
 

What's hot (20)

Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimension
 
system linear equations and matrices
 system linear equations and matrices system linear equations and matrices
system linear equations and matrices
 
linear transformation
linear transformationlinear transformation
linear transformation
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Matrices ppt
Matrices pptMatrices ppt
Matrices ppt
 
Eigenvalue problems .ppt
Eigenvalue problems .pptEigenvalue problems .ppt
Eigenvalue problems .ppt
 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and Eigenvectors
 
Linear dependence(ld) &linear independence(li)
Linear dependence(ld)  &linear independence(li)Linear dependence(ld)  &linear independence(li)
Linear dependence(ld) &linear independence(li)
 
Vector space
Vector spaceVector space
Vector space
 
Matrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptMatrices and System of Linear Equations ppt
Matrices and System of Linear Equations ppt
 
Matrix_PPT.pptx
Matrix_PPT.pptxMatrix_PPT.pptx
Matrix_PPT.pptx
 
vector space and subspace
vector space and subspacevector space and subspace
vector space and subspace
 
Maths
MathsMaths
Maths
 
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
 
Linear transformation and application
Linear transformation and applicationLinear transformation and application
Linear transformation and application
 
Vector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,BasisVector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,Basis
 
Vector space - subspace By Jatin Dhola
Vector space - subspace By Jatin DholaVector space - subspace By Jatin Dhola
Vector space - subspace By Jatin Dhola
 
Lu decomposition
Lu decompositionLu decomposition
Lu decomposition
 
System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equations
 
Eigen values and eigen vectors
Eigen values and eigen vectorsEigen values and eigen vectors
Eigen values and eigen vectors
 

Viewers also liked

Lesson 13: Rank and Solutions to Systems of Linear Equations
Lesson 13: Rank and Solutions to Systems of Linear EquationsLesson 13: Rank and Solutions to Systems of Linear Equations
Lesson 13: Rank and Solutions to Systems of Linear EquationsMatthew Leingang
 
Midterm II Review Session Slides
Midterm II Review Session SlidesMidterm II Review Session Slides
Midterm II Review Session SlidesMatthew Leingang
 
Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Lecture 8   nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6Lecture 8   nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6njit-ronbrown
 
Lecture 9 dim & rank - 4-5 & 4-6
Lecture 9   dim & rank -  4-5 & 4-6Lecture 9   dim & rank -  4-5 & 4-6
Lecture 9 dim & rank - 4-5 & 4-6njit-ronbrown
 
Lecture 11 diagonalization & complex eigenvalues - 5-3 & 5-5
Lecture  11   diagonalization & complex eigenvalues -  5-3 & 5-5Lecture  11   diagonalization & complex eigenvalues -  5-3 & 5-5
Lecture 11 diagonalization & complex eigenvalues - 5-3 & 5-5njit-ronbrown
 
Taller de teatro para competencias lomce
Taller de teatro para competencias lomceTaller de teatro para competencias lomce
Taller de teatro para competencias lomcevictor diaz gomez
 
Serviciogastronomia en un hotel
Serviciogastronomia en un hotelServiciogastronomia en un hotel
Serviciogastronomia en un hotelCarlos Lucero
 
Crisis climaticas riesgo y vulnerabilidad en un mundo desigual: el caso del S...
Crisis climaticas riesgo y vulnerabilidad en un mundo desigual: el caso del S...Crisis climaticas riesgo y vulnerabilidad en un mundo desigual: el caso del S...
Crisis climaticas riesgo y vulnerabilidad en un mundo desigual: el caso del S...Mexican Ministry of Foreign Affairs
 
Social media und recht claudia keller
Social media und recht claudia kellerSocial media und recht claudia keller
Social media und recht claudia kellerSocial Hub Zürich
 
Diagnostico Motor
Diagnostico MotorDiagnostico Motor
Diagnostico Motorguest07963
 
Paullin_SHRM Foundation EPG 2014_Leverage Talents of Mature Employees
Paullin_SHRM Foundation EPG 2014_Leverage Talents of Mature EmployeesPaullin_SHRM Foundation EPG 2014_Leverage Talents of Mature Employees
Paullin_SHRM Foundation EPG 2014_Leverage Talents of Mature EmployeesCheryl Paullin
 
Modelamiento para el Desarrollo Sostenible de la Cuenca Chira – Piura mediant...
Modelamiento para el Desarrollo Sostenible de la Cuenca Chira – Piura mediant...Modelamiento para el Desarrollo Sostenible de la Cuenca Chira – Piura mediant...
Modelamiento para el Desarrollo Sostenible de la Cuenca Chira – Piura mediant...InfoAndina CONDESAN
 
ENVI-met como uma ferramenta de análise da qualidade do ar em micro-escala
ENVI-met como uma ferramenta de análise da qualidade do ar em micro-escalaENVI-met como uma ferramenta de análise da qualidade do ar em micro-escala
ENVI-met como uma ferramenta de análise da qualidade do ar em micro-escalachicorasia
 
Curso M Word
Curso M WordCurso M Word
Curso M WordDaiyanne
 
Skryté pasce Zákonníka práce
Skryté pasce Zákonníka práceSkryté pasce Zákonníka práce
Skryté pasce Zákonníka práceProfesia
 

Viewers also liked (20)

rank of matrix
rank of matrixrank of matrix
rank of matrix
 
Lesson 13: Rank and Solutions to Systems of Linear Equations
Lesson 13: Rank and Solutions to Systems of Linear EquationsLesson 13: Rank and Solutions to Systems of Linear Equations
Lesson 13: Rank and Solutions to Systems of Linear Equations
 
ppt of VCLA
ppt of VCLAppt of VCLA
ppt of VCLA
 
Midterm II Review Session Slides
Midterm II Review Session SlidesMidterm II Review Session Slides
Midterm II Review Session Slides
 
Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Lecture 8   nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6Lecture 8   nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
 
Lecture 9 dim & rank - 4-5 & 4-6
Lecture 9   dim & rank -  4-5 & 4-6Lecture 9   dim & rank -  4-5 & 4-6
Lecture 9 dim & rank - 4-5 & 4-6
 
Lecture 11 diagonalization & complex eigenvalues - 5-3 & 5-5
Lecture  11   diagonalization & complex eigenvalues -  5-3 & 5-5Lecture  11   diagonalization & complex eigenvalues -  5-3 & 5-5
Lecture 11 diagonalization & complex eigenvalues - 5-3 & 5-5
 
Matrices
MatricesMatrices
Matrices
 
Taller de teatro para competencias lomce
Taller de teatro para competencias lomceTaller de teatro para competencias lomce
Taller de teatro para competencias lomce
 
Serviciogastronomia en un hotel
Serviciogastronomia en un hotelServiciogastronomia en un hotel
Serviciogastronomia en un hotel
 
Crisis climaticas riesgo y vulnerabilidad en un mundo desigual: el caso del S...
Crisis climaticas riesgo y vulnerabilidad en un mundo desigual: el caso del S...Crisis climaticas riesgo y vulnerabilidad en un mundo desigual: el caso del S...
Crisis climaticas riesgo y vulnerabilidad en un mundo desigual: el caso del S...
 
Social media und recht claudia keller
Social media und recht claudia kellerSocial media und recht claudia keller
Social media und recht claudia keller
 
Diagnostico Motor
Diagnostico MotorDiagnostico Motor
Diagnostico Motor
 
Paullin_SHRM Foundation EPG 2014_Leverage Talents of Mature Employees
Paullin_SHRM Foundation EPG 2014_Leverage Talents of Mature EmployeesPaullin_SHRM Foundation EPG 2014_Leverage Talents of Mature Employees
Paullin_SHRM Foundation EPG 2014_Leverage Talents of Mature Employees
 
Modelamiento para el Desarrollo Sostenible de la Cuenca Chira – Piura mediant...
Modelamiento para el Desarrollo Sostenible de la Cuenca Chira – Piura mediant...Modelamiento para el Desarrollo Sostenible de la Cuenca Chira – Piura mediant...
Modelamiento para el Desarrollo Sostenible de la Cuenca Chira – Piura mediant...
 
Los blogs
Los blogsLos blogs
Los blogs
 
Rapport environnement en
Rapport environnement enRapport environnement en
Rapport environnement en
 
ENVI-met como uma ferramenta de análise da qualidade do ar em micro-escala
ENVI-met como uma ferramenta de análise da qualidade do ar em micro-escalaENVI-met como uma ferramenta de análise da qualidade do ar em micro-escala
ENVI-met como uma ferramenta de análise da qualidade do ar em micro-escala
 
Curso M Word
Curso M WordCurso M Word
Curso M Word
 
Skryté pasce Zákonníka práce
Skryté pasce Zákonníka práceSkryté pasce Zákonníka práce
Skryté pasce Zákonníka práce
 

Similar to Null space, Rank and nullity theorem

Row space, column space, null space And Rank, Nullity and Rank-Nullity theore...
Row space, column space, null space And Rank, Nullity and Rank-Nullity theore...Row space, column space, null space And Rank, Nullity and Rank-Nullity theore...
Row space, column space, null space And Rank, Nullity and Rank-Nullity theore...Hemin Patel
 
Rank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptxRank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptxfroilandoblon1
 
Matrix and linear algebra Introduced by: Khalid Jawad Kadhim
Matrix and linear algebra Introduced by: Khalid Jawad KadhimMatrix and linear algebra Introduced by: Khalid Jawad Kadhim
Matrix and linear algebra Introduced by: Khalid Jawad KadhimKhalidJawadKadhimALK
 
Chapter 4: Vector Spaces - Part 4/Slides By Pearson
Chapter 4: Vector Spaces - Part 4/Slides By PearsonChapter 4: Vector Spaces - Part 4/Slides By Pearson
Chapter 4: Vector Spaces - Part 4/Slides By PearsonChaimae Baroudi
 
Eigenvalues, Eigenvectors and Quadratic Forms.pdf
Eigenvalues, Eigenvectors and Quadratic Forms.pdfEigenvalues, Eigenvectors and Quadratic Forms.pdf
Eigenvalues, Eigenvectors and Quadratic Forms.pdfAugustoMiguel Ramos
 
Mat 223_Ch4-VectorSpaces.ppt
Mat 223_Ch4-VectorSpaces.pptMat 223_Ch4-VectorSpaces.ppt
Mat 223_Ch4-VectorSpaces.pptabidraufv
 
MODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptxMODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptxAlokSingh205089
 
Mathematical Foundations for Machine Learning and Data Mining
Mathematical Foundations for Machine Learning and Data MiningMathematical Foundations for Machine Learning and Data Mining
Mathematical Foundations for Machine Learning and Data MiningMadhavRao65
 
ArrayBasics.ppt
ArrayBasics.pptArrayBasics.ppt
ArrayBasics.pptRaselAzam1
 
Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Ali Farooq
 
Lecture 3 Inverse matrices(hotom).pdf
Lecture 3 Inverse matrices(hotom).pdfLecture 3 Inverse matrices(hotom).pdf
Lecture 3 Inverse matrices(hotom).pdfSakith1
 
Chapter 3: Linear Systems and Matrices - Part 3/Slides
Chapter 3: Linear Systems and Matrices - Part 3/SlidesChapter 3: Linear Systems and Matrices - Part 3/Slides
Chapter 3: Linear Systems and Matrices - Part 3/SlidesChaimae Baroudi
 
Eigen value and vector of linear transformation.pptx
Eigen value and vector of linear transformation.pptxEigen value and vector of linear transformation.pptx
Eigen value and vector of linear transformation.pptxAtulTiwari892261
 
Row space | Column Space | Null space | Rank | Nullity
Row space | Column Space | Null space | Rank | NullityRow space | Column Space | Null space | Rank | Nullity
Row space | Column Space | Null space | Rank | NullityVishvesh Jasani
 
Module 1 Theory of Matrices.pdf
Module 1 Theory of Matrices.pdfModule 1 Theory of Matrices.pdf
Module 1 Theory of Matrices.pdfPrathamPatel560716
 
Setting linear algebra problems
Setting linear algebra problemsSetting linear algebra problems
Setting linear algebra problemsJB Online
 

Similar to Null space, Rank and nullity theorem (20)

Row space, column space, null space And Rank, Nullity and Rank-Nullity theore...
Row space, column space, null space And Rank, Nullity and Rank-Nullity theore...Row space, column space, null space And Rank, Nullity and Rank-Nullity theore...
Row space, column space, null space And Rank, Nullity and Rank-Nullity theore...
 
Rank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptxRank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptx
 
Matrix and linear algebra Introduced by: Khalid Jawad Kadhim
Matrix and linear algebra Introduced by: Khalid Jawad KadhimMatrix and linear algebra Introduced by: Khalid Jawad Kadhim
Matrix and linear algebra Introduced by: Khalid Jawad Kadhim
 
Chapter 4: Vector Spaces - Part 4/Slides By Pearson
Chapter 4: Vector Spaces - Part 4/Slides By PearsonChapter 4: Vector Spaces - Part 4/Slides By Pearson
Chapter 4: Vector Spaces - Part 4/Slides By Pearson
 
Eigenvalues, Eigenvectors and Quadratic Forms.pdf
Eigenvalues, Eigenvectors and Quadratic Forms.pdfEigenvalues, Eigenvectors and Quadratic Forms.pdf
Eigenvalues, Eigenvectors and Quadratic Forms.pdf
 
Mat 223_Ch4-VectorSpaces.ppt
Mat 223_Ch4-VectorSpaces.pptMat 223_Ch4-VectorSpaces.ppt
Mat 223_Ch4-VectorSpaces.ppt
 
MODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptxMODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptx
 
Mathematical Foundations for Machine Learning and Data Mining
Mathematical Foundations for Machine Learning and Data MiningMathematical Foundations for Machine Learning and Data Mining
Mathematical Foundations for Machine Learning and Data Mining
 
ArrayBasics.ppt
ArrayBasics.pptArrayBasics.ppt
ArrayBasics.ppt
 
Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1
 
Lecture 3 Inverse matrices(hotom).pdf
Lecture 3 Inverse matrices(hotom).pdfLecture 3 Inverse matrices(hotom).pdf
Lecture 3 Inverse matrices(hotom).pdf
 
Mat 223_Ch5-Eigenvalues.ppt
Mat 223_Ch5-Eigenvalues.pptMat 223_Ch5-Eigenvalues.ppt
Mat 223_Ch5-Eigenvalues.ppt
 
Chapter 3: Linear Systems and Matrices - Part 3/Slides
Chapter 3: Linear Systems and Matrices - Part 3/SlidesChapter 3: Linear Systems and Matrices - Part 3/Slides
Chapter 3: Linear Systems and Matrices - Part 3/Slides
 
Eigen value and vector of linear transformation.pptx
Eigen value and vector of linear transformation.pptxEigen value and vector of linear transformation.pptx
Eigen value and vector of linear transformation.pptx
 
Row space | Column Space | Null space | Rank | Nullity
Row space | Column Space | Null space | Rank | NullityRow space | Column Space | Null space | Rank | Nullity
Row space | Column Space | Null space | Rank | Nullity
 
Module 1 Theory of Matrices.pdf
Module 1 Theory of Matrices.pdfModule 1 Theory of Matrices.pdf
Module 1 Theory of Matrices.pdf
 
Linear Algebra.pptx
Linear Algebra.pptxLinear Algebra.pptx
Linear Algebra.pptx
 
Setting linear algebra problems
Setting linear algebra problemsSetting linear algebra problems
Setting linear algebra problems
 
matricesMrtices
matricesMrticesmatricesMrtices
matricesMrtices
 
Matrix ppt
Matrix pptMatrix ppt
Matrix ppt
 

Recently uploaded

Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 

Recently uploaded (20)

Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 

Null space, Rank and nullity theorem

  • 1. Row Space, Column Space, Null Space And Rank Nullity Theorem A part of active learning assignment. An initiative by GTU. Prepared by, Ronak Machhi (130410109042) (130410109044) (130410109046) (130410109048) (130410109050) Guided by: Prof. Harshad R. Patel Prof. J. B. Patel Vector Calculus and Linear Algebra
  • 2. Outline  Row Space  Column Space  Null space  Rank And Nullity
  • 3. Definition 11 12 1 21 22 2 1 2 1 11 12 1 2 21 22 2 For an m n matrix ... ... A= : : : ... the vectors [ ] [ ] : n n m m mn n n a a a a a a a a a a a a a a a ×              = = r r ... ... m 1 2 n 11 12 1 21 22 2 1 2 1 2 [ ] in R formed form the rows of Aare called the row vectors of A, and the vectors , , ..., : : : in m m mn n n n m m mn a a a a a a a a a a a a =                  = = =                        r c c c ... m R formed from the columns of A are called the column vectors of A.
  • 4. Example 1 Row and Column Vectors in a 2×3 Matrix  Let The row vectors of A are and the column vectors of A are 2 1 0 3 1 4 A   =  −  [ ] [ ]1 22 1 0 and 3 1 4= = −r r 2 1 0 , , and 3 1 4       = = =     −      1 2 3c c c
  • 5. Definition  If A is an m×n matrix, then the subspace of Rn spanned by the row vectors of A is called the row space of A, and the subspace of Rm spanned by the column vectors is called the column space of A. The solution space of the homogeneous system of equation Ax=0, which is a subspace of Rn , is called the nullsapce of A.
  • 6. Theorem  Elementary row operations do not change the nullspace of a matrix.
  • 7. Example 4 Basis for Nullspace  Find a basis for the nullspace of Solution. The nullspace of A is the solution space of the homogeneous system After solution we find that the vectors Form a basis for this space. 2 2 1 0 1 1 1 2 3 1 1 1 2 0 1 0 0 1 1 1 A −   − − − =  − −     1 2 3 5 1 2 3 4 5 1 2 3 5 3 4 5 2 2 0 2 3 0 2 0 0 x x x x x x x x x x x x x x x x + − + = − − + − + = + − − = + + = 1 2 1 1 1 0 and0 1 0 0 0 1 − −               = = −                v v
  • 8. Theorem  Elementary row operations do not change the row space of a matrix.
  • 9. Theorem  If a matrix R is in row echelon form, then the row vectors with the leading 1’s (i.e., the nonzero row vectors) form a basis for the row space of R, and the column vectors with the leading 1’s of the row vectors form a basis for the column space of R.
  • 10. Example 5 Bases for Row and Column Spaces 1 2 3 The matrix 1 2 5 0 3 0 1 3 0 0 0 0 0 1 0 0 0 0 0 0 is in row-echelon form. From Theorem 5.5.6 the vectors [1 -2 5 0 3] [0 1 3 0 0] [0 0 0 1 0] form a R −     =       = = = r r r 1 2 4 basis for the row space of R, and the vectors 1 2 0 0 1 0 , , 0 0 1 0 0 0 form a basis for the column space of R. −                 = = =                   c c c
  • 11. Example 6 Bases for Row and Column Spaces (1/2)  Find bases for the row and column spaces of Solution. Reducing A to row-echelon form we obtain By Theorem 5.5.6 the nonzero row vectors of R form a basis for row space of R, and hence form a basis for the row space of A. These basis vectors are 1 3 4 2 5 4 2 6 9 1 8 2 2 6 9 1 9 7 1 3 4 2 5 4 A − −   − − =  − −   − − − −  1 3 4 2 5 4 0 0 1 3 2 6 0 0 0 0 1 5 0 0 0 0 0 0 R − −   − − =       [ ] [ ] [ ] 1 2 3 r 1 3 4 2 5 4 r 0 0 1 3 2 6 r 0 0 0 0 1 5 = − − = − − =
  • 12. Example 6 Bases for Row and Column Spaces (2/2) We can find a set of column vectors of R that forms a basis for the column space of R, then the corresponding column vectors of A will form a basis for the column space of A. The first, third, and fifth columns of R contain the leading 1’s of the row vector , so Form a basis for the column space of R; thus Form a basis for the column space of A. 1 4 5 0 1 2 , , 0 0 1 0 0 0            −     = = =                   ' ' ' 1 5 5c c c 1 4 5 2 9 8 , , 2 9 9 1 4 5                  = = =             − − −      1 3 5c c c
  • 13. Example 7 Basis for a Vector Space Using Row Operations (1/2)  Find a basis for the space spanned by the vectors v1=(1, -2, 0, 0, 3), v2=(2, -5, -3, -2, 6), v3=(0, 5, 15, 10, 0), v4=(2, 6, 18, 8, 6) Solution. Except for a variation in notation, the space spanned by these vectors is row space of the matrix Reducing this matrix to row-echelon form we obtain 1 2 0 0 3 2 5 3 2 6 0 5 15 10 0 2 6 18 8 6 −   − − −        1 2 0 0 3 0 1 3 2 0 0 0 1 1 0 0 0 0 0 0 −           
  • 14. Example 7 Basis for a Vector Space Using Row Operations (2/2) The nonzero row vectors in this matrix are w1=(1, -2, 0, 0, 3), w2=(0, 1, 3, 2, 0), w3=(0, 0, 1, 1, 0) These vectors form a basis for the row space and consequently form a basis for the subspace of R5 spanned by v1, v2, v3, and v4.
  • 15. Example 8 Basis for the Row Space of a Matrix (1/2)  Find a basis for the row space of Consisting entirely of row vectors from A. Solution. Transposing A yields 1 2 0 0 3 2 5 3 2 6 0 5 15 10 0 2 6 18 8 6 A −   − − − =       1 2 0 2 2 5 5 6 0 3 15 18 0 2 10 8 3 6 0 6 T A    − −   = −   −    
  • 16. Example 8 Basis for the Row Space of a Matrix (2/2) Reducing this matrix to row-echelon form yields The first, second, and fourth columns contain the leading 1’s, so the corresponding column vectors in AT form a basis for the column space of ; these are Transposing again and adjusting the notation appropriately yields the basis vectors r1=[1 -2 0 0 3], r2=[2 -5 -3 -2 6], and r3=[2 -5 -3 -2 6] for the row space of A. 1 2 0 2 0 1 5 10 0 0 0 1 0 0 0 0 0 0 0 0    −           1 2 2 2 5 6 , , and0 3 18 0 2 8 3 6 6            − −           = = =−       −                 1 2 4c c c
  • 18. Theorem  If A is any matrix, then the row space and column space of A have the same dimension.
  • 19. Definition  The common dimension of the row and column space of a matrix A is called the rank of A and is denoted by rank(A); the dimension of the nullspace of a is called the nullity of A and is denoted by nullity(A).
  • 20. Example 1 Rank and Nullity of a 4×6 Matrix (1/2)  Find the rank and nullity of the matrix Solution. The reduced row-echelon form of A is Since there are two nonzero rows, the row space and column space are both two-dimensional, so rank(A)=2. 1 2 0 4 5 3 3 7 2 0 1 4 2 5 2 4 6 1 4 9 2 4 4 7 A − −   − =  −   − − −  1 0 4 28 37 13 0 1 2 12 16 5 0 0 0 0 0 0 0 0 0 0 0 0 − − −   − − −       
  • 21. Example 1 Rank and Nullity of a 4×6 Matrix (2/2) The corresponding system of equations will be x1-4x3-28x4-37x5+13x6=0 x2-2x3-12x4-16x5+5x6=0 It follows that the general solution of the system is x1=4r+28s+37t-13u; x2=2r+12s+16t-5u; x3=r; x4=s; x5=t; x6=u Or So that nullity(A)=4. 1 2 3 4 5 6 4 28 37 13 2 12 16 5 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 x x x r s t u x x x −                   −                    = + + +                                                         
  • 22. Theorem  If A is any matrix, then rank(A)= rank(AT ).
  • 23. Theorem 5.6.3 Dimension Theorem for Matrices  If A is a matrix with n columns, then rank(A)+nullity(A)=n
  • 24. Theorem  If A is an m×n matrix, then: a) rank(A)=the number of leading variables in the solution of Ax=0. b) nullity(A)=the number of parameters in the general solution of Ax=0.
  • 25. Example 2 The Sum of Rank and Nullity  The matrix has 6 columns, so rank(A)+nullity(A)=6 This is consistent with Example 1, where we should showed that rank(A)=2 and nullity(A)=4 1 2 0 4 5 3 3 7 2 0 1 4 2 5 2 4 6 1 4 9 2 4 4 7 A − −   − =  −   − − − 
  • 26. References:  Textbook of Vector Calculus and Linear Algebra (Atul Publications) Note: All the excerpts taken from the respective book were used only for academic purpose. NO commercial purpose was entertained.