This document provides an overview of numerical linear algebra concepts including matrix notation, operations, and solving systems of linear equations using Gaussian elimination. It describes the Gaussian elimination process which involves eliminating variables one by one to obtain an upper triangular system that can then be solved using back substitution. The document notes some pitfalls of naive Gaussian elimination such as division by zero, round-off errors, ill-conditioned systems, and singular systems. It introduces pivoting as a technique to avoid division by zero during the elimination process and calculates the determinant as a byproduct of Gaussian elimination.