SlideShare a Scribd company logo
AAIIRR EENNVVIIRROONNEEMMNNTT 
DDRR.. II..DD.. MMAALLLL 
DDeeppaarrttmmeenntt ooff CChheemmiiccaall EEnngggg.. 
IInnddiiaann IInnssttiittuuttee ooff TTeecchhnnoollooggyy,, RRoooorrkkeeee 
RRoooorrkkeeee-- 224477666677
22 
AIR IS LIFE. 
LIFE STARTS WITH 
AIR AND ENDS 
WITH AIR.
33
44 
The Five BBaassiicc PPhhyyssiiccaall EElleemmeennttss 
 From the Vedic times, around 3000 B.C. to 1000 B.C., Indians 
(Indo-Aryans) had classified the material world into four 
elements viz. Earth (Prithvi), fire (Agni), air (Maya) and water 
(Apa). To these four elements was added a fifth one viz. ether 
or Akasha. According to some scholars these five elements or 
Pancha Mahabhootas were identified with the various human 
senses of perception; earth with smell, air with feeling, fire 
with vision, water with taste and ether with sound. Whatever 
the validity behind this interpretation, it is true that since very 
ancient times Indians had perceived the material world as 
comprising these 5 elements. The Buddhist philosophers who 
came later, rejected ether as an element and replaced it with 
life, joy and sorrow.
55 
Fast growing unplanned and indiscriminate 
urbanization: Cause of recent ecological 
imbalances 
MAJOR ENVIRONMENTAL CRISIS WHICH MANKIND IS 
FACING DUE TO URBAN AND INDUSTRIAL 
DEVELOPMENT ARE: 
 Large scale contamination of water and air. 
 Deforestation 
 Increase in urban slums 
 Generation of huge solid waste consisting of hazardous material. 
 Water scarcity and ground water depletion. 
 Global warming 
 Greenhouse effect 
 Ozone layer depletion
66 
AIR POLLUTION 
 Atmosphere has gone significant changes in the last Two billion years 
 From the fourteenth century until recently the primary air pollutants 
have been coal smoke and gases released in industrialised areas. 
 Air pollution control actions thirteenth century 
 Most of the major effort in the world has taken place since 1945, 
before that other matters were in the priority list 
 1930s and 1940s: Factory issuing a thick plume of smoke was 
considered a sign of prosperity 
 1945-1969 awareness of air pollution problems gradually increased 
 Passage of National environmental policy Act and the clean air act of 
1970 
 In the late 1980s: New theme entered the air pollution area- a GLOBAL 
AIR POLLUTION
77 
MAJOR AIR POLLUTION 
PROBLEM EMERGED 
 Greenhouse effect 
 Ozone depletion 
 Acidification 
 Smog formation 
 Eutrophication 
 Human health 
 Environmental concern earlier considered a luxury which only a 
developed country US can afford 
 For people who are worried for their meal, home medial bill air 
pollution may not be very important 
 For a person whose basic needs has been satisfied air pollution 
control can be of much greater cause of concern 
 Poor people are more exposed to more severe pollution
88 
ENVIRONMENTAL CHANGES AND MONITORING 
Soil Quality (depth structure, fertility, degree of 
salination or acidification, stability. 
Air Quality, climatic changes 
Water Quantity, quality, seasonability, area of man 
made lakes, Extent of irrigation canal. 
Biota Abundance/ scarcity of species of genetic 
resource 
Extent of crops ecosystem 
Vegetation and forests 
Diversity of species 
Extent of provision of resting ground, etc. 
for migration of species 
Pest and disease organism 
Noise Residential, shop floor, industrial
99 
TThhee AAttmmoosspphheerree 
 N2 780900 ppm (78.09%) 
 O2 209400 ppm (20.94%) 
 Argon 9300 ppm (0.93 %) 
 CO2 372 ppm (0.037%) 
 Everything else is less than 0.003 % or 30 ppm
1100 
LLaayyeerrss ooff tthhee AAttmmoosspphheerree 
Stratosphere 
begins at about 
10 miles above 
the surface. 
P drops with 
altitude. 
Does T drop 
with altitude?
1111 
REAL WORLD 
Atmospheric interactions 
Pollutant emissions Effects 
Source 
Air quality 
Receptors 
Input output 
Emission Air quality 
models 
Air quality 
Input Input 
Methodology Air Chemistry
1122 
AIR QUALITY IMPACT ANALYSIS 
Atmospheric 
Interaction 
Air quality 
Effects 
Pollutant emissions 
Source Receptors
1133 
WWoorrssee AAiirr PPoolllluuttiioonn DDiissaasstteerr 
 London, England, 1952 
 From December 5 to 8, 1952 
 4,000 Londoners perished.
1144 
 The effect of air pollution is slow and cumulative. 
 Earlier principle cause of death was influenza, 
tuberculosis and typhoid fever 
 New diseases came- arteriosclerosis, heart, 
malfunctioning, stroke, emphysema and cancer 
 Cigrette smoking earlier smoking had little effect on 
overall life expectancy 
 Bhopal tragedy due to methyl isocynate killed 2500 
people 
 Lekages from Hydrogen sulphide from natural gas 
processing plants killed hundreds of people
1155 
A Few Well-Known Air Pollution Episodes Around the 
Globe in the 20th Century. 
Region affected Date Cause Pollutant Effects 
Meuse valley, 
December 
Temperature 
SO2 63 deaths 
Belgium 
1930 
inversion 
Los Angeles, USA July 1943 Low wind 
circulation 
smog unknown 
Donora, PA, USA October 1948 Weather 
inversion 
SO2 20 deaths 
London, England December 
1952 
Subsidence 
inversion 
SO2, 
smog 
3,000 excess deaths 
New York City, 
USA 
December 
1962 
Shallow 
inversion 
SO2 269 excess deaths 
Bhopal, India December 
1984 
Accident methyl 
iso-cyanate 
> 2,000 deaths 
Chernobyl, Ukraine April 1986 Accident Radioact 
i-vity 
31 immediate deaths, > 
30,000 ill 
Lake Nyos, Africa April 1986 Natural CO2 1,700 deaths 
Kuala Lampur, 
September 
Forest fire CO, soot Unknown 
Malaysia 
1997
1166 
Concentrations of Principal Air Pollutants in Megacities in 
the Developing World. 
Country / City SO2, 
 g/m3 
TSP (PM- 
10),  g/m3 
CO,  g/m3 NOx,  g/m3 Pb,  g/m3 
China: 
Beijing (1997) 
National 
average 
(1997) 
75 
3 to 248 
377 
32 to 741 
NA 122 
4 to 140 (1995 
data) 
NA 
Mexico: 
Mexico City 
(1996) 
244 to 
482 
218 to 442 90,000 to 
140,000 
295 to 619 NA 
India: 
New Delhi 
(1987) 
40 to 90 700 to 1400 NA 45 to 65 0.37 to 4.6 
WHO 
guideline 
(1999) 
500 (10 
min) 
125 ( 24 
hr) 
50 ( 1 yr) 
200 to 250 100,000 ( 15 
min) 
60,000 (30 min) 
30,000 (1 hr) 
10,000 (8 hr) 
200 (1 hr) 
40 ( 1 yr) 
0.5 ( 1 hr) 
NAAQS 
(USA ) 
1,300 ( 
3hr) 
365 (24 
hr) 
80 (1 yr) 
150 (24 hr) 
50 ( 1 yr) 
40,000 ( 1 hr) 
10,000 ( 8 hr) 
100 (1 yr) 1.5 ( quarterly 
avg.) 
References: 1. Clear Water, Blue Skies: China’s Environment in the New Century, The World Bank, Washington, D. C. 
(1977). 
2. State of the Environment- China, United Nations Environment Program, New York, NY (1997) . 
3. Mage et al, Urban air pollution in megacities of the world, Atmospheric Environment, 30: 681-686 (1996). 
4. Air Pollution Aspects of Three Indian Cities, Vol. I. Delhi, National Environmental Engineering Research 
Institute, Nagpur, India (1991). 
5. F Guzman: Air pollution in Mexico Cityu, The Mexico City Workshop, Integrated Program on Urban, 
Regional and Global Air pollution, MIT, Massachusetts, September (1999). 
http://eaps.mit.edu/megacities/workshop_99/mexico.html. 
6. Air Pollution: Mexico City. http://www.ess.co.at/GAIA/cases/mex. Environmental Software and 
Services, GmbH, Gumpoldskirchen, Austria.
1177 
HHeeaalltthh EEffffeeccttss:: OOuuttddoooorr AAiirr PPoolllluuttiioonn 
Kills 200,000 - 570,000 annually globally. 
Kills 20,000 people annually in US. 
Particulates and ozone are the biggest problem
1188 
HHeeaalltthh EEffffeeccttss:: 
IInnddoooorr AAiirr PPoolllluuttiioonn -- GGlloobbaall 
Kills 2.8 million annual globally 
What is major source of indoor air pollution in 
developing countries?
1199 
SSOOUURRCCEESS OOFF AAIIRR TTOOXXIICCSS
2200 
AAiirr PPoolllluuttiioonn –– SSoouurrcceess 
Most air pollution is emitted 
from fixed and mobile sources 
at ground level.
2211 
AIR POLLUTION SOURCES 
Major 
Sources 
Area 
Sources 
Mobile 
Sources 
Natural 
Sources 
Miscellaneous 
Chemical & 
fertlisers plants 
Refineries 
Petrochemicals 
Power plants 
Paper mills 
Cement plant 
Metallurgical 
Industries 
Municipal 
incineration 
Dry cleaners 
Petrol station 
Small print 
shops 
Electroplating 
Domestic , 
commercial 
and industrial 
fuels 
Automobiles 
Railways 
Airways 
Farm 
Equipments 
Recreational 
vehicles 
Natural Dust 
Storm 
Volcanoes 
Sea salt 
Dispersion 
Forest gas 
Agricultural 
burning
2222 
SOURCES 
 NATURAL SOURCE: pollen grain, fungus, smoke 
etc. 
 ANTHROPOGENIC: stationary, movable. (associated 
with activity of human beings) 
 POINT SOURCE: Pollutant emission from industrial 
process stacks, and fuel combustion facility stacks 
 AREA SOURCE: Vehicular traffic and fugitive 
emissions 
 LINE SOURCES: heavily traveled highway facilities 
and leading edges of uncontrolled forest fires
2233 
PPrriimmaarryy EEmmiissssiioonn SSoouurrcceess 
 Area Sources 
 Paved and unpaved roads 
 Construction activities 
 Open or prescribed burning 
 Point Sources 
 Metals processing (smelters, 
iron & steel, etc.) 
 Mineral products (cement 
stone quarrying) 
 Utility and industrial 
combustion (soot, flyash) 
 Waste disposal and recycling 
 Mobile Sources 
 Highway vehicles (diesel) off-road 
vehicles (lawn & garden 
equipment)
2244 
SSeeccoonnddaarryy EEmmiissssiioonn SSoouurrcceess 
SOx - Fuel combusion (utilities, industrial); 
industrial processes (smelters, iron & steel 
manufacture, oil refining, etc.) 
NOx - Combustion sources (utilities, 
industrial); mobile sources (highway & off-road 
engines) 
VOC - Mobile sources, biogenic sources, 
evaporation (solvent & fuel), residential wood 
combustion 
Ammonia (NH3) - Waste from animal 
husbandary, fertilizer application
2255
2266 
CLASSIFICATION OF AIR POLLUTANTS 
Natural contaminants : Natural fog, pollen grain, bacteria, volcanic 
eruption, wind blown dust lightning generated fires 
Gaseous: oxidized S, N, CO, CO2, hydrocarbons 
Particulate: dust smoke, fumes, mist, fog.
2277 
PPhhoottoocchheemmiiccaall SSmmoogg 
Main harmful 
ingredient in smog is 
ozone. 
Ozone is formed 
when UV radiation, 
high temperatures, 
Nitrogen oxides, and 
VOCs combine. 
What are the primary 
sources of smog?
2288 
AAcciidd RRaaiinn 
Acid rain is formed from SO2 and NO2 
pollution. 
What are the sources of acid rain?
2299 
AAcciidd RRaaiinn 
Sulfuric acid (H2SO4) and nitric acid 
(HNO3) are formed and precipitated on 
vegetation in lakes and streams.
CCLLIIMMAATTEE AANNDD AAIIRR QQUUAALLIITTYY 
IInnfflluueenncciinngg eelleemmeennttss aanndd tthheeiirr ppootteennttiiaall eeffffeeccttss 
WWiinndd:: ddiirreeccttiioonnss aanndd ssppeeeedd 
WWiillll tthhee pprroojjeecctt mmooddiiffyy tthhee llooccaall wwiinndd bbeehhaavviioorr?? 
PPrreecciippiittaattiioonn//hhuummiiddiittyy 
WWiillll tthhee pprroojjeecctt hhaavvee aann iimmppaacctt uuppoonn tthhee llooccaall 
pprreecciippiittaattiioonn //hhuummiiddiittyy ppaatttteerrnn?? 
WWiillll tthhee pprroojjeecctt bbee ssiitteedd iinn aa ““hhiigghh rriisskk”” aarreeaa?? 
TTeemmppeerraattuurree 
WWiillll tthhee pprroojjeecctt hhaavvee aann iimmppaacctt uuppoonn tthhee llooccaall 
tteemmppeerraattuurree ppaatttteerrnn?? 
AAiirr QQuuaalliittyy 
WWiillll tthhee pprroojjeecctt ggeenneerraattee aanndd ddiissppeerrssee aattmmoosspphheerriicc 
ppoolllluuttaannttss?? 
WWiillll tthhee pprroojjeecctt ggeenneerraattee aannyy iinntteennssee ooddoorrss??
3311 
CCLLIIMMAATTEE AANNDD AAIIRR 
QQUUAALLIITTYY Sub element Potential Impact(s) Required Information 
Wind: directions and 
Will the project modify 
speed 
the local wind behaviour 
Wind speeds and 
directions, including 
unusual conditions. 
Height of structures. 
Precipitation/ 
humidity 
Will the project have an 
impact upon the local 
precipitation/humidity 
pattern? 
Precipitation/humidity 
data including unusual 
conditions-flash floods, 
etc. 
Temperature Will the project have an 
impact upon the local 
temperature pattern? 
Temperature data, 
including the extremes. 
Air Quality Will the project generate 
and disperse atmospheric 
pollutants? Will the 
project generate any 
intense odours? 
Estimate of atmospheric 
emissions from point, 
area and line sources, 
fugitive emissions
3322 
PPaarrttiiccuullaattee MMaatttteerr:: WWhhaatt iiss IItt?? 
Particulate matter is a complex mixture of 
extremely small particles and liquid droplets 
Human Hair (70 μm diameter) 
Hair cross section (70 mm) 
PM2.5 
(2.5 μm) 
PM10 
(10μm)
3333 
PPaarrttiiccuullaattee MMaatttteerr ((PPMM)):: TThhee MMaajjoorr 
KKiilllleerr 
PM is a complex mixture variable in 
Size (0.01- 100 μm) 
Composition (Metals, nitrates , sulfate, PAH, 
VOC etc.) 
Concentration 
Toxicity and penetration depends on the 
composition and six of the particles. 
In reality we breathe a complex mixture of 
pollutants in varying proportions. Hence the 
health effects are the impact of this complex 
mixture rather than a particular pollutant per se.
3344 
Figure : Size Difference Between Particulate Matter (PM 10 and PM 2.5), 
Human Hair and Finest Beach Sand
3355 
PPMM--22..55 OOvveerrvviieeww 
PM-2.5 
 Characteristics, sources, health and 
environmental effects 
1997 PM-2.5 Standards 
Monitoring Data 
Regulatory Schedule 
Key Issues
3366 
FFiinnee PPaarrttiicclleess iinn tthhee AAiirr
3377 
FFiinnee PPaarrttiicclleess:: WWhhyy YYoouu SShhoouulldd CCaarree
3388 
PPaarrttiicclleess AAffffeecctt tthhee LLuunnggss …… 
Respiratory system effects 
 Chronic bronchitis 
 Asthma attacks 
 Respiratory symptoms (cough, 
wheezing, etc.) 
 Decreased lung function 
 Airway inflammation
3399 
…… aanndd tthhee HHeeaarrtt 
Cardiovascular system effects 
 Heart attacks 
 Cardiac arrhythmias 
 Changes in heart rate and heart 
rate variability 
 Blood component changes
4400 
PPuubblliicc HHeeaalltthh RRiisskkss AArree SSiiggnniiffiiccaanntt 
Particles are linked to: 
 Premature death from heart and lung disease 
 Aggravation of heart and lung diseases 
 Hospital admissions 
 Doctor and ER visits 
 Medication use 
 School and work absences 
 And possibly to 
 Lung cancer deaths 
 Infant mortality 
 Developmental problems, such as low birth weight 
in children
4411 
SSoommee GGrroouuppss AArree MMoorree aatt RRiisskk 
People with heart or 
lung disease 
 Conditions make them 
vulnerable 
Older adults 
 Greater prevalence of 
heart and lung disease 
Children 
 More likely to be active 
 Breathe more air per lb. 
 Bodies still developing
4433 
FFiinnee PPaarrttiicclleess RReedduuccee VViissiibbiilliittyy 
Example: Chicago in the summer of 2000 
 Left – a clear day: PM 2.5 < 5 μg/m3 
 Right – a hazy day: PM 2.5 ~ 35 μg/m3
4444 
EEnnvviirroonnmmeennttaall EEffffeeccttss 
Reduced visibility 
 Across country 
 National parks 
React w/ moisture 
 Acid rain 
 Other acidic pollution 
Damage to paint/building materials 
Damage to vegetation/crops
4455 
replace
4466 
AAiirr PPoolllluuttaannttss MMoonniittoorriinngg 
Collect and review 
information 
Select monitoring 
level 
Conduct 
monitoring 
Develop 
Monitoring plan 
Summarize/ 
Evaluate results 
• Source data 
• Receptor data 
• Modeling data 
• Routine operation 
• Quality control 
• Field documentation 
• Screening 
• Refined screening 
• Refined 
• Select monitoring constituents 
• Specify meteorological monitoring 
• Design network 
• Select monitoring methods/equipment 
• Develop sampling and analysis QA/QC 
• Data review and validation 
• Data summaries 
• Consider monitoring uncertainties 
• Dispersion modeling applications 
 Monitoring Air Pathway Analysis
4477 
Overview 
Why measure ? 
What do we measure ? 
How do we make these measurements ? 
What do we do with all this new data ?
4488 
CCEENNTTRRAALL PPOOLLLLUUTTIIOONN CCOONNTTRROOLL BBOOAARRDD 
NNaattiioonnaall AAmmbbiieenntt AAiirr QQuuaalliittyy SSttaannddaarrddss 
Pollutant Time Weighted 
Average 
Concentration of Ambient Air 
Industrial 
Area 
Residential, Rural 
and Other Area 
Sensitive 
Area 
Method of Measurement 
(1) (2) (3) (4) (5) (6) 
Sulphur Dioxide 
(SO2) 
Annual 
Average * 
24 hours** 
80 μg/m3 
120 μg/m3 
60 μg/m3 
80 μg/m3 
15 μg/m3 
30 μg/m3 
- Improved West and 
Gaeke Method 
- Ultraviolet 
fluorescence 
Oxized of 
Nitrogen as 
NO2 
Annual 
Average * 
24 hours** 
80 μg/m3 
120 μg/m3 
60 μg/m3 
80 μg/m3 
15 μg/m3 
30 μg/m3 
-Jacob Hochheister 
modified (Na- 
Arsenite) 
-Gas Phase 
Chemilumine 
scence 
Suspended 
Particulate 
Matter 
(SPM) 
Annual 
Average * 
24 hours** 
360 μg/m3 
590 μg/m3 
140 μg/m3 
200 μg/m3 
70 μg/m3 
100 μg/m3 
-High Volume Sampling 
(Average flow rate 
net less than 1.1 
m3/minute)
4499 
Respirable 
Particulate 
Matter (Size less 
than 10μm) 
(RPM) 
Annual 
Average * 
24 hours** 
12 μg/m3 
150 μg/m3 
60 μg/m3 
100 μg/m3 
50 μg/m3 
75 μg/m3 
- Respirable Particulate 
Matter sampler 
Lead (Pb) Annual 
Average * 
24 hours** 
1.0 μg/m3 
1.5 μg/m3 
0.75 μg/m3 
1.00 μg/m3 
0.5 μg/m3 
0.75 μg/m3 
- AAS Method after 
sampling using EPM 
2000 or equivalent filter 
paper 
Carbon 
Monoxide 
8 hours ** 
1 hour 
5.0mg/m3 
10 mg/m3 
2.0mg/m3 
4.0 mg/m3 
1.0mg/m3 
2.0 mg/m3 
- NDIRS 
Ammonia 24 hours 
Annual 
0.4 mg/m3 
0.1 mg/m3 
- 
Annual Arithmetic mean of minimum 104 
measurements in a year taken twice a week 24 
hourly at uniform interval. 
24 hourly/8 hourly values should be met 98% of 
the time in a year. However, 2% of the time , it 
may exceed but not on two consecutive days.
5500 
MMEEAASSUURREEMMEENNTT OOFF AAIIRR QQUUAALLIITTYY 
 Ambient Air Quality 
 Measurement of Emission 
 Meteorological Measurement 
Pollution Parameter Equipment 
Dust fall Dust Fall Jar 
Suspended High Volume Sampler, 
Particulates Inertial collectors, 
Respirable 
Dust Sampler 
Total Sulfur Lead Candle 
Compounds 
Sulphur Dioxide Air Sampling Kit 
Hydrogen Sulphide Air Sampling Kit 
Oxides of Nitrogen Air Sampling Kit 
Wind Direction Recording Vane 
Wind Velocity Wind Velocity Meter 
Temperature and Humidity Whirling Psychrometer
Various instrumental techniques used for air pollution parameters 
S.No Instrumental Techniques Parameter covered 
1 Conductometry SO2 
2 Colorimetry SO2, NOx 
3 Coulometry-Amperometry SO2, NOx, Oxidants (O3), 
CO 
4 Paper Tape (H2S Conversion) SO2 
5 Electochemical Cells (EMF Generation) SO2, NOx, CO 
6 Catalytic Oxidation CO 
7 Chemeical Sensing-Specific Ion Electrodes SO2, NOx 
8 Chemiluminescence O3, NOx 
9 Flame photometry detector couples with GC SO2 
10 Flame ionisation detector couples with GC CO, CH4, Hydrocarbons 
11 Non dispersive infrared absorption (NDIR) CO 
12 Fluorescence NDIR 
Pulsed Fluorescence 
Hydrcarbons 
SO2, H2S 
13 Non-dispersive-UV-Visible Absorption Oxidants
5522 
S.No Instrumental Techniques Parameter covered 
14 Mercury Substitution UV Absorption CO 
15 Ultra Violet Fluorescence SO2 
16 Bioluminescence SO2, NOx, CO 
17 Correletion Spectroscopy SO2, NOx 
18 Second Derivative Spectroscopy UV, NOx, Oxidants
5533 
Techniques used for semi-automatic or laboratory instruments 
for particulate matter 
19 Atomic Absorption Spectrophotometers All metals 
20 Atomic Fluorescence Metals- Zn, Cd, Cu, Hg 
21 X-Ray Fluorescence Mostly all metals 
22 GC-GC Mass Spectrometer Aromatic & Chlorinated 
Hydrocarbons, Pesticides, 
Oxidants 
23 Neutron Activation Heavy metals- Vanadium, 
Hg 
24 Anodic Metals- Cu, Cd, Pb
5544 
OObbjjeeccttiivvee ooff aa ssaammpplliinngg pprrooggrraamm 
To establish and evaluate control 
measures 
To evaluate atmospheric-diffusion model 
parameters. 
To determine areas and time periods 
when hazardous levels of pollution exists 
in the atmosphere. 
For emergency warning systems.
5555 
AIR QUALITY SURVEILLANCE 
PROGRAMMES 
 Representative selection of something----primarily 
guided by topography and micro meteorology of the 
region 
 Adequate sampling frequency 
 Inclusion of all the major pollution parameters 
 Characterization of the existing ambient air quality 
 Prediction from different emission scenario through 
pollution modeling for existing micrometeorological 
and topographical feature.
5566 
MMoonniittoorriinngg SSyysstteemmss 
Ambient air quality data may be obtained 
through the use of mobile or fixed 
sampling networks and the use of 
integrated samplers or continuous 
monitors. 
Decisions regarding monitoring 
techniques constitute the first important 
steps in design of monitoring network.
5577 
FFiixxeedd vvss.. MMoobbiillee SSaammpplliinngg 
Fixed-point sampling - A network of monitoring 
stations at selected sites, operated 
simultaneously throughout the study. Stations 
are permanent or, at least, long term 
installations. 
Mobile sampling network – the 
monitoring/sampling instruments are rotated on 
schedule among selected locations. Equipment 
is generally housed in trailers, automobiles, or 
other mobile units.
5588 
CCoonnttiinnuuoouuss vvss.. IInntteeggrraatteedd SSaammpplliinngg 
Continuous monitoring – Conducted with 
devices that operate as both sampler and 
analyzer. Pollutant concentrations are 
instantaneously displayed on a meter, 
continuously recorded on a chart, 
magnetic tape, or disk. 
Integrated sampling – Done with devices 
that collect a sample over some specified 
time interval after which the sample is sent 
to a laboratory for analysis.
SSeelleeccttiioonn ooff IInnssttrruummeennttaattiioonn aanndd MMeetthhooddss 
5599 
Type of pollutants 
Average time specified by air quality 
criteria or standards 
Expected pollutant levels 
Available resources 
Availability of trained personal 
Presence in the air of interfering materials
6600 
DDuurraattiioonn ooff ssaammpplliinngg ppeerriioodd 
Two types of sampling are used in the 
studies of air pollution. 
 Short period or Spot sampling 
 Continuous sampling
6611 
LLooccaattiioonn ooff ssaammpplliinngg ssiitteess 
The necessary number of sampling 
stations and their location depend on 
several factors including the objective 
of the programme, the size of the study 
area, the proximity of the sources of 
the sources of pollution, topographical 
features and the weather.
6622 
AAMMBBIIEENNTT AAIIRR SSAAMMPPLLIINNGG 
The typical air sampling system 
contains a sample collector, a flow 
meter and a pump to draw air sample 
through the system 
Ambient air is sampled for the 
collection of 
gaseous pollutants 
particulate matter
6633 
CCOOLLLLEECCTTIIOONN OOFF GGAASSEEOOUUSS AAIIRR 
PPOOLLUUTTAANNTTSS 
The common methods used for the 
collection of gaseous pollutants are 
1. Grab sampling 
2. Absorption in liquids 
3. Adsorption on solid materials 
4. Freeze out sampling
6644 
11.. GGrraabb ssaammpplliinngg 
In grab sampling the sample is 
collected by filling an evacuated flask 
or an inflatable bag or any rigid wall 
container.
6655 
22.. AAbbssoorrppttiioonn iinn lliiqquuiiddss 
Absorption separates the desired 
pollutant from air either through direct 
solubility in the absorbing medium or 
by chemical reaction. Devices like 
fritted gas absorber and impengers are 
widely used for this purpose as the 
provide large contact surface area.
6666
6677 
GASEOUS 
POLLUTANT 
S 
SUITABLE SOLVENTS 
Sulphur 
dioxide 
Sodium hydroxide,sodium sulphite,magnesium 
oxide,calcium carbonate,calcium oxide and 
calcium hydroxide solutions 
Nitrogen 
oxides 
Ammonium bicarbonate, ammonium bisulphite, 
calcium hydroxide,magnesium hydroxide and 
sodium hydroxide solutions 
Hydrogen 
sulphide 
Sodium hydroxide, potassium hydroxide 
solutions 
Hydrogen 
chloride 
Water, ammonia, calcium and magnesium 
hydroxide solution
6688 
Chlorine Solutions of sodium hydroxide, 
sodium sulphite, sodium 
thiosulphite and water 
Phosgene Sodium hydroxide and water 
Ammonia Sulphuric acid, nitric acid 
Mercaptans Sodium hypochlorite solution
6699 
33.. AAddssoorrppttiioonn oonn ssoolliiddss 
This method is based on the tendency of 
gases to be adsorbed on the surface of solid 
materials. The sample air is passed through 
a packed column containing a finely divided 
solid adsorbents, on whose surface the 
pollutants are retained and concentrated. 
The most widely used solid adsorbents are 
activated charcoal and silica gel.
7700 
44.. FFrreeeezzee oouutt ssaammpplliinngg 
In this method a series of cold traps, 
which are maintained at progressively 
lower temperatures are used to draw 
the air samples, where by the 
pollutants are condensed. These 
pollutants are later analyzed by mass 
spectrometry.
7711
ANALYSIS OF PARTICULAR AIR POLLUTANTS 
7722 
POLLUTANTS ANALYSER PRINCIPLE 
Sulphur Dioxide Flame Photometer Emission 
spectrometry 
Nitrogen Oxides Chemiluminescent 
analyser 
Emission 
spectrometry 
Carbon Monoxide Nondispersive 
Infrared analyser 
Energy absorption 
From IR radiations 
Hydrocarbons Flame ionisation 
detector 
Ionisation 
Particulate Matter Beta attenuation 
monitor 
Beta attenuation
7733 
FLAME PHOTOMETER 
( for analysis of Sulphur Dioxide ) 
When an air stream containing sulphur is ignited in a hydrogen-rich flame, 
a characteristic flame emission spectrum is produced with a band centered at 
394m and amount of light emitted proportional to the concentration of Sulphur.
7744 
CHEMILUMINESCENT ANALYSER 
( for analysis of Nitrogen Oxides ) 
Reaction with ozone produce Nitrogen dioxide in excited state that emits 
radiant energy The intensity of radiationemitted is proportional to the amount 
of nitric oxide.
7755 
NONDISPERSIVE INFRARED ANALYSER 
( for analysis of Carbon Monoxide ) 
Carbon Monoxide absorbs infrared radiations and passes varying amount 
of infrared energy,inversely proportional to CO concentration to detector 
causing mechanical movement in the diaphragm .
7766 
FLAME IONISATION DETECTOR 
( for analysis of hydrocarbons ) 
Hydrocarbons on burning produce complex ionization forminglarge number of 
ions .An electric field setup establises an ionisation current proportional to the 
concentration of hydrocarbons in sample .
7777 
OOrrggaanniicc VVaappoouurr SSaammpplleerr 
A known amount of air is passed through 
Activated Charcoal tube at a constant flow 
rate (100 to 200 ml/min) with minimum 
pressure drop (10-15 mm Hg). Volatile 
organic compounds (VOCs) are adsorbed 
on Activated Charcoal which is later 
desorbed/extracted using a suitable 
organic solvent. Extracted/desorbed 
solvent is used for quantifying the organic 
compounds (VOCs) with the help of Gas 
Chromatograph.
7788 
CCOOLLLLEECCTTIIOONN OOFF PPAARRTTIICCUULLAATTEE 
MMAATTTTEERR 
Particulate matter are generally sampled 
using 
1. Sedimentation (dust fall jar) 
2. High volume sampler 
3. Tape sampler 
4. Thermal precipitation 
5. Electrostatic precipitator
7799 
11.. DDuusstt ffaallll jjaarr 
This is the simplest device used for 
sampling particles larger than 10 micro 
meters. 
Dust fall jar is simply a plastic jar with 
slightly tappered inwards.
8800 
22.. HHiigghh vvoolluummee ssaammpplleerr 
In this method, a known volume of air 
is sucked by a high speed blower 
through a fine filter and the increase in 
weight due to trapped particles is 
measured.
8811 
HHiigghh VVoolluummee SSaammpplleerr EEnnvviirrootteecchh AAPPMM 443300
8822 
SScchheemmaattiicc DDiiaaggrraamm ooff RReessppiirraabbllee DDuusstt 
SSaammpplleerr ((AAPPMM 445511 && 441111)).. 
IItt ffiirrsstt sseeppaarraatteess tthhee ccooaarrsseerr ppaarrttiicclleess ((llaarrggeerr tthhaann 1100 mmiiccrroonnss)) ffrroomm 
tthhee aaiirr ssttrreeaamm bbeeffoorree ffiilltteerriinngg iitt oonn 00..55 mmiiccrroonn ppoorree--ssiizzee ffiilltteerr aalllloowwiinngg 
aa mmeeaassuurree mmeenntt ooff bbootthh tthhee TTSSPP aanndd tthhee rreessppiirraabbllee ffrraaccttiioonn ooff tthhee tthhee 
TTSSPP aanndd tthhee rreessppiirraabbllee ffrraaccttiioonn ooff tthhee ssuussppeennddeedd ppaarrttiiccuullaattee mmaatttteerr 
((SSPPMM))..
8833 
33.. TTaappee ssaammpplleerr 
In this method a known volume of air is passed 
through a paper tape, on which the particulates 
get collected forming a dark spot. 
COH/1000 ft = log [(T0 A x 105)/(T V)] 
 T0 = the transmittance of clean tape (100%) 
 T = the percentage of light transmitted through the spot 
 A = area of the spot in square feet 
 V = Volume of the sample in cubic feet.
8844 
44.. TThheerrmmaall pprreecciippiittaattiioonn 
This is based on the principle that 
small particles, under the influence of a 
strong temperature gradient between 
two surfaces, have a tendency to move 
towards the lower temperature and get 
deposited on the colder of these two 
surfaces
8855 
55.. EElleeccttrroossttaattiicc PPrreecciippiittaattoorr 
Here a negative charge is imparted to a wire 
placed axially inside a cylinder which is 
positively charged. When a particle laden 
stream is passes through the cylinder, the 
particles acquire a negative charge from a 
corona discharge occurring on the central 
wire .The particles migrate towards the inner 
surface of the cylinder, loose their charge 
and are collected for subsequent analysis.
8866 
FFIINNEE 
PPAARRTTIICCUULLAATTEE 
SSAAMMPPLLEERR
8877 
TTyyppeess ooff PPMM CCEEMMss 
Light scatter 
 Forward, side, backward 
Beta Attenuation 
Probe Electrification (charge transfer) 
Light Extinction (opacity) 
Optical Scintillation
8888 
OOppaacciittyy mmeetteerr 
PM emissions can be continuously 
detected through opacity measurements. 
Opacity is a function of light transmission 
through the plume and is defined by the 
formula: 
OP = [1-(I/I0)] x 100 
OP = percent opacity 
I = light flux leaving the plume 
I0 = incident light flux
8899 
OOppaacciittyy AAddvv../DDiissaaddvv.. 
10,000+ already 
installed 
 Measures attenuation of 
light 
 Adversely affected by 
 Particle size, shape, 
density changes 
 Measures liquid drops 
as PM 
 Not sensitive to low PM 
concentration 
 Cost more than a light 
scatter PM CEM 
 Correlation to mass 
conc. not linear
990 
OOppttiiccaall SScciinnttiillllaattiioonn AAddvv../DDiissaaddvv.. 
Low price $10,000 
Easy to install 
Low maintenance 
Not sensitive to low 
PM concentration 
Doesn’t detect 
particles < ~ 2μm 
Adversely affected by 
particle density 
change 
Measures liquid 
drops as PM
9911 
SSmmookkee mmeeaassuurreemmeenntt 
Smoke particles are 
mainly unburnt 
carbon resulting from 
incomplete 
combustion. 
Ringelmann Chart – A 
scheme where 
graduated shades of 
gray vary by five 
equal steps between 
white and black.
9922 
CCoonnttiinnuuoouuss mmoonniittoorriinngg IInnssttrruummeennttss aanndd TThheeiirr WWoorrkkiinngg 
PPrriinncciipplleess 
System Operating principle Sensitivity 
CO Monitor 
(Catalytic) 
CO gets converted to CO2 in presence of 
Hopcalite catalyst (mixtures of CuO, MnO2, 
Co2O2, Ag2O). 
Specific for 
CO 
sensitivity – 
2 ppm 
NO.NOx, NH3 
Monitor 
The method is based on chemiluminescent 
between NO and O3. The light intensity is 
monitored as a function of NO concentration. 
Very specific 
for NO. 
Sensitivity – 
0.005 ppm 
Ozone 
Chemiluminescence 
(CL) Monitor 
The chemiluminescence reaction between O3 
and ethylene is used in this method 
Very specific 
for ozone. 
Sensitivity – 
0.005 ppm 
Coulometric SO2 
Monitor 
Electrochemically liberated iodine or bromine 
reacts with SO2. 
Sensitivity – 
0.002 ppm 
UV fluorescence 
SO2 monitor 
SO2 molecules are excited by absorption of UV 
light (214 nm) from a zinc discharge lamp and 
fluorescence emission measured in UV region. 
Sensitivity – 
0.002 ppm 
NDIR Analuser for 
CO2, CO, CH4, SO2 
Principle- Absorption of IR by gases at their 
characteristic wavelength. 
Sensitivity 
CO – 10 ppm 
CO2 – 5 ppm 
CH4 – 5 ppm 
SO2 – 20 
ppm 
SPM monitor Beta absorption of 14C beats through filter 
containing SPM. 
Sensitivity – 
50 μg/m3. 
H2S 
Chemiluminescence 
Monitor 
H2S reacts with ozone and excited SO2 emits 
chemiluminescence in the UV region while 
retrning to ground state. 
Sensitivity – 
0.01 ppm
9933 
AAiirr PPoolllluuttiioonn MMeetteeoorroollooggyy –– IInnssttrruummeennttss aanndd tthheeiirr 
SSppeecciiffiiccaattiioonnss
9944
9955 
UUnnssttaabbllee AAiirr 
If the ambient air 
temperature drops 
rapidly with altitude, hot 
polluted air will rise and 
disperse. 
What would happen, if 
this temperature profile 
were inverted?
9966
9977
9988 
TTeemmppeerraattuurree IInnvveerrssiioonn 
If the there is a temperature 
inversion the air will not rise. 
This may lead to a severe 
pollution episode. 
What produces a 
temperature inversion?
9999 
SSuubbssiiddeennccee IInnvveerrssiioonn 
 Descending air compresses and warms, creating an 
inversion layer. 
 Is there another mechanism?
1100 
STACK MONITORING 
 To determine the quantity and quality of the pollutant emitted 
by the source 
 To measure the efficiency of the control equipment by 
conducting a survey before and after installation 
 To determine the effect of the emission due to changes in raw 
materials and processes. 
 To compare the efficiency of different control equipments for a 
given condition 
 To acquire data from an innocuous individual source so as to 
determine the cumulative effect of many such sources. 
 To compare with the emission standards in order to assess the 
need for local control.
11011 
STACK EMISSION MONITORING 
In stack Emission Monitoring 
MANUAL STACK SURVEYS : short duration 
tests, usually consisting of three one-hour 
tests. Stack sampling equipment is used to 
collect effluent samples from the stack. 
CONTINUOUS EMISSION MONITORING: This 
is done with instruments permanently 
installed on the stack. Measurements of the 
concentration and flow rate allow the mass 
emission rate to be determined on an 
ongoing, year round basis.
The following figure shows how stack sampling is done industrially. 
The sampling is done by diverting a part of the gas stream 
through a sampling train as shown in the following figure 
11022
11033 
REPRESENTATIVE SAMPLE 
•Accurate measurement of pressure, moisture, humidity and gas 
composition 
•The selection of suitable locations for sampling 
•Determination of the traverse points required for a velocity and 
temperature profile across the cross section of the stack and 
sampling for particulate matter. 
•The measurement of the rate of flow of gas or air through the stack 
•Selection of a suitable sampling train 
•Accurate isokinetic sampling rate especially for particulate 
sampling 
•Accurate measurement of weight and volume of samples collected.
OVERALL OBJECTIVE 
The main tasks involved are to determine the pollutant 
concentration, stack gas flow rate and pollutant mass emission rate. 
These terms are related as 
11044 
PMRs = Cs ´Qs 
The average volumetric stack gas flow rate, Qs 
is determined by measuring the average gas velocity, Vs and the 
area of the stack As. 
Qs = Vs ´ Cs 
The basic equation to determine the velocity of flow inside the stack is 
Vs = KP ´ CP 
1/ 2 
´ D 
T P 
s 
P M 
s s 
þ ý ü 
î í ì 
´
11055 
SELECTION OF SAMPLING LOCATION 
The sampling point should be as far as possible from any 
disturbing influence, such as elbows, bends, transition 
pieces, baffles or other obstructions. The sampling point, 
wherever possible should be at a distance 5-10 diameters 
down-stream from any obstructions and 3-5 diameters up-stream 
from similar disturbance. 
SIZE OF SAMPLING POINT 
The size of sampling point may be made in the range of 7- 
10 cm, in diameter.
11066 
PPRROOCCEEDDUURREE FFOORR PPAARRTTIICCUULLAATTEE 
MMAATTTTEERR SSAAMMPPLLIINNGG 
1. Determine the gas composition and 
correct to moisture content. 
2. Determine the temperature and velocity 
at each point using pitot tube at each 
traverse point 
3. Determine the empty weight of the 
thimble 
4. Mark out the traverse points on the 
probe. 
5. Check all points leakages
11077 
PPRROOCCEEDDUURREE FFOORR PPAARRTTIICCUULLAATTEE 
MMAATTTTEERR SSAAMMPPLLIINNGG 
6. Determine the flow rate to be sampled under 
isokinetic conditions 
7. Insert the probe at the traverse point 1, very close 
to the stack. Start the pump and adjust the flow so 
that the rotameter reads the predetermined value. 
8. Switch off the pump at the end of sampling time. 
9. Read the vacuum at the dry gas meter (DGM) and 
also the temperature. 
10. Move the probe to the subsequent traverse points 
by repeating the steps five to eight. 
11. After completion of collection of samples, remove 
the probe and allow it to cool.
11088 
PPRROOCCEEDDUURREE FFOORR PPAARRTTIICCUULLAATTEE 
MMAATTTTEERR SSAAMMPPLLIINNGG 
12. Remove the thimble carefully. Some of the dust 
would have adhered to the nozzle. This should be 
removed by tapping and transferred to the thimble. 
13. Weigh the thimble with the sample. The difference 
in weight gives the dust collected. 
14. The volume of sample collected is either given by 
the dry gas meter (cu m) or by the sampling rate 
given by rotameter multiplied by the sampling 
time. 
15. Hence from (13) and (14), the emission rate can be 
calculated. This will be at DGM conditions. This is 
to be corrected for temperature and pressure so as 
to obtain values for standard conditions.
11099 
TTyyppiiccaall aaiirr ssaammpplliinngg ttrraaiinn 
Gravimetric 
Volumetric 
Microscopy 
Instrumental 
 Spectrophotometric – Ultraviolet, Visible (Colorimetry), 
Infra-red. 
 Electrical – Conductometric, Coulometric, Titrimetric. 
 Emission Spectroscopy 
 Mass Spectroscopy 
 Chromatography
11110 
SAMPLING SYSTEM:
111111 
TRAVERSE POINTS 
For the sample to become representative, it should be 
collected at various points across the stack. This is 
essential as there will be changes in velocity and 
temperature (hence the pollutant concentration) across 
the cross-section of the stack. Traverse points have to 
be located to achieve this. 
Cross-section area of stack 
(sq-m) 
No. of points 
0.2 
0.2 to 2.5 
2.5 and above 
4 
12 
20
111122
111133 
ISOKINETIC CONDITIONS 
Representative samples can be achieved by isokinetic 
sampling. Isokinetic conditions exist when the velocity 
in the stack Vs equals the velocity at the top of the 
probe nozzle Vn at the sample point.
111144 
RReeaassoonn ffoorr IIssookkiinneettiicc SSaammpplliinngg
111155 
DETERMINATION OF GAS COMPOSITION 
The first step in the field work of stack sampling is to 
determine the gas composition. This can be determined 
by using Orsat apparatus / 
DETERMINATION OF MOISTURE CONTENT 
Wet bulb and dry bulb temperature technique 
Condenser technique 
Silica gel tube 
DETERMINATION OF TEMPERATURE 
DETERMINATION OF VELOCITY: Pitote Tube
111166 
TTwweellvvee ppeerrcceenntt CCaarrbboonn DDiiooxxiiddee 
 The method for concentration correction to 12 % CO2 is: 
 C0 = Measured concentration of constituent at standard conditions. 
 C12 = Measured concentration of constituent at standard conditions 
when corrected to 12% CO2 by volume on a dry basis. 
 FCO2 = Correction factor for constituent concentration when adjusting 
to 12% CO2 by volume on a dry basis. 
 %CO2 = Percent carbon dioxide by volume on a dry basis.
111177 
RREECCEENNTT TTRREENNDDSS IINN SSAAMMPPLLIINNGG 
OOFF SSTTAACCKK EEFFFFLLUUEENNTTSS 
The recent technology is useful to 
manufacturers of equipment for online 
sampling of stack effluents. Two main 
monitors useful for determining 
particulate concentration in stacks are 
Piezoelectric Monitor 
Beta attenuation Monitor
111188 
11.. PPiieezzooeelleeccttrriicc MMoonniittoorr 
In this device, particles in a sample 
stream are electrostatically deposited 
on to a piezoelectric sensor. The added 
weight of particulates changes the 
osillation frequency of the sensor in a 
charectristic way. The out put signal 
can be conditioned so that it becomes 
directly proportional to particulate 
mass concentration, which is recorded 
either by digital or analog recorder.
111199
11220 
22.. BBeettaa AAtttteennuuaattiioonn MMoonniittoorr 
For the analysis of particulate matter. 
 Here the particulate sample is filtered using a 
continuous filter tape and the mass concentration of 
the filtered out is determined by measuring its 
attenuation of beta radiation, whose characteristics 
do not vary widely for different particulate 
compositions hence a direct mass measurement is 
possible. 
 Carbon -14 with a half life of 5,568 years is a typical 
beta radiation source.
112211
112222 
BBeettaa AAtttteennuuaattiioonn PPMM CCEEMMss 
MSI BetaGuard PM 
Durag F904K 
Environment S.A. 5M
112233 
HHaannddyy SSttaacckk SSaammpplleerr EEnnvviirrootteecchh 
AAPPMM 662200
112244 
SSttaacckk vveelloocciittyy mmoonniittoorr 
EEnnvviirrootteecchh AAPPMM 660022
112255 
GGaass aannaallyyssiiss ffrroomm CCoommbbuussttiioonn 
PPrroocceessss 
Monitoring NO, NO2 & 
SO2 analysis from 
Combustion Process 
in stack analysis of up 
to six gas phase stack 
emission components
FUGITIVE EMISSION MONITORING 
112266 
Volatile organic compounds (VOCs) can 
be emitted from leaking valves, flanges, 
sampling connections, pumps, pipes 
and compressors. Emissions of these 
types are commonly called fugitive 
emissions.
112277 
FFuuggiittiivvee EEmmiissssiioonnss 
Unintentional releases, such as those due 
to leaking equipment, are known as 
fugitive emissions 
Can originate at any place where 
equipment leaks may occur 
Can also arise from evaporation of 
hazardous compounds from open topped 
tanks
112288 
SSoouurrcceess ooff FFuuggiittiivvee EEmmiissssiioonnss 
Pumps 
27% 
Flanges 
3% 
Relief valves 
18% 
Drains 
1% 
Compressors 
8% 
Valves 
43% 
A g i t a t o r s e a l s L o a d i n g a r m s 
C o m p r e s s o r s e a l s M e t e r s 
C o n n e c t o r s O p e n - e n d e d l i n e s 
D i a p h r a m s P o l i s h e d r o d s 
D r a i n s P r e s s u r e r e l i e f d e v i c e s 
D u m p l e v e r a r m s P u m p s e a l s 
F l a n g e s S t u f f i n g b o x e s 
H a t c h e s V a l v e s 
I n s t r u m e n t s V e n t s
112299 
MMeeaassuurriinngg FFuuggiittiivvee EEmmiissssiioonnss 
Portable gas detector 
Catalytic bead 
Non-dispersive infrared 
Photo-ionization detectors 
Combustion analyzers 
Standard GC with flame ionization 
detector is most commonly used
113300 
MMeeaassuurriinngg FFuuggiittiivvee EEmmiissssiioonnss 
Average emission factor approach 
Screening ranges approach 
EPA correlation approach 
Unit-specific correlation approach
AAvveerraaggee EEmmiissssiioonn FFaaccttoorr AApppprrooaacchh 
113311 
E F W F T O C A T O C = × 
ETOC = TOC emission rate from a component (kg/hr) 
FA = applicable average emission factor for the component (kg/hr) 
WFTOC = average mass fraction of TOC in the stream serviced by the component 
T a b l e 1 0 . 9 
A v e r a g e e m i s s i o n f a c t o r s f o r e s t i m a t i n g f u g i t i v e e m i s s i o n s 
E q u i p m e n t t y p e S e r v i c e 
T O C e m i s s i o n f a c t o r 
( k g / h r / s o u r c e ) 
S O C M I R e f i n e r y 
M a r k e t i n g 
T e r m i n a l 
V a l v e s G a s 
L i g h t l i q u i d 
H e a v y l i q u i d 
0 . 0 0 5 9 7 
0 . 0 0 4 0 3 
0 . 0 0 0 2 3 
0 . 0 2 6 8 
0 . 0 1 0 9 
0 . 0 0 0 2 3 
1 . 3 x 1 0 - 5 
4 . 3 x 1 0 - 5 
- 
P u m p s e a l s G a s 
L i g h t l i q u i d 
H e a v y l i q u i d 
- 
0 . 0 1 9 9 
0 . 0 0 8 6 2 
- 
0 .1 4 4 
0 .0 2 1 
6 . 5 x 1 0 - 5 
5 . 4 x 1 0 - 4 
-
113322 
SSccrreeeenniinngg RRaannggeess AApppprrooaacchh 
Leak/ No-leak approach 
more exact than the average emissions 
approach 
 relies on screening data from the facility, 
rather than on industry wide averages 
E F N F N T O C G G L L = ( × ) + ( × ) 
T O C e m i s s i o n r a t e f o r a n e q u i p m e n t t y p e 
F G = a p p l i c a b l e e m i s s i o n f a c t o r f o r s o u r c e s w i t h s c r e e n i n g v a l u e s g r e a t e r t h a n 
o r e q u a l t o 1 0 , 0 0 0 p p m v ( k g / h r / s o u r c e ) 
N G = e q u i p m e n t c o u n t f o r s o u r c e s w i t h s c r e e n i n g v a l u e s g r e a t e r t h a n o r e q u a l t o 
1 0 , 0 0 0 p p m v 
F L = a p p l i c a b l e e m i s s i o n f a c t o r f o r s o u r c e s w i t h s c r e e n i n g v a l u e s l e s s t h a n 
1 0 , 0 0 0 p p m v ( k g / h r / s o u r c e ) 
N L = e q u i p m e n t c o u n t f o r s o u r c e s w i t h s c r e e n i n g v a l u e s l e s s t h a n 1 0 , 0 0 0 p p m v
113333 
EEPPAA CCoorrrreellaattiioonn AApppprrooaacchh 
Predicts mass emission rates as a 
function of screening values for a 
particular equipment type 
Total fugitive emissions = sum of the 
emissions associated with each of the 
screening values 
Default-zero leak rate is the mass 
emission rate associated with a 
screening value of zero
113344 
EEPPAA CCoorrrreellaattiioonn AApppprrooaacchh 
T a b l e 1 0 . 1 1 
E P A c o r r e l a t i o n s f o r e s t i m a t i n g f u g i t i v e e m i s s i o n s 
E q u i p m e n t t y p e T O C l e a k r a t e f r o m c o r r e l a t i o n * 
( k g / h r / u n i t ) 
D e f a u l t - z e r o 
e m i s s i o n r a t e 
( k g / h r / u n i t ) 
S O C M I R e f i n e r y 
G a s v a l v e s 1 . 8 x 1 0 - 6 S V 0 . 8 7 3 - 6 . 6 x 1 0 - 7 
L i q u i d l i q u i d v a l v e s 6 . 4 1 x 1 0 - 6 S V 0 . 7 9 7 - 4 . 9 x 1 0 - 7 
V a l v e s ( a l l ) - 2 . 2 9 x 1 0 - 6 S V 0 .7 4 6 7 . 8 x 1 0 - 6 
L i g h t l i q u i d p u m p s 1 . 9 0 x 1 0 - 5 S V 0 . 8 2 4 - 7 . 5 x 1 0 - 6 
P u m p s e a l s ( a l l ) - 5 . 0 3 x 1 0 - 5 S V 0 .6 1 0 2 . 4 x 1 0 - 5 
C o n n e c t o r s 3 . 0 5 x 1 0 - 6 S V 0 . 8 8 5 - 6 . 1 x 1 0 - 7 
C o n n e c t o r s - 1 . 5 3 x 1 0 - 6 S V 0 .7 3 5 7 . 5 x 1 0 - 6 
F l a n g e s - 4 . 6 1 x 1 0 - 6 S V 0 .7 0 3 3 . 1 x 1 0 - 7 
O p e n - e n d e d l i n e s - 2 . 2 0 x 1 0 - 6 S V 0 .7 0 4 2 . 0 x 1 0 - 6
113355 
UUnniitt--SSppeecciiffiicc CCoorrrreellaattiioonn AApppprrooaacchh 
Most exact, but most expensive method 
Screening values and corresponding 
mass emissions data are collected for a 
statistically significant number of units 
A minimum number of leak rate 
measurements and screening value pairs 
must be obtained to develop the 
correlations
113366 
CCoonnttrroolllliinngg FFuuggiittiivvee EEmmiissssiioonnss 
Modifying or replacing existing equipment 
Implementing a leak detection and repair 
(LDAR) program
113377 
EEqquuiippmmeenntt MMooddiiffiiccaattiioonn 
E q u i p m e n t t y p e M o d i f i c a t i o n 
A p p r o x i m a t e 
c o n t r o l 
e f f i c i e n c y 
( % ) 
P u m p s S e a l l e s s d e s i g n 1 0 0 
C l o s e d - v e n t s y s t e m 9 0 
D u a l m e c h a n i c a l s e a l w i t h b a r r i e r f l u i d m a i n t a i n e d 
a t a h i g h e r p r e s s u r e t h a n t h e p u m p e d f l u i d 
1 0 0 
C o m p r e s s o r s C l o s e d - v e n t s y s t e m 9 0 
D u a l m e c h a n i c a l s e a l w i t h b a r r i e r f l u i d m a i n t a i n e d 
a t a h i g h e r p r e s s u r e t h a n t h e p u m p e d f l u i d 
1 0 0 
P r e s s u r e - r e l i e f 
d e v i c e s 
C l o s e d - v e n t s y s t e m v a r i e s 
R u p t u r e d i s k a s s e m b l y 1 0 0 
V a l v e s S e a l l e s s d e s i g n 1 0 0 
C o n n e c t o r s W e l d t o g e t h e r 1 0 0 
O p e n - e n d e d l i n e s B l i n d , c a p , p l u g o r s e c o n d v a l v e 1 0 0 
S a m p l i n g 
C l o s e d - lo o p s a m p l i n g 1 0 0 
c o n n e c t i o n s
113388 
VVaallvveess UUsseedd iinn IInndduussttrryy
11339 
VVaallvveess UUsseedd iinn IInndduussttrryy ((ccoonntt..))
114400 
LLDDAARR PPrrooggrraammss 
Designed to identify pieces of equipment 
that are emitting sufficient amounts of 
material to warrant reduction of emissions 
through repair 
Best applied to equipment types that can 
be repaired on-line or to equipment for 
which equipment modification is not 
suitable
114411 
FFuuggiittiivvee EEmmiissssiioonnss ffrroomm SSttoorraaggee 
TTaannkkss 
There are six basic tank designs 
Fixed roof 
 vertical or horizontal 
 least expensive 
 least acceptable for storing liquids 
 emission are caused by changes in 
• temperature 
• pressure 
• liquid level 
( a ) T y p i c a l f i x e d - r o o f t a n k .
FFuuggiittiivvee EEmmiissssiioonnss ffrroomm SSttoorraaggee TTaannkkss 
External floating roof 
114422 
– open-topped cylindrical steel shell 
– steel plate roof that floats on the surface of the liquid 
– emission limited to evaporation losses from 
• an imperfect rim seal system 
• fittings in the floating deck 
• any exposed liquid on the tank wall when liquid is 
withdrawn and the roof lowers 
Domed external floating roof 
– similar to internal floating roof tank 
– existing floated roof tank retrofitted with a fixed roof to 
block winds and minimize evaporative loses
114433 
EExxtteerrnnaall FFllooaattiinngg RRooooff TTaannkkss 
( b ) E x t e r n a l f l o a t i n g r o o f t a n k ( p o n t o o n 
t y p e ) . 
( d ) D o m e d e x t e r n a l f l o a t i n g r o o f t a n k .
FFuuggiittiivvee EEmmiissssiioonnss ffrroomm SSttoorraaggee TTaannkkss 
114444 
(( cc )) II nn tt ee rr nn aa ll ff ll oo aa tt ii nn gg rr oo oo ff tt aa nn kk .. 
Internal floating roof 
– permanent fixed roof with 
a floating roof inside 
– evaporative losses from 
• deck fittings 
• non-welded deck 
seams 
• annular space 
between floating deck 
and the wall
FFuuggiittiivvee EEmmiissssiioonnss ffrroomm SSttoorraaggee TTaannkkss 
Variable vapor space 
114455 
– expandable vapor reservoirs to accommodate 
volume fluctuations due to: 
• temperature 
• barometric pressure changes 
– uses a flexible diaphragm membrane to provide 
expandable volume 
– losses are limited to: 
• tank filling times when vapor displaced by 
liquid exceeds tank’s storage capacity
FFuuggiittiivvee EEmmiissssiioonnss ffrroomm SSttoorraaggee TTaannkkss 
Pressure tanks 
114466 
 low or high pressure 
– used for storing organic liquids and gases with high 
vapor pressures 
– equipped with pressure/vacuum vent to prevent venting 
loss from 
• boiling 
• breathing loss from temperature and pressure 
changes
114477 
EEmmiissssiioonnss EEssttiimmaattiioonn ffrroomm SSttoorraaggee 
TTaannkkss 
L L L T S W = + 
LT = total losses, kg/yr 
LS = standing storage losses, kg/yr 
LW = working losses, kg/yr 
The standing storage losses are due to 
breathing of the vapors above the liquid in 
the storage tank 
L V W K K S V V E S = 3 6 5 
VV = vapor space volume, m3 
WV = vapor density, kg/m3 
KE = vapor space expansion factor, 
dimensionless 
KS = vented space saturation factor, 
dimensionless 
365 = days/year 
W 
M P 
V V A 
L A 
= 
V R T 
MV = vapor molecular weight 
R = universal gas constant, mm Hg-L/K-mol 
PVA = vapor pressure at daily average liquid 
surface temperature, 
TLA = daily average liquid surface temperature, 
K 
K 
T 
T 
P P 
D D D 
V 
L A 
- 
- 
V B 
A V A 
= + 
E P P 
TV = daily temperature range, K 
PV = daily pressure range, 
PB = breather vent pressure setting range, 
PA = atmospheric pressure,
114488 
EEmmiissssiioonnss EEssttiimmaattiioonn ffrroomm SSttoorraaggee 
TTaannkkss 
K 
S P H 
V A V O 
= 
+ 
1 
1 0 .0 5 3 
HVO = vapor space outage, ft = height of a cylinder of tank diameter, D, 
whose volume is equivalent to the vapor space volume of the tank 
L M P Q K K W V V A N P = 0 .0 0 1 0 
Q = annual net throughput (tank capacity (bbl) times annual turnover rate), bbl/yr 
KN = turnover factor, dimensionless 
for turnovers > 36/year, KN = (180 + N)/6N 
for turnovers  36, KN = 1 
where N = number of tank volume turnovers per year 
KP = working loss product factor, dimensionless 
for crude oils = 0.75 
for all other liquids = 1.0
FFuuggiittiivvee EEmmiissssiioonnss ffrroomm WWaassttee,, 
11449 
TTrreeaattmmeenntt aanndd DDiissppoossaall 
I = important S = secondary N = negligible or not applicable 
Surface Wastewater treatment plants Land 
Pathway impoundments Aerated Non-aerated treatment Landfill 
Volatilization I I I I I 
Biodegradation I I I I S 
Photodecomp. S N N N N 
Hydrolysis S S S N N 
Oxidation/red’n N N N N N 
Adsorption N S S N N 
Hydroxyl radical N N N N N
115500 
AAUUTTOOMMOOBBIILLEE EEMMIISSSSIIOONN 
Automobiles are ‘necessary evils’, while 
they have made living easy and 
convenient, they have also made human 
life more complicated and vulnerable to 
both toxic emissions and an increased risk 
of accidents.
115511 
AAUUTTOOMMOOBBIILLEE EEMMIISSSSIIOONN 
--EENNVVIIRROONNMMEENNTTAALL IISSSSUUEESS 
 Delhi – total pollution load declines from 412,000t – 328,000 t 
(1998-2020) 
 By 2020, two wheelers and cars contribute 80% HC 
emissions in Delhi 
 Two wheelers alone contribute 70% of CO2 emissions 
 Annual Pollution load in Mumbai declines by 40% 
 Particulates, SOx and NOx declines due to the decline in 
diesel usage 
 CO2 emissions by 2020 under BAU in Delhi would be 2.57 
times the present value 
 In Mumbai it would be 2.7 times 
 CO2 emissions in Delhi are 2.4 times higher than Mumbai at 
any given time
115522
115533 
AAUUTTOOMMOOBBIILLEE EEMMIISSSSIIOONN 
Following factors make pollution from the 
vehicles more serious in developing 
countries 
Poor quality of vehicles creating more 
particulates and burning fuels inefficiently. 
Lower quality of fuel being used leads to far 
greater quantities of pollutants. 
Concentration of motor vehicles in a few large 
cities 
Exposure of a larger percentage of population 
that lives and moves in the open.
115544
115555
115566 
PPOOLLLLUUTTAANNTTSS PPRROODDUUCCEEDD BBYY 
AAUUTTOOMMOOBBIILLEE EEMMIISSSSIIOONN 
 HC-Unburned fuel molecules or partialburning 
 NOx-under high pressure and temperature 
 conditions in an engine 
 CO-Due to incomplete combustion 
 CO2-Due to perfect combustion
AAUUTTOOMMOOBBIILLEE EEMMIISSSSIIOONN 
MMOONNIITTOORRIINNGG
115588 
MMoobbiillee AAiirr PPoolllluuttiioonn VVaann 
 Mobile system to 
monitor Air, Water, 
Noise & 
meteorological 
parameters 
 Design to meet 
customers needs 
 Self contained with 
Air conditioner and 
power gensets 
 Designed to suit 
Indian road 
conditions
11559 
EExxttrraaccttiivvee mmuullttiiggaass aannaallyyzzeerr 
ssyysstteemm 
 For continuous 
emission monitoring. 
 Used to measure the 
concentration of oxides 
of nitrogen (NOX), 
sulphur dioxide (SO2), 
carbon dioxide (CO, 
CO2), oxygen (O2), 
hydrocarbons (HCs) 
and water vapour (H2O) 
in the flue gas of large 
combustion processes, 
incinerators and other 
processes when it is 
required by legislation.
116600 
AAuuttoo eexxhhaauusstt AAnnaallyysseerr ffoorr PPeettrrooll
116611 
DDiieesseell SSmmookkee MMeetteerr
116622 
DDiieesseell PPaarrttiiccuullaattee MMoonniittoorriinngg
116633 
VVoollaattiillee OOrrggaanniicc VVaappoouurr MMoonniittoorr 
Based on a portable 
photo ionization 
detector (PID). 
It detects a wide 
range of volatile 
organic compounds 
(VOCs) and various 
other gases.
116644 
 Based on a portable 
photo ionization detector 
(PID) with a barcode 
scanner. 
 It is a practical way to log 
and detect a wide range 
of volatile organic 
compounds (VOCs) and 
various other gases. 
 Bar code scanner 
simplifies tracking fugitive 
emissions
116655 
NNoonn MMeetthhaannee HHyyddrrooCCaarrbboonn 
AAnnaallyyzzeerr 
Hydrocarbon 
detection from sub-ppm 
to 1,000 ppm 
levels
116666 
OOiill iinn WWaatteerr AAnnaallyyzzeerr 
CONTINUOUS MONITORING 
SYSTEM FOR OIL IN WATER
116677
116688 
 Neem in Indian culture has been 
ranked higher than 
'Kalpavriksha', the mythological 
wish-fulfilling tree. 
 In 'Sharh-e-Mufridat Al- 
Qanoon, neem has been named 
as 'Shajar-e-Mubarak', 'the 
blessed tree', because of its 
highly beneficial properties. 
 Although scientific studies are 
wanting, neem is reputed to 
purify air and the environment 
of noxious elements. Its shade 
not only cools but prevents the 
occurrence of many diseases.
TTHHAANNKK YYOOUU

More Related Content

What's hot

Latest steps taken to control air pollution
Latest steps taken to control air pollution Latest steps taken to control air pollution
Latest steps taken to control air pollution Prem Baboo
 
Chapter 2 indoor and outdoor air pollution
Chapter 2 indoor and outdoor air pollutionChapter 2 indoor and outdoor air pollution
Chapter 2 indoor and outdoor air pollutionNoor Farahin
 
casestudy on pollution
casestudy on pollutioncasestudy on pollution
casestudy on pollution1210313648
 
Air pollution (mujahid hussain 127)
Air pollution (mujahid hussain 127)Air pollution (mujahid hussain 127)
Air pollution (mujahid hussain 127)Mujahid Hussaini
 
Air pollution
Air pollutionAir pollution
Air pollutionTej Kiran
 
Air pollution & control
Air pollution & controlAir pollution & control
Air pollution & controlimranzardari
 
Outdoor air pollution
Outdoor air pollutionOutdoor air pollution
Outdoor air pollutionSurendra Bam
 
Assessment of ambient air quality in coimbatore city
Assessment of ambient air quality in coimbatore cityAssessment of ambient air quality in coimbatore city
Assessment of ambient air quality in coimbatore cityAlexander Decker
 
11.assessment of ambient air quality in coimbatore city
11.assessment of ambient air quality in coimbatore city11.assessment of ambient air quality in coimbatore city
11.assessment of ambient air quality in coimbatore cityAlexander Decker
 
Air pollution and its control through biotechnology
Air pollution and its control through biotechnologyAir pollution and its control through biotechnology
Air pollution and its control through biotechnologyAkshaya Anil
 

What's hot (20)

Latest steps taken to control air pollution
Latest steps taken to control air pollution Latest steps taken to control air pollution
Latest steps taken to control air pollution
 
Air Pollution
Air PollutionAir Pollution
Air Pollution
 
Chapter 2 indoor and outdoor air pollution
Chapter 2 indoor and outdoor air pollutionChapter 2 indoor and outdoor air pollution
Chapter 2 indoor and outdoor air pollution
 
casestudy on pollution
casestudy on pollutioncasestudy on pollution
casestudy on pollution
 
Pollution
PollutionPollution
Pollution
 
Air pollution (mujahid hussain 127)
Air pollution (mujahid hussain 127)Air pollution (mujahid hussain 127)
Air pollution (mujahid hussain 127)
 
Air pollution
Air pollutionAir pollution
Air pollution
 
Air pollution & control
Air pollution & controlAir pollution & control
Air pollution & control
 
Rrr inspire-final
Rrr  inspire-finalRrr  inspire-final
Rrr inspire-final
 
Air pollution
Air pollutionAir pollution
Air pollution
 
Outdoor air pollution
Outdoor air pollutionOutdoor air pollution
Outdoor air pollution
 
12 air pollution
12 air pollution12 air pollution
12 air pollution
 
Air pollution
Air pollutionAir pollution
Air pollution
 
Air pollution
Air pollutionAir pollution
Air pollution
 
Air Pollution and Sulphur Dioxide
Air Pollution and Sulphur DioxideAir Pollution and Sulphur Dioxide
Air Pollution and Sulphur Dioxide
 
Assessment of ambient air quality in coimbatore city
Assessment of ambient air quality in coimbatore cityAssessment of ambient air quality in coimbatore city
Assessment of ambient air quality in coimbatore city
 
11.assessment of ambient air quality in coimbatore city
11.assessment of ambient air quality in coimbatore city11.assessment of ambient air quality in coimbatore city
11.assessment of ambient air quality in coimbatore city
 
Air pollution and its control through biotechnology
Air pollution and its control through biotechnologyAir pollution and its control through biotechnology
Air pollution and its control through biotechnology
 
AIR POLLUTION CONTROL Ap syllabus
AIR POLLUTION CONTROL Ap syllabusAIR POLLUTION CONTROL Ap syllabus
AIR POLLUTION CONTROL Ap syllabus
 
cpcb report
cpcb reportcpcb report
cpcb report
 

Viewers also liked

Viewers also liked (19)

CV 2
CV 2CV 2
CV 2
 
Innovative lesson plan.raja mohan .k fmtc mylapure.
Innovative lesson plan.raja mohan .k fmtc mylapure.Innovative lesson plan.raja mohan .k fmtc mylapure.
Innovative lesson plan.raja mohan .k fmtc mylapure.
 
Peritia
PeritiaPeritia
Peritia
 
Raja mohan
Raja mohanRaja mohan
Raja mohan
 
Screenplay practise
Screenplay practiseScreenplay practise
Screenplay practise
 
Innovative lesson plan rejani r
Innovative lesson plan rejani rInnovative lesson plan rejani r
Innovative lesson plan rejani r
 
battery waste and it 222 s management
battery waste and it 222 s managementbattery waste and it 222 s management
battery waste and it 222 s management
 
Electrical assembler kpi
Electrical assembler kpiElectrical assembler kpi
Electrical assembler kpi
 
Nitheesh
NitheeshNitheesh
Nitheesh
 
Vishnu.b assignment.local self governments (1)
Vishnu.b assignment.local self governments (1)Vishnu.b assignment.local self governments (1)
Vishnu.b assignment.local self governments (1)
 
EHs management concept & realities
EHs management concept & realitiesEHs management concept & realities
EHs management concept & realities
 
Foo fighters
Foo fightersFoo fighters
Foo fighters
 
cinemablography
cinemablographycinemablography
cinemablography
 
Evaluation pictures
Evaluation pictures Evaluation pictures
Evaluation pictures
 
Rihanna brand identity
Rihanna brand identityRihanna brand identity
Rihanna brand identity
 
Department profile
Department profileDepartment profile
Department profile
 
Land revenue system
Land revenue systemLand revenue system
Land revenue system
 
Innovative lesson plan manu.v
Innovative lesson plan manu.vInnovative lesson plan manu.v
Innovative lesson plan manu.v
 
Hasil vlookup dan hlookup yadi
Hasil  vlookup  dan  hlookup yadi Hasil  vlookup  dan  hlookup yadi
Hasil vlookup dan hlookup yadi
 

Similar to Air environemnt i d mall

J1CAIP2.pptx
J1CAIP2.pptxJ1CAIP2.pptx
J1CAIP2.pptxBCENEUCSI
 
Chapter 1 introduction of air pollutio nlatest
Chapter 1 introduction of air pollutio nlatestChapter 1 introduction of air pollutio nlatest
Chapter 1 introduction of air pollutio nlatestNoor Farahin
 
Atmospheric-pollution23.pptx
Atmospheric-pollution23.pptxAtmospheric-pollution23.pptx
Atmospheric-pollution23.pptxRitik283705
 
Atmospheric-pollution.pptx
Atmospheric-pollution.pptxAtmospheric-pollution.pptx
Atmospheric-pollution.pptxssuser59bb22
 
Atmospheric-pollution.pptx
Atmospheric-pollution.pptxAtmospheric-pollution.pptx
Atmospheric-pollution.pptxVasahemesh
 
Atmospheric-pollution.pptx
Atmospheric-pollution.pptxAtmospheric-pollution.pptx
Atmospheric-pollution.pptxkannanathu07
 
Introduction & transport of air pollution. m1 pptx
Introduction & transport of air pollution. m1 pptxIntroduction & transport of air pollution. m1 pptx
Introduction & transport of air pollution. m1 pptxBibhabasu Mohanty
 
Environmental pollution vinay.
Environmental pollution vinay.Environmental pollution vinay.
Environmental pollution vinay.vinay vatam
 
L1_BRG_Introduction to air pollution-I.pdf
L1_BRG_Introduction to air pollution-I.pdfL1_BRG_Introduction to air pollution-I.pdf
L1_BRG_Introduction to air pollution-I.pdfBalajiM429762
 
Air Pollution Control
Air Pollution Control Air Pollution Control
Air Pollution Control FaiyazAhmed49
 
Ecology &amp; pollution control in textile industry
Ecology &amp; pollution control in textile industryEcology &amp; pollution control in textile industry
Ecology &amp; pollution control in textile industryDEVNARAYAN YADAV
 
Environmental-pollution
Environmental-pollutionEnvironmental-pollution
Environmental-pollutionDrj Kmr
 
1. intro to air pollution
1. intro to air pollution1. intro to air pollution
1. intro to air pollutionKæsy Chaudhari
 

Similar to Air environemnt i d mall (20)

J1CAIP2.pptx
J1CAIP2.pptxJ1CAIP2.pptx
J1CAIP2.pptx
 
Chapter 1 introduction of air pollutio nlatest
Chapter 1 introduction of air pollutio nlatestChapter 1 introduction of air pollutio nlatest
Chapter 1 introduction of air pollutio nlatest
 
Atmospheric-pollution23.pptx
Atmospheric-pollution23.pptxAtmospheric-pollution23.pptx
Atmospheric-pollution23.pptx
 
Atmospheric-pollution.pptx
Atmospheric-pollution.pptxAtmospheric-pollution.pptx
Atmospheric-pollution.pptx
 
Atmospheric-pollution.pptx
Atmospheric-pollution.pptxAtmospheric-pollution.pptx
Atmospheric-pollution.pptx
 
Atmospheric-pollution.pptx
Atmospheric-pollution.pptxAtmospheric-pollution.pptx
Atmospheric-pollution.pptx
 
Atmospheric-pollution.ppt
Atmospheric-pollution.pptAtmospheric-pollution.ppt
Atmospheric-pollution.ppt
 
Introduction & transport of air pollution. m1 pptx
Introduction & transport of air pollution. m1 pptxIntroduction & transport of air pollution. m1 pptx
Introduction & transport of air pollution. m1 pptx
 
Ppt of es(final)
Ppt of es(final)Ppt of es(final)
Ppt of es(final)
 
Environmental pollution vinay.
Environmental pollution vinay.Environmental pollution vinay.
Environmental pollution vinay.
 
L1_BRG_Introduction to air pollution-I.pdf
L1_BRG_Introduction to air pollution-I.pdfL1_BRG_Introduction to air pollution-I.pdf
L1_BRG_Introduction to air pollution-I.pdf
 
Air Pollution Control
Air Pollution Control Air Pollution Control
Air Pollution Control
 
Ecology &amp; pollution control in textile industry
Ecology &amp; pollution control in textile industryEcology &amp; pollution control in textile industry
Ecology &amp; pollution control in textile industry
 
Environmental pollution
Environmental pollutionEnvironmental pollution
Environmental pollution
 
Environmental-pollution
Environmental-pollutionEnvironmental-pollution
Environmental-pollution
 
Environmental pollution
Environmental pollutionEnvironmental pollution
Environmental pollution
 
Environmental pollution
Environmental pollutionEnvironmental pollution
Environmental pollution
 
1. intro to air pollution
1. intro to air pollution1. intro to air pollution
1. intro to air pollution
 
Air Pollution Basics
Air Pollution BasicsAir Pollution Basics
Air Pollution Basics
 
Khum hudda
Khum huddaKhum hudda
Khum hudda
 

More from Arvind Kumar

Solid waste management
Solid waste managementSolid waste management
Solid waste managementArvind Kumar
 
Wastewater treatment
Wastewater treatmentWastewater treatment
Wastewater treatmentArvind Kumar
 
Solar photovoltaics
Solar photovoltaicsSolar photovoltaics
Solar photovoltaicsArvind Kumar
 
Renewable energy sources
Renewable energy sourcesRenewable energy sources
Renewable energy sourcesArvind Kumar
 
Incineration biomedicalwaste
Incineration biomedicalwasteIncineration biomedicalwaste
Incineration biomedicalwasteArvind Kumar
 
Treatment of industrial waste water biological remediation of cyanides
Treatment of industrial waste water biological remediation of cyanidesTreatment of industrial waste water biological remediation of cyanides
Treatment of industrial waste water biological remediation of cyanidesArvind Kumar
 
Treatment & disposal of waste water
Treatment & disposal of waste waterTreatment & disposal of waste water
Treatment & disposal of waste waterArvind Kumar
 
Sttp ppt msp_overview_09-10-2009_zvpm
Sttp ppt msp_overview_09-10-2009_zvpmSttp ppt msp_overview_09-10-2009_zvpm
Sttp ppt msp_overview_09-10-2009_zvpmArvind Kumar
 
Scope of reuse of sewage for baroda city
Scope of reuse of sewage for baroda cityScope of reuse of sewage for baroda city
Scope of reuse of sewage for baroda cityArvind Kumar
 
Routine analysis of wastewaters quality parameters
Routine analysis of wastewaters quality parametersRoutine analysis of wastewaters quality parameters
Routine analysis of wastewaters quality parametersArvind Kumar
 
Recent advances in new separation technology
Recent advances in new separation technologyRecent advances in new separation technology
Recent advances in new separation technologyArvind Kumar
 
R e a c t o r s & its kinetics
R e a c t o r s & its kineticsR e a c t o r s & its kinetics
R e a c t o r s & its kineticsArvind Kumar
 
Phytoremediation, an option for tertiary treatment of sewage
Phytoremediation, an option for tertiary treatment of sewagePhytoremediation, an option for tertiary treatment of sewage
Phytoremediation, an option for tertiary treatment of sewageArvind Kumar
 
Need of tertiary treatment for anaerobic wastewater treatment
Need of tertiary treatment for anaerobic wastewater treatmentNeed of tertiary treatment for anaerobic wastewater treatment
Need of tertiary treatment for anaerobic wastewater treatmentArvind Kumar
 
Microbial removal during sewage treatment
Microbial removal during sewage treatmentMicrobial removal during sewage treatment
Microbial removal during sewage treatmentArvind Kumar
 
Ecological sanitation udd toilet
Ecological sanitation udd toiletEcological sanitation udd toilet
Ecological sanitation udd toiletArvind Kumar
 
Comparative study of cyclic activated sludge and conventional activated sludg...
Comparative study of cyclic activated sludge and conventional activated sludg...Comparative study of cyclic activated sludge and conventional activated sludg...
Comparative study of cyclic activated sludge and conventional activated sludg...Arvind Kumar
 

More from Arvind Kumar (20)

Solid waste management
Solid waste managementSolid waste management
Solid waste management
 
Wastewater treatment
Wastewater treatmentWastewater treatment
Wastewater treatment
 
Solar photovoltaics
Solar photovoltaicsSolar photovoltaics
Solar photovoltaics
 
Renewable energy sources
Renewable energy sourcesRenewable energy sources
Renewable energy sources
 
Incineration biomedicalwaste
Incineration biomedicalwasteIncineration biomedicalwaste
Incineration biomedicalwaste
 
Unit operation
Unit operationUnit operation
Unit operation
 
Treatment of industrial waste water biological remediation of cyanides
Treatment of industrial waste water biological remediation of cyanidesTreatment of industrial waste water biological remediation of cyanides
Treatment of industrial waste water biological remediation of cyanides
 
Treatment & disposal of waste water
Treatment & disposal of waste waterTreatment & disposal of waste water
Treatment & disposal of waste water
 
Sttp ppt msp_overview_09-10-2009_zvpm
Sttp ppt msp_overview_09-10-2009_zvpmSttp ppt msp_overview_09-10-2009_zvpm
Sttp ppt msp_overview_09-10-2009_zvpm
 
Scope of reuse of sewage for baroda city
Scope of reuse of sewage for baroda cityScope of reuse of sewage for baroda city
Scope of reuse of sewage for baroda city
 
Routine analysis of wastewaters quality parameters
Routine analysis of wastewaters quality parametersRoutine analysis of wastewaters quality parameters
Routine analysis of wastewaters quality parameters
 
Recent advances in new separation technology
Recent advances in new separation technologyRecent advances in new separation technology
Recent advances in new separation technology
 
R e a c t o r s & its kinetics
R e a c t o r s & its kineticsR e a c t o r s & its kinetics
R e a c t o r s & its kinetics
 
Phytoremediation, an option for tertiary treatment of sewage
Phytoremediation, an option for tertiary treatment of sewagePhytoremediation, an option for tertiary treatment of sewage
Phytoremediation, an option for tertiary treatment of sewage
 
Need of tertiary treatment for anaerobic wastewater treatment
Need of tertiary treatment for anaerobic wastewater treatmentNeed of tertiary treatment for anaerobic wastewater treatment
Need of tertiary treatment for anaerobic wastewater treatment
 
Microbial removal during sewage treatment
Microbial removal during sewage treatmentMicrobial removal during sewage treatment
Microbial removal during sewage treatment
 
Ecological sanitation udd toilet
Ecological sanitation udd toiletEcological sanitation udd toilet
Ecological sanitation udd toilet
 
Concept of cetp
Concept of cetpConcept of cetp
Concept of cetp
 
Comparative study of cyclic activated sludge and conventional activated sludg...
Comparative study of cyclic activated sludge and conventional activated sludg...Comparative study of cyclic activated sludge and conventional activated sludg...
Comparative study of cyclic activated sludge and conventional activated sludg...
 
Ceia cdm workshop
Ceia cdm workshopCeia cdm workshop
Ceia cdm workshop
 

Recently uploaded

Natural farming @ Dr. Siddhartha S. Jena.pptx
Natural farming @ Dr. Siddhartha S. Jena.pptxNatural farming @ Dr. Siddhartha S. Jena.pptx
Natural farming @ Dr. Siddhartha S. Jena.pptxsidjena70
 
一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单
一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单
一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单pcoow
 
Genetic diversity and association analysis for different morphological traits...
Genetic diversity and association analysis for different morphological traits...Genetic diversity and association analysis for different morphological traits...
Genetic diversity and association analysis for different morphological traits...Open Access Research Paper
 
Environmental Impact Assessment (EIA) in Nepal.pptx
Environmental Impact Assessment (EIA) in Nepal.pptxEnvironmental Impact Assessment (EIA) in Nepal.pptx
Environmental Impact Assessment (EIA) in Nepal.pptxAnshu Bhoosal
 
一比一原版(Monash毕业证)莫纳什大学毕业证成绩单
一比一原版(Monash毕业证)莫纳什大学毕业证成绩单一比一原版(Monash毕业证)莫纳什大学毕业证成绩单
一比一原版(Monash毕业证)莫纳什大学毕业证成绩单qogbuux
 
一比一原版(Monash毕业证)莫纳什大学毕业证成绩单
一比一原版(Monash毕业证)莫纳什大学毕业证成绩单一比一原版(Monash毕业证)莫纳什大学毕业证成绩单
一比一原版(Monash毕业证)莫纳什大学毕业证成绩单pcoow
 
Use of Raffias’ species (Raphia spp.) and its impact on socioeconomic charact...
Use of Raffias’ species (Raphia spp.) and its impact on socioeconomic charact...Use of Raffias’ species (Raphia spp.) and its impact on socioeconomic charact...
Use of Raffias’ species (Raphia spp.) and its impact on socioeconomic charact...Open Access Research Paper
 
NRW Board Paper - DRAFT NRW Recreation Strategy
NRW Board Paper - DRAFT NRW Recreation StrategyNRW Board Paper - DRAFT NRW Recreation Strategy
NRW Board Paper - DRAFT NRW Recreation StrategyRobin Grant
 
Paper: Man and Environmental relationship
Paper: Man and Environmental relationshipPaper: Man and Environmental relationship
Paper: Man and Environmental relationshipSANTU GUCHHAIT
 
Powers of State Pollution Control Board - The Water Act 1974
Powers of State Pollution Control Board - The Water Act 1974Powers of State Pollution Control Board - The Water Act 1974
Powers of State Pollution Control Board - The Water Act 1974linciy03
 
CHLORITE( a phyllosilicate clay mineral)
CHLORITE( a phyllosilicate clay mineral)CHLORITE( a phyllosilicate clay mineral)
CHLORITE( a phyllosilicate clay mineral)malleshmalli2994
 
DESERT ECOSYSTEM AND ITS CHARACTERISTICS AND TYPES
DESERT ECOSYSTEM AND ITS CHARACTERISTICS AND TYPESDESERT ECOSYSTEM AND ITS CHARACTERISTICS AND TYPES
DESERT ECOSYSTEM AND ITS CHARACTERISTICS AND TYPESSumayyaSayeeda
 
Prevalence, biochemical and hematological study of diabetic patients
Prevalence, biochemical and hematological study of diabetic patientsPrevalence, biochemical and hematological study of diabetic patients
Prevalence, biochemical and hematological study of diabetic patientsOpen Access Research Paper
 
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...Open Access Research Paper
 
IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...
IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...
IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...ipcc-media
 
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理exehay
 
Prevention and Control of Water Pollution
Prevention and Control of Water PollutionPrevention and Control of Water Pollution
Prevention and Control of Water Pollutionlinciy03
 
@@how to Join @occult for money ritual..☎️+2349022657119.
@@how to Join @occult for money ritual..☎️+2349022657119.@@how to Join @occult for money ritual..☎️+2349022657119.
@@how to Join @occult for money ritual..☎️+2349022657119.RoyaleEaglepriest
 

Recently uploaded (20)

Natural farming @ Dr. Siddhartha S. Jena.pptx
Natural farming @ Dr. Siddhartha S. Jena.pptxNatural farming @ Dr. Siddhartha S. Jena.pptx
Natural farming @ Dr. Siddhartha S. Jena.pptx
 
一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单
一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单
一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单
 
Genetic diversity and association analysis for different morphological traits...
Genetic diversity and association analysis for different morphological traits...Genetic diversity and association analysis for different morphological traits...
Genetic diversity and association analysis for different morphological traits...
 
A systematic review of the implementation of Industry 4.0 in human resources
A systematic review of the implementation of Industry 4.0 in human resourcesA systematic review of the implementation of Industry 4.0 in human resources
A systematic review of the implementation of Industry 4.0 in human resources
 
Environmental Impact Assessment (EIA) in Nepal.pptx
Environmental Impact Assessment (EIA) in Nepal.pptxEnvironmental Impact Assessment (EIA) in Nepal.pptx
Environmental Impact Assessment (EIA) in Nepal.pptx
 
一比一原版(Monash毕业证)莫纳什大学毕业证成绩单
一比一原版(Monash毕业证)莫纳什大学毕业证成绩单一比一原版(Monash毕业证)莫纳什大学毕业证成绩单
一比一原版(Monash毕业证)莫纳什大学毕业证成绩单
 
一比一原版(Monash毕业证)莫纳什大学毕业证成绩单
一比一原版(Monash毕业证)莫纳什大学毕业证成绩单一比一原版(Monash毕业证)莫纳什大学毕业证成绩单
一比一原版(Monash毕业证)莫纳什大学毕业证成绩单
 
Use of Raffias’ species (Raphia spp.) and its impact on socioeconomic charact...
Use of Raffias’ species (Raphia spp.) and its impact on socioeconomic charact...Use of Raffias’ species (Raphia spp.) and its impact on socioeconomic charact...
Use of Raffias’ species (Raphia spp.) and its impact on socioeconomic charact...
 
NRW Board Paper - DRAFT NRW Recreation Strategy
NRW Board Paper - DRAFT NRW Recreation StrategyNRW Board Paper - DRAFT NRW Recreation Strategy
NRW Board Paper - DRAFT NRW Recreation Strategy
 
Paper: Man and Environmental relationship
Paper: Man and Environmental relationshipPaper: Man and Environmental relationship
Paper: Man and Environmental relationship
 
Powers of State Pollution Control Board - The Water Act 1974
Powers of State Pollution Control Board - The Water Act 1974Powers of State Pollution Control Board - The Water Act 1974
Powers of State Pollution Control Board - The Water Act 1974
 
CHLORITE( a phyllosilicate clay mineral)
CHLORITE( a phyllosilicate clay mineral)CHLORITE( a phyllosilicate clay mineral)
CHLORITE( a phyllosilicate clay mineral)
 
DESERT ECOSYSTEM AND ITS CHARACTERISTICS AND TYPES
DESERT ECOSYSTEM AND ITS CHARACTERISTICS AND TYPESDESERT ECOSYSTEM AND ITS CHARACTERISTICS AND TYPES
DESERT ECOSYSTEM AND ITS CHARACTERISTICS AND TYPES
 
Prevalence, biochemical and hematological study of diabetic patients
Prevalence, biochemical and hematological study of diabetic patientsPrevalence, biochemical and hematological study of diabetic patients
Prevalence, biochemical and hematological study of diabetic patients
 
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
 
IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...
IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...
IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...
 
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
 
Prevention and Control of Water Pollution
Prevention and Control of Water PollutionPrevention and Control of Water Pollution
Prevention and Control of Water Pollution
 
@@how to Join @occult for money ritual..☎️+2349022657119.
@@how to Join @occult for money ritual..☎️+2349022657119.@@how to Join @occult for money ritual..☎️+2349022657119.
@@how to Join @occult for money ritual..☎️+2349022657119.
 
Major-Environmental-Problems and Proven Solutions.pdf
Major-Environmental-Problems and Proven Solutions.pdfMajor-Environmental-Problems and Proven Solutions.pdf
Major-Environmental-Problems and Proven Solutions.pdf
 

Air environemnt i d mall

  • 1. AAIIRR EENNVVIIRROONNEEMMNNTT DDRR.. II..DD.. MMAALLLL DDeeppaarrttmmeenntt ooff CChheemmiiccaall EEnngggg.. IInnddiiaann IInnssttiittuuttee ooff TTeecchhnnoollooggyy,, RRoooorrkkeeee RRoooorrkkeeee-- 224477666677
  • 2. 22 AIR IS LIFE. LIFE STARTS WITH AIR AND ENDS WITH AIR.
  • 3. 33
  • 4. 44 The Five BBaassiicc PPhhyyssiiccaall EElleemmeennttss  From the Vedic times, around 3000 B.C. to 1000 B.C., Indians (Indo-Aryans) had classified the material world into four elements viz. Earth (Prithvi), fire (Agni), air (Maya) and water (Apa). To these four elements was added a fifth one viz. ether or Akasha. According to some scholars these five elements or Pancha Mahabhootas were identified with the various human senses of perception; earth with smell, air with feeling, fire with vision, water with taste and ether with sound. Whatever the validity behind this interpretation, it is true that since very ancient times Indians had perceived the material world as comprising these 5 elements. The Buddhist philosophers who came later, rejected ether as an element and replaced it with life, joy and sorrow.
  • 5. 55 Fast growing unplanned and indiscriminate urbanization: Cause of recent ecological imbalances MAJOR ENVIRONMENTAL CRISIS WHICH MANKIND IS FACING DUE TO URBAN AND INDUSTRIAL DEVELOPMENT ARE:  Large scale contamination of water and air.  Deforestation  Increase in urban slums  Generation of huge solid waste consisting of hazardous material.  Water scarcity and ground water depletion.  Global warming  Greenhouse effect  Ozone layer depletion
  • 6. 66 AIR POLLUTION  Atmosphere has gone significant changes in the last Two billion years  From the fourteenth century until recently the primary air pollutants have been coal smoke and gases released in industrialised areas.  Air pollution control actions thirteenth century  Most of the major effort in the world has taken place since 1945, before that other matters were in the priority list  1930s and 1940s: Factory issuing a thick plume of smoke was considered a sign of prosperity  1945-1969 awareness of air pollution problems gradually increased  Passage of National environmental policy Act and the clean air act of 1970  In the late 1980s: New theme entered the air pollution area- a GLOBAL AIR POLLUTION
  • 7. 77 MAJOR AIR POLLUTION PROBLEM EMERGED  Greenhouse effect  Ozone depletion  Acidification  Smog formation  Eutrophication  Human health  Environmental concern earlier considered a luxury which only a developed country US can afford  For people who are worried for their meal, home medial bill air pollution may not be very important  For a person whose basic needs has been satisfied air pollution control can be of much greater cause of concern  Poor people are more exposed to more severe pollution
  • 8. 88 ENVIRONMENTAL CHANGES AND MONITORING Soil Quality (depth structure, fertility, degree of salination or acidification, stability. Air Quality, climatic changes Water Quantity, quality, seasonability, area of man made lakes, Extent of irrigation canal. Biota Abundance/ scarcity of species of genetic resource Extent of crops ecosystem Vegetation and forests Diversity of species Extent of provision of resting ground, etc. for migration of species Pest and disease organism Noise Residential, shop floor, industrial
  • 9. 99 TThhee AAttmmoosspphheerree  N2 780900 ppm (78.09%)  O2 209400 ppm (20.94%)  Argon 9300 ppm (0.93 %)  CO2 372 ppm (0.037%)  Everything else is less than 0.003 % or 30 ppm
  • 10. 1100 LLaayyeerrss ooff tthhee AAttmmoosspphheerree Stratosphere begins at about 10 miles above the surface. P drops with altitude. Does T drop with altitude?
  • 11. 1111 REAL WORLD Atmospheric interactions Pollutant emissions Effects Source Air quality Receptors Input output Emission Air quality models Air quality Input Input Methodology Air Chemistry
  • 12. 1122 AIR QUALITY IMPACT ANALYSIS Atmospheric Interaction Air quality Effects Pollutant emissions Source Receptors
  • 13. 1133 WWoorrssee AAiirr PPoolllluuttiioonn DDiissaasstteerr  London, England, 1952  From December 5 to 8, 1952  4,000 Londoners perished.
  • 14. 1144  The effect of air pollution is slow and cumulative.  Earlier principle cause of death was influenza, tuberculosis and typhoid fever  New diseases came- arteriosclerosis, heart, malfunctioning, stroke, emphysema and cancer  Cigrette smoking earlier smoking had little effect on overall life expectancy  Bhopal tragedy due to methyl isocynate killed 2500 people  Lekages from Hydrogen sulphide from natural gas processing plants killed hundreds of people
  • 15. 1155 A Few Well-Known Air Pollution Episodes Around the Globe in the 20th Century. Region affected Date Cause Pollutant Effects Meuse valley, December Temperature SO2 63 deaths Belgium 1930 inversion Los Angeles, USA July 1943 Low wind circulation smog unknown Donora, PA, USA October 1948 Weather inversion SO2 20 deaths London, England December 1952 Subsidence inversion SO2, smog 3,000 excess deaths New York City, USA December 1962 Shallow inversion SO2 269 excess deaths Bhopal, India December 1984 Accident methyl iso-cyanate > 2,000 deaths Chernobyl, Ukraine April 1986 Accident Radioact i-vity 31 immediate deaths, > 30,000 ill Lake Nyos, Africa April 1986 Natural CO2 1,700 deaths Kuala Lampur, September Forest fire CO, soot Unknown Malaysia 1997
  • 16. 1166 Concentrations of Principal Air Pollutants in Megacities in the Developing World. Country / City SO2,  g/m3 TSP (PM- 10),  g/m3 CO,  g/m3 NOx,  g/m3 Pb,  g/m3 China: Beijing (1997) National average (1997) 75 3 to 248 377 32 to 741 NA 122 4 to 140 (1995 data) NA Mexico: Mexico City (1996) 244 to 482 218 to 442 90,000 to 140,000 295 to 619 NA India: New Delhi (1987) 40 to 90 700 to 1400 NA 45 to 65 0.37 to 4.6 WHO guideline (1999) 500 (10 min) 125 ( 24 hr) 50 ( 1 yr) 200 to 250 100,000 ( 15 min) 60,000 (30 min) 30,000 (1 hr) 10,000 (8 hr) 200 (1 hr) 40 ( 1 yr) 0.5 ( 1 hr) NAAQS (USA ) 1,300 ( 3hr) 365 (24 hr) 80 (1 yr) 150 (24 hr) 50 ( 1 yr) 40,000 ( 1 hr) 10,000 ( 8 hr) 100 (1 yr) 1.5 ( quarterly avg.) References: 1. Clear Water, Blue Skies: China’s Environment in the New Century, The World Bank, Washington, D. C. (1977). 2. State of the Environment- China, United Nations Environment Program, New York, NY (1997) . 3. Mage et al, Urban air pollution in megacities of the world, Atmospheric Environment, 30: 681-686 (1996). 4. Air Pollution Aspects of Three Indian Cities, Vol. I. Delhi, National Environmental Engineering Research Institute, Nagpur, India (1991). 5. F Guzman: Air pollution in Mexico Cityu, The Mexico City Workshop, Integrated Program on Urban, Regional and Global Air pollution, MIT, Massachusetts, September (1999). http://eaps.mit.edu/megacities/workshop_99/mexico.html. 6. Air Pollution: Mexico City. http://www.ess.co.at/GAIA/cases/mex. Environmental Software and Services, GmbH, Gumpoldskirchen, Austria.
  • 17. 1177 HHeeaalltthh EEffffeeccttss:: OOuuttddoooorr AAiirr PPoolllluuttiioonn Kills 200,000 - 570,000 annually globally. Kills 20,000 people annually in US. Particulates and ozone are the biggest problem
  • 18. 1188 HHeeaalltthh EEffffeeccttss:: IInnddoooorr AAiirr PPoolllluuttiioonn -- GGlloobbaall Kills 2.8 million annual globally What is major source of indoor air pollution in developing countries?
  • 19. 1199 SSOOUURRCCEESS OOFF AAIIRR TTOOXXIICCSS
  • 20. 2200 AAiirr PPoolllluuttiioonn –– SSoouurrcceess Most air pollution is emitted from fixed and mobile sources at ground level.
  • 21. 2211 AIR POLLUTION SOURCES Major Sources Area Sources Mobile Sources Natural Sources Miscellaneous Chemical & fertlisers plants Refineries Petrochemicals Power plants Paper mills Cement plant Metallurgical Industries Municipal incineration Dry cleaners Petrol station Small print shops Electroplating Domestic , commercial and industrial fuels Automobiles Railways Airways Farm Equipments Recreational vehicles Natural Dust Storm Volcanoes Sea salt Dispersion Forest gas Agricultural burning
  • 22. 2222 SOURCES  NATURAL SOURCE: pollen grain, fungus, smoke etc.  ANTHROPOGENIC: stationary, movable. (associated with activity of human beings)  POINT SOURCE: Pollutant emission from industrial process stacks, and fuel combustion facility stacks  AREA SOURCE: Vehicular traffic and fugitive emissions  LINE SOURCES: heavily traveled highway facilities and leading edges of uncontrolled forest fires
  • 23. 2233 PPrriimmaarryy EEmmiissssiioonn SSoouurrcceess  Area Sources  Paved and unpaved roads  Construction activities  Open or prescribed burning  Point Sources  Metals processing (smelters, iron & steel, etc.)  Mineral products (cement stone quarrying)  Utility and industrial combustion (soot, flyash)  Waste disposal and recycling  Mobile Sources  Highway vehicles (diesel) off-road vehicles (lawn & garden equipment)
  • 24. 2244 SSeeccoonnddaarryy EEmmiissssiioonn SSoouurrcceess SOx - Fuel combusion (utilities, industrial); industrial processes (smelters, iron & steel manufacture, oil refining, etc.) NOx - Combustion sources (utilities, industrial); mobile sources (highway & off-road engines) VOC - Mobile sources, biogenic sources, evaporation (solvent & fuel), residential wood combustion Ammonia (NH3) - Waste from animal husbandary, fertilizer application
  • 25. 2255
  • 26. 2266 CLASSIFICATION OF AIR POLLUTANTS Natural contaminants : Natural fog, pollen grain, bacteria, volcanic eruption, wind blown dust lightning generated fires Gaseous: oxidized S, N, CO, CO2, hydrocarbons Particulate: dust smoke, fumes, mist, fog.
  • 27. 2277 PPhhoottoocchheemmiiccaall SSmmoogg Main harmful ingredient in smog is ozone. Ozone is formed when UV radiation, high temperatures, Nitrogen oxides, and VOCs combine. What are the primary sources of smog?
  • 28. 2288 AAcciidd RRaaiinn Acid rain is formed from SO2 and NO2 pollution. What are the sources of acid rain?
  • 29. 2299 AAcciidd RRaaiinn Sulfuric acid (H2SO4) and nitric acid (HNO3) are formed and precipitated on vegetation in lakes and streams.
  • 30. CCLLIIMMAATTEE AANNDD AAIIRR QQUUAALLIITTYY IInnfflluueenncciinngg eelleemmeennttss aanndd tthheeiirr ppootteennttiiaall eeffffeeccttss WWiinndd:: ddiirreeccttiioonnss aanndd ssppeeeedd WWiillll tthhee pprroojjeecctt mmooddiiffyy tthhee llooccaall wwiinndd bbeehhaavviioorr?? PPrreecciippiittaattiioonn//hhuummiiddiittyy WWiillll tthhee pprroojjeecctt hhaavvee aann iimmppaacctt uuppoonn tthhee llooccaall pprreecciippiittaattiioonn //hhuummiiddiittyy ppaatttteerrnn?? WWiillll tthhee pprroojjeecctt bbee ssiitteedd iinn aa ““hhiigghh rriisskk”” aarreeaa?? TTeemmppeerraattuurree WWiillll tthhee pprroojjeecctt hhaavvee aann iimmppaacctt uuppoonn tthhee llooccaall tteemmppeerraattuurree ppaatttteerrnn?? AAiirr QQuuaalliittyy WWiillll tthhee pprroojjeecctt ggeenneerraattee aanndd ddiissppeerrssee aattmmoosspphheerriicc ppoolllluuttaannttss?? WWiillll tthhee pprroojjeecctt ggeenneerraattee aannyy iinntteennssee ooddoorrss??
  • 31. 3311 CCLLIIMMAATTEE AANNDD AAIIRR QQUUAALLIITTYY Sub element Potential Impact(s) Required Information Wind: directions and Will the project modify speed the local wind behaviour Wind speeds and directions, including unusual conditions. Height of structures. Precipitation/ humidity Will the project have an impact upon the local precipitation/humidity pattern? Precipitation/humidity data including unusual conditions-flash floods, etc. Temperature Will the project have an impact upon the local temperature pattern? Temperature data, including the extremes. Air Quality Will the project generate and disperse atmospheric pollutants? Will the project generate any intense odours? Estimate of atmospheric emissions from point, area and line sources, fugitive emissions
  • 32. 3322 PPaarrttiiccuullaattee MMaatttteerr:: WWhhaatt iiss IItt?? Particulate matter is a complex mixture of extremely small particles and liquid droplets Human Hair (70 μm diameter) Hair cross section (70 mm) PM2.5 (2.5 μm) PM10 (10μm)
  • 33. 3333 PPaarrttiiccuullaattee MMaatttteerr ((PPMM)):: TThhee MMaajjoorr KKiilllleerr PM is a complex mixture variable in Size (0.01- 100 μm) Composition (Metals, nitrates , sulfate, PAH, VOC etc.) Concentration Toxicity and penetration depends on the composition and six of the particles. In reality we breathe a complex mixture of pollutants in varying proportions. Hence the health effects are the impact of this complex mixture rather than a particular pollutant per se.
  • 34. 3344 Figure : Size Difference Between Particulate Matter (PM 10 and PM 2.5), Human Hair and Finest Beach Sand
  • 35. 3355 PPMM--22..55 OOvveerrvviieeww PM-2.5  Characteristics, sources, health and environmental effects 1997 PM-2.5 Standards Monitoring Data Regulatory Schedule Key Issues
  • 36. 3366 FFiinnee PPaarrttiicclleess iinn tthhee AAiirr
  • 37. 3377 FFiinnee PPaarrttiicclleess:: WWhhyy YYoouu SShhoouulldd CCaarree
  • 38. 3388 PPaarrttiicclleess AAffffeecctt tthhee LLuunnggss …… Respiratory system effects  Chronic bronchitis  Asthma attacks  Respiratory symptoms (cough, wheezing, etc.)  Decreased lung function  Airway inflammation
  • 39. 3399 …… aanndd tthhee HHeeaarrtt Cardiovascular system effects  Heart attacks  Cardiac arrhythmias  Changes in heart rate and heart rate variability  Blood component changes
  • 40. 4400 PPuubblliicc HHeeaalltthh RRiisskkss AArree SSiiggnniiffiiccaanntt Particles are linked to:  Premature death from heart and lung disease  Aggravation of heart and lung diseases  Hospital admissions  Doctor and ER visits  Medication use  School and work absences  And possibly to  Lung cancer deaths  Infant mortality  Developmental problems, such as low birth weight in children
  • 41. 4411 SSoommee GGrroouuppss AArree MMoorree aatt RRiisskk People with heart or lung disease  Conditions make them vulnerable Older adults  Greater prevalence of heart and lung disease Children  More likely to be active  Breathe more air per lb.  Bodies still developing
  • 42.
  • 43. 4433 FFiinnee PPaarrttiicclleess RReedduuccee VViissiibbiilliittyy Example: Chicago in the summer of 2000  Left – a clear day: PM 2.5 < 5 μg/m3  Right – a hazy day: PM 2.5 ~ 35 μg/m3
  • 44. 4444 EEnnvviirroonnmmeennttaall EEffffeeccttss Reduced visibility  Across country  National parks React w/ moisture  Acid rain  Other acidic pollution Damage to paint/building materials Damage to vegetation/crops
  • 46. 4466 AAiirr PPoolllluuttaannttss MMoonniittoorriinngg Collect and review information Select monitoring level Conduct monitoring Develop Monitoring plan Summarize/ Evaluate results • Source data • Receptor data • Modeling data • Routine operation • Quality control • Field documentation • Screening • Refined screening • Refined • Select monitoring constituents • Specify meteorological monitoring • Design network • Select monitoring methods/equipment • Develop sampling and analysis QA/QC • Data review and validation • Data summaries • Consider monitoring uncertainties • Dispersion modeling applications  Monitoring Air Pathway Analysis
  • 47. 4477 Overview Why measure ? What do we measure ? How do we make these measurements ? What do we do with all this new data ?
  • 48. 4488 CCEENNTTRRAALL PPOOLLLLUUTTIIOONN CCOONNTTRROOLL BBOOAARRDD NNaattiioonnaall AAmmbbiieenntt AAiirr QQuuaalliittyy SSttaannddaarrddss Pollutant Time Weighted Average Concentration of Ambient Air Industrial Area Residential, Rural and Other Area Sensitive Area Method of Measurement (1) (2) (3) (4) (5) (6) Sulphur Dioxide (SO2) Annual Average * 24 hours** 80 μg/m3 120 μg/m3 60 μg/m3 80 μg/m3 15 μg/m3 30 μg/m3 - Improved West and Gaeke Method - Ultraviolet fluorescence Oxized of Nitrogen as NO2 Annual Average * 24 hours** 80 μg/m3 120 μg/m3 60 μg/m3 80 μg/m3 15 μg/m3 30 μg/m3 -Jacob Hochheister modified (Na- Arsenite) -Gas Phase Chemilumine scence Suspended Particulate Matter (SPM) Annual Average * 24 hours** 360 μg/m3 590 μg/m3 140 μg/m3 200 μg/m3 70 μg/m3 100 μg/m3 -High Volume Sampling (Average flow rate net less than 1.1 m3/minute)
  • 49. 4499 Respirable Particulate Matter (Size less than 10μm) (RPM) Annual Average * 24 hours** 12 μg/m3 150 μg/m3 60 μg/m3 100 μg/m3 50 μg/m3 75 μg/m3 - Respirable Particulate Matter sampler Lead (Pb) Annual Average * 24 hours** 1.0 μg/m3 1.5 μg/m3 0.75 μg/m3 1.00 μg/m3 0.5 μg/m3 0.75 μg/m3 - AAS Method after sampling using EPM 2000 or equivalent filter paper Carbon Monoxide 8 hours ** 1 hour 5.0mg/m3 10 mg/m3 2.0mg/m3 4.0 mg/m3 1.0mg/m3 2.0 mg/m3 - NDIRS Ammonia 24 hours Annual 0.4 mg/m3 0.1 mg/m3 - Annual Arithmetic mean of minimum 104 measurements in a year taken twice a week 24 hourly at uniform interval. 24 hourly/8 hourly values should be met 98% of the time in a year. However, 2% of the time , it may exceed but not on two consecutive days.
  • 50. 5500 MMEEAASSUURREEMMEENNTT OOFF AAIIRR QQUUAALLIITTYY  Ambient Air Quality  Measurement of Emission  Meteorological Measurement Pollution Parameter Equipment Dust fall Dust Fall Jar Suspended High Volume Sampler, Particulates Inertial collectors, Respirable Dust Sampler Total Sulfur Lead Candle Compounds Sulphur Dioxide Air Sampling Kit Hydrogen Sulphide Air Sampling Kit Oxides of Nitrogen Air Sampling Kit Wind Direction Recording Vane Wind Velocity Wind Velocity Meter Temperature and Humidity Whirling Psychrometer
  • 51. Various instrumental techniques used for air pollution parameters S.No Instrumental Techniques Parameter covered 1 Conductometry SO2 2 Colorimetry SO2, NOx 3 Coulometry-Amperometry SO2, NOx, Oxidants (O3), CO 4 Paper Tape (H2S Conversion) SO2 5 Electochemical Cells (EMF Generation) SO2, NOx, CO 6 Catalytic Oxidation CO 7 Chemeical Sensing-Specific Ion Electrodes SO2, NOx 8 Chemiluminescence O3, NOx 9 Flame photometry detector couples with GC SO2 10 Flame ionisation detector couples with GC CO, CH4, Hydrocarbons 11 Non dispersive infrared absorption (NDIR) CO 12 Fluorescence NDIR Pulsed Fluorescence Hydrcarbons SO2, H2S 13 Non-dispersive-UV-Visible Absorption Oxidants
  • 52. 5522 S.No Instrumental Techniques Parameter covered 14 Mercury Substitution UV Absorption CO 15 Ultra Violet Fluorescence SO2 16 Bioluminescence SO2, NOx, CO 17 Correletion Spectroscopy SO2, NOx 18 Second Derivative Spectroscopy UV, NOx, Oxidants
  • 53. 5533 Techniques used for semi-automatic or laboratory instruments for particulate matter 19 Atomic Absorption Spectrophotometers All metals 20 Atomic Fluorescence Metals- Zn, Cd, Cu, Hg 21 X-Ray Fluorescence Mostly all metals 22 GC-GC Mass Spectrometer Aromatic & Chlorinated Hydrocarbons, Pesticides, Oxidants 23 Neutron Activation Heavy metals- Vanadium, Hg 24 Anodic Metals- Cu, Cd, Pb
  • 54. 5544 OObbjjeeccttiivvee ooff aa ssaammpplliinngg pprrooggrraamm To establish and evaluate control measures To evaluate atmospheric-diffusion model parameters. To determine areas and time periods when hazardous levels of pollution exists in the atmosphere. For emergency warning systems.
  • 55. 5555 AIR QUALITY SURVEILLANCE PROGRAMMES  Representative selection of something----primarily guided by topography and micro meteorology of the region  Adequate sampling frequency  Inclusion of all the major pollution parameters  Characterization of the existing ambient air quality  Prediction from different emission scenario through pollution modeling for existing micrometeorological and topographical feature.
  • 56. 5566 MMoonniittoorriinngg SSyysstteemmss Ambient air quality data may be obtained through the use of mobile or fixed sampling networks and the use of integrated samplers or continuous monitors. Decisions regarding monitoring techniques constitute the first important steps in design of monitoring network.
  • 57. 5577 FFiixxeedd vvss.. MMoobbiillee SSaammpplliinngg Fixed-point sampling - A network of monitoring stations at selected sites, operated simultaneously throughout the study. Stations are permanent or, at least, long term installations. Mobile sampling network – the monitoring/sampling instruments are rotated on schedule among selected locations. Equipment is generally housed in trailers, automobiles, or other mobile units.
  • 58. 5588 CCoonnttiinnuuoouuss vvss.. IInntteeggrraatteedd SSaammpplliinngg Continuous monitoring – Conducted with devices that operate as both sampler and analyzer. Pollutant concentrations are instantaneously displayed on a meter, continuously recorded on a chart, magnetic tape, or disk. Integrated sampling – Done with devices that collect a sample over some specified time interval after which the sample is sent to a laboratory for analysis.
  • 59. SSeelleeccttiioonn ooff IInnssttrruummeennttaattiioonn aanndd MMeetthhooddss 5599 Type of pollutants Average time specified by air quality criteria or standards Expected pollutant levels Available resources Availability of trained personal Presence in the air of interfering materials
  • 60. 6600 DDuurraattiioonn ooff ssaammpplliinngg ppeerriioodd Two types of sampling are used in the studies of air pollution.  Short period or Spot sampling  Continuous sampling
  • 61. 6611 LLooccaattiioonn ooff ssaammpplliinngg ssiitteess The necessary number of sampling stations and their location depend on several factors including the objective of the programme, the size of the study area, the proximity of the sources of the sources of pollution, topographical features and the weather.
  • 62. 6622 AAMMBBIIEENNTT AAIIRR SSAAMMPPLLIINNGG The typical air sampling system contains a sample collector, a flow meter and a pump to draw air sample through the system Ambient air is sampled for the collection of gaseous pollutants particulate matter
  • 63. 6633 CCOOLLLLEECCTTIIOONN OOFF GGAASSEEOOUUSS AAIIRR PPOOLLUUTTAANNTTSS The common methods used for the collection of gaseous pollutants are 1. Grab sampling 2. Absorption in liquids 3. Adsorption on solid materials 4. Freeze out sampling
  • 64. 6644 11.. GGrraabb ssaammpplliinngg In grab sampling the sample is collected by filling an evacuated flask or an inflatable bag or any rigid wall container.
  • 65. 6655 22.. AAbbssoorrppttiioonn iinn lliiqquuiiddss Absorption separates the desired pollutant from air either through direct solubility in the absorbing medium or by chemical reaction. Devices like fritted gas absorber and impengers are widely used for this purpose as the provide large contact surface area.
  • 66. 6666
  • 67. 6677 GASEOUS POLLUTANT S SUITABLE SOLVENTS Sulphur dioxide Sodium hydroxide,sodium sulphite,magnesium oxide,calcium carbonate,calcium oxide and calcium hydroxide solutions Nitrogen oxides Ammonium bicarbonate, ammonium bisulphite, calcium hydroxide,magnesium hydroxide and sodium hydroxide solutions Hydrogen sulphide Sodium hydroxide, potassium hydroxide solutions Hydrogen chloride Water, ammonia, calcium and magnesium hydroxide solution
  • 68. 6688 Chlorine Solutions of sodium hydroxide, sodium sulphite, sodium thiosulphite and water Phosgene Sodium hydroxide and water Ammonia Sulphuric acid, nitric acid Mercaptans Sodium hypochlorite solution
  • 69. 6699 33.. AAddssoorrppttiioonn oonn ssoolliiddss This method is based on the tendency of gases to be adsorbed on the surface of solid materials. The sample air is passed through a packed column containing a finely divided solid adsorbents, on whose surface the pollutants are retained and concentrated. The most widely used solid adsorbents are activated charcoal and silica gel.
  • 70. 7700 44.. FFrreeeezzee oouutt ssaammpplliinngg In this method a series of cold traps, which are maintained at progressively lower temperatures are used to draw the air samples, where by the pollutants are condensed. These pollutants are later analyzed by mass spectrometry.
  • 71. 7711
  • 72. ANALYSIS OF PARTICULAR AIR POLLUTANTS 7722 POLLUTANTS ANALYSER PRINCIPLE Sulphur Dioxide Flame Photometer Emission spectrometry Nitrogen Oxides Chemiluminescent analyser Emission spectrometry Carbon Monoxide Nondispersive Infrared analyser Energy absorption From IR radiations Hydrocarbons Flame ionisation detector Ionisation Particulate Matter Beta attenuation monitor Beta attenuation
  • 73. 7733 FLAME PHOTOMETER ( for analysis of Sulphur Dioxide ) When an air stream containing sulphur is ignited in a hydrogen-rich flame, a characteristic flame emission spectrum is produced with a band centered at 394m and amount of light emitted proportional to the concentration of Sulphur.
  • 74. 7744 CHEMILUMINESCENT ANALYSER ( for analysis of Nitrogen Oxides ) Reaction with ozone produce Nitrogen dioxide in excited state that emits radiant energy The intensity of radiationemitted is proportional to the amount of nitric oxide.
  • 75. 7755 NONDISPERSIVE INFRARED ANALYSER ( for analysis of Carbon Monoxide ) Carbon Monoxide absorbs infrared radiations and passes varying amount of infrared energy,inversely proportional to CO concentration to detector causing mechanical movement in the diaphragm .
  • 76. 7766 FLAME IONISATION DETECTOR ( for analysis of hydrocarbons ) Hydrocarbons on burning produce complex ionization forminglarge number of ions .An electric field setup establises an ionisation current proportional to the concentration of hydrocarbons in sample .
  • 77. 7777 OOrrggaanniicc VVaappoouurr SSaammpplleerr A known amount of air is passed through Activated Charcoal tube at a constant flow rate (100 to 200 ml/min) with minimum pressure drop (10-15 mm Hg). Volatile organic compounds (VOCs) are adsorbed on Activated Charcoal which is later desorbed/extracted using a suitable organic solvent. Extracted/desorbed solvent is used for quantifying the organic compounds (VOCs) with the help of Gas Chromatograph.
  • 78. 7788 CCOOLLLLEECCTTIIOONN OOFF PPAARRTTIICCUULLAATTEE MMAATTTTEERR Particulate matter are generally sampled using 1. Sedimentation (dust fall jar) 2. High volume sampler 3. Tape sampler 4. Thermal precipitation 5. Electrostatic precipitator
  • 79. 7799 11.. DDuusstt ffaallll jjaarr This is the simplest device used for sampling particles larger than 10 micro meters. Dust fall jar is simply a plastic jar with slightly tappered inwards.
  • 80. 8800 22.. HHiigghh vvoolluummee ssaammpplleerr In this method, a known volume of air is sucked by a high speed blower through a fine filter and the increase in weight due to trapped particles is measured.
  • 81. 8811 HHiigghh VVoolluummee SSaammpplleerr EEnnvviirrootteecchh AAPPMM 443300
  • 82. 8822 SScchheemmaattiicc DDiiaaggrraamm ooff RReessppiirraabbllee DDuusstt SSaammpplleerr ((AAPPMM 445511 && 441111)).. IItt ffiirrsstt sseeppaarraatteess tthhee ccooaarrsseerr ppaarrttiicclleess ((llaarrggeerr tthhaann 1100 mmiiccrroonnss)) ffrroomm tthhee aaiirr ssttrreeaamm bbeeffoorree ffiilltteerriinngg iitt oonn 00..55 mmiiccrroonn ppoorree--ssiizzee ffiilltteerr aalllloowwiinngg aa mmeeaassuurree mmeenntt ooff bbootthh tthhee TTSSPP aanndd tthhee rreessppiirraabbllee ffrraaccttiioonn ooff tthhee tthhee TTSSPP aanndd tthhee rreessppiirraabbllee ffrraaccttiioonn ooff tthhee ssuussppeennddeedd ppaarrttiiccuullaattee mmaatttteerr ((SSPPMM))..
  • 83. 8833 33.. TTaappee ssaammpplleerr In this method a known volume of air is passed through a paper tape, on which the particulates get collected forming a dark spot. COH/1000 ft = log [(T0 A x 105)/(T V)]  T0 = the transmittance of clean tape (100%)  T = the percentage of light transmitted through the spot  A = area of the spot in square feet  V = Volume of the sample in cubic feet.
  • 84. 8844 44.. TThheerrmmaall pprreecciippiittaattiioonn This is based on the principle that small particles, under the influence of a strong temperature gradient between two surfaces, have a tendency to move towards the lower temperature and get deposited on the colder of these two surfaces
  • 85. 8855 55.. EElleeccttrroossttaattiicc PPrreecciippiittaattoorr Here a negative charge is imparted to a wire placed axially inside a cylinder which is positively charged. When a particle laden stream is passes through the cylinder, the particles acquire a negative charge from a corona discharge occurring on the central wire .The particles migrate towards the inner surface of the cylinder, loose their charge and are collected for subsequent analysis.
  • 87. 8877 TTyyppeess ooff PPMM CCEEMMss Light scatter  Forward, side, backward Beta Attenuation Probe Electrification (charge transfer) Light Extinction (opacity) Optical Scintillation
  • 88. 8888 OOppaacciittyy mmeetteerr PM emissions can be continuously detected through opacity measurements. Opacity is a function of light transmission through the plume and is defined by the formula: OP = [1-(I/I0)] x 100 OP = percent opacity I = light flux leaving the plume I0 = incident light flux
  • 89. 8899 OOppaacciittyy AAddvv../DDiissaaddvv.. 10,000+ already installed  Measures attenuation of light  Adversely affected by  Particle size, shape, density changes  Measures liquid drops as PM  Not sensitive to low PM concentration  Cost more than a light scatter PM CEM  Correlation to mass conc. not linear
  • 90. 990 OOppttiiccaall SScciinnttiillllaattiioonn AAddvv../DDiissaaddvv.. Low price $10,000 Easy to install Low maintenance Not sensitive to low PM concentration Doesn’t detect particles < ~ 2μm Adversely affected by particle density change Measures liquid drops as PM
  • 91. 9911 SSmmookkee mmeeaassuurreemmeenntt Smoke particles are mainly unburnt carbon resulting from incomplete combustion. Ringelmann Chart – A scheme where graduated shades of gray vary by five equal steps between white and black.
  • 92. 9922 CCoonnttiinnuuoouuss mmoonniittoorriinngg IInnssttrruummeennttss aanndd TThheeiirr WWoorrkkiinngg PPrriinncciipplleess System Operating principle Sensitivity CO Monitor (Catalytic) CO gets converted to CO2 in presence of Hopcalite catalyst (mixtures of CuO, MnO2, Co2O2, Ag2O). Specific for CO sensitivity – 2 ppm NO.NOx, NH3 Monitor The method is based on chemiluminescent between NO and O3. The light intensity is monitored as a function of NO concentration. Very specific for NO. Sensitivity – 0.005 ppm Ozone Chemiluminescence (CL) Monitor The chemiluminescence reaction between O3 and ethylene is used in this method Very specific for ozone. Sensitivity – 0.005 ppm Coulometric SO2 Monitor Electrochemically liberated iodine or bromine reacts with SO2. Sensitivity – 0.002 ppm UV fluorescence SO2 monitor SO2 molecules are excited by absorption of UV light (214 nm) from a zinc discharge lamp and fluorescence emission measured in UV region. Sensitivity – 0.002 ppm NDIR Analuser for CO2, CO, CH4, SO2 Principle- Absorption of IR by gases at their characteristic wavelength. Sensitivity CO – 10 ppm CO2 – 5 ppm CH4 – 5 ppm SO2 – 20 ppm SPM monitor Beta absorption of 14C beats through filter containing SPM. Sensitivity – 50 μg/m3. H2S Chemiluminescence Monitor H2S reacts with ozone and excited SO2 emits chemiluminescence in the UV region while retrning to ground state. Sensitivity – 0.01 ppm
  • 93. 9933 AAiirr PPoolllluuttiioonn MMeetteeoorroollooggyy –– IInnssttrruummeennttss aanndd tthheeiirr SSppeecciiffiiccaattiioonnss
  • 94. 9944
  • 95. 9955 UUnnssttaabbllee AAiirr If the ambient air temperature drops rapidly with altitude, hot polluted air will rise and disperse. What would happen, if this temperature profile were inverted?
  • 96. 9966
  • 97. 9977
  • 98. 9988 TTeemmppeerraattuurree IInnvveerrssiioonn If the there is a temperature inversion the air will not rise. This may lead to a severe pollution episode. What produces a temperature inversion?
  • 99. 9999 SSuubbssiiddeennccee IInnvveerrssiioonn  Descending air compresses and warms, creating an inversion layer.  Is there another mechanism?
  • 100. 1100 STACK MONITORING  To determine the quantity and quality of the pollutant emitted by the source  To measure the efficiency of the control equipment by conducting a survey before and after installation  To determine the effect of the emission due to changes in raw materials and processes.  To compare the efficiency of different control equipments for a given condition  To acquire data from an innocuous individual source so as to determine the cumulative effect of many such sources.  To compare with the emission standards in order to assess the need for local control.
  • 101. 11011 STACK EMISSION MONITORING In stack Emission Monitoring MANUAL STACK SURVEYS : short duration tests, usually consisting of three one-hour tests. Stack sampling equipment is used to collect effluent samples from the stack. CONTINUOUS EMISSION MONITORING: This is done with instruments permanently installed on the stack. Measurements of the concentration and flow rate allow the mass emission rate to be determined on an ongoing, year round basis.
  • 102. The following figure shows how stack sampling is done industrially. The sampling is done by diverting a part of the gas stream through a sampling train as shown in the following figure 11022
  • 103. 11033 REPRESENTATIVE SAMPLE •Accurate measurement of pressure, moisture, humidity and gas composition •The selection of suitable locations for sampling •Determination of the traverse points required for a velocity and temperature profile across the cross section of the stack and sampling for particulate matter. •The measurement of the rate of flow of gas or air through the stack •Selection of a suitable sampling train •Accurate isokinetic sampling rate especially for particulate sampling •Accurate measurement of weight and volume of samples collected.
  • 104. OVERALL OBJECTIVE The main tasks involved are to determine the pollutant concentration, stack gas flow rate and pollutant mass emission rate. These terms are related as 11044 PMRs = Cs ´Qs The average volumetric stack gas flow rate, Qs is determined by measuring the average gas velocity, Vs and the area of the stack As. Qs = Vs ´ Cs The basic equation to determine the velocity of flow inside the stack is Vs = KP ´ CP 1/ 2 ´ D T P s P M s s þ ý ü î í ì ´
  • 105. 11055 SELECTION OF SAMPLING LOCATION The sampling point should be as far as possible from any disturbing influence, such as elbows, bends, transition pieces, baffles or other obstructions. The sampling point, wherever possible should be at a distance 5-10 diameters down-stream from any obstructions and 3-5 diameters up-stream from similar disturbance. SIZE OF SAMPLING POINT The size of sampling point may be made in the range of 7- 10 cm, in diameter.
  • 106. 11066 PPRROOCCEEDDUURREE FFOORR PPAARRTTIICCUULLAATTEE MMAATTTTEERR SSAAMMPPLLIINNGG 1. Determine the gas composition and correct to moisture content. 2. Determine the temperature and velocity at each point using pitot tube at each traverse point 3. Determine the empty weight of the thimble 4. Mark out the traverse points on the probe. 5. Check all points leakages
  • 107. 11077 PPRROOCCEEDDUURREE FFOORR PPAARRTTIICCUULLAATTEE MMAATTTTEERR SSAAMMPPLLIINNGG 6. Determine the flow rate to be sampled under isokinetic conditions 7. Insert the probe at the traverse point 1, very close to the stack. Start the pump and adjust the flow so that the rotameter reads the predetermined value. 8. Switch off the pump at the end of sampling time. 9. Read the vacuum at the dry gas meter (DGM) and also the temperature. 10. Move the probe to the subsequent traverse points by repeating the steps five to eight. 11. After completion of collection of samples, remove the probe and allow it to cool.
  • 108. 11088 PPRROOCCEEDDUURREE FFOORR PPAARRTTIICCUULLAATTEE MMAATTTTEERR SSAAMMPPLLIINNGG 12. Remove the thimble carefully. Some of the dust would have adhered to the nozzle. This should be removed by tapping and transferred to the thimble. 13. Weigh the thimble with the sample. The difference in weight gives the dust collected. 14. The volume of sample collected is either given by the dry gas meter (cu m) or by the sampling rate given by rotameter multiplied by the sampling time. 15. Hence from (13) and (14), the emission rate can be calculated. This will be at DGM conditions. This is to be corrected for temperature and pressure so as to obtain values for standard conditions.
  • 109. 11099 TTyyppiiccaall aaiirr ssaammpplliinngg ttrraaiinn Gravimetric Volumetric Microscopy Instrumental  Spectrophotometric – Ultraviolet, Visible (Colorimetry), Infra-red.  Electrical – Conductometric, Coulometric, Titrimetric.  Emission Spectroscopy  Mass Spectroscopy  Chromatography
  • 111. 111111 TRAVERSE POINTS For the sample to become representative, it should be collected at various points across the stack. This is essential as there will be changes in velocity and temperature (hence the pollutant concentration) across the cross-section of the stack. Traverse points have to be located to achieve this. Cross-section area of stack (sq-m) No. of points 0.2 0.2 to 2.5 2.5 and above 4 12 20
  • 112. 111122
  • 113. 111133 ISOKINETIC CONDITIONS Representative samples can be achieved by isokinetic sampling. Isokinetic conditions exist when the velocity in the stack Vs equals the velocity at the top of the probe nozzle Vn at the sample point.
  • 114. 111144 RReeaassoonn ffoorr IIssookkiinneettiicc SSaammpplliinngg
  • 115. 111155 DETERMINATION OF GAS COMPOSITION The first step in the field work of stack sampling is to determine the gas composition. This can be determined by using Orsat apparatus / DETERMINATION OF MOISTURE CONTENT Wet bulb and dry bulb temperature technique Condenser technique Silica gel tube DETERMINATION OF TEMPERATURE DETERMINATION OF VELOCITY: Pitote Tube
  • 116. 111166 TTwweellvvee ppeerrcceenntt CCaarrbboonn DDiiooxxiiddee  The method for concentration correction to 12 % CO2 is:  C0 = Measured concentration of constituent at standard conditions.  C12 = Measured concentration of constituent at standard conditions when corrected to 12% CO2 by volume on a dry basis.  FCO2 = Correction factor for constituent concentration when adjusting to 12% CO2 by volume on a dry basis.  %CO2 = Percent carbon dioxide by volume on a dry basis.
  • 117. 111177 RREECCEENNTT TTRREENNDDSS IINN SSAAMMPPLLIINNGG OOFF SSTTAACCKK EEFFFFLLUUEENNTTSS The recent technology is useful to manufacturers of equipment for online sampling of stack effluents. Two main monitors useful for determining particulate concentration in stacks are Piezoelectric Monitor Beta attenuation Monitor
  • 118. 111188 11.. PPiieezzooeelleeccttrriicc MMoonniittoorr In this device, particles in a sample stream are electrostatically deposited on to a piezoelectric sensor. The added weight of particulates changes the osillation frequency of the sensor in a charectristic way. The out put signal can be conditioned so that it becomes directly proportional to particulate mass concentration, which is recorded either by digital or analog recorder.
  • 119. 111199
  • 120. 11220 22.. BBeettaa AAtttteennuuaattiioonn MMoonniittoorr For the analysis of particulate matter.  Here the particulate sample is filtered using a continuous filter tape and the mass concentration of the filtered out is determined by measuring its attenuation of beta radiation, whose characteristics do not vary widely for different particulate compositions hence a direct mass measurement is possible.  Carbon -14 with a half life of 5,568 years is a typical beta radiation source.
  • 121. 112211
  • 122. 112222 BBeettaa AAtttteennuuaattiioonn PPMM CCEEMMss MSI BetaGuard PM Durag F904K Environment S.A. 5M
  • 123. 112233 HHaannddyy SSttaacckk SSaammpplleerr EEnnvviirrootteecchh AAPPMM 662200
  • 124. 112244 SSttaacckk vveelloocciittyy mmoonniittoorr EEnnvviirrootteecchh AAPPMM 660022
  • 125. 112255 GGaass aannaallyyssiiss ffrroomm CCoommbbuussttiioonn PPrroocceessss Monitoring NO, NO2 & SO2 analysis from Combustion Process in stack analysis of up to six gas phase stack emission components
  • 126. FUGITIVE EMISSION MONITORING 112266 Volatile organic compounds (VOCs) can be emitted from leaking valves, flanges, sampling connections, pumps, pipes and compressors. Emissions of these types are commonly called fugitive emissions.
  • 127. 112277 FFuuggiittiivvee EEmmiissssiioonnss Unintentional releases, such as those due to leaking equipment, are known as fugitive emissions Can originate at any place where equipment leaks may occur Can also arise from evaporation of hazardous compounds from open topped tanks
  • 128. 112288 SSoouurrcceess ooff FFuuggiittiivvee EEmmiissssiioonnss Pumps 27% Flanges 3% Relief valves 18% Drains 1% Compressors 8% Valves 43% A g i t a t o r s e a l s L o a d i n g a r m s C o m p r e s s o r s e a l s M e t e r s C o n n e c t o r s O p e n - e n d e d l i n e s D i a p h r a m s P o l i s h e d r o d s D r a i n s P r e s s u r e r e l i e f d e v i c e s D u m p l e v e r a r m s P u m p s e a l s F l a n g e s S t u f f i n g b o x e s H a t c h e s V a l v e s I n s t r u m e n t s V e n t s
  • 129. 112299 MMeeaassuurriinngg FFuuggiittiivvee EEmmiissssiioonnss Portable gas detector Catalytic bead Non-dispersive infrared Photo-ionization detectors Combustion analyzers Standard GC with flame ionization detector is most commonly used
  • 130. 113300 MMeeaassuurriinngg FFuuggiittiivvee EEmmiissssiioonnss Average emission factor approach Screening ranges approach EPA correlation approach Unit-specific correlation approach
  • 131. AAvveerraaggee EEmmiissssiioonn FFaaccttoorr AApppprrooaacchh 113311 E F W F T O C A T O C = × ETOC = TOC emission rate from a component (kg/hr) FA = applicable average emission factor for the component (kg/hr) WFTOC = average mass fraction of TOC in the stream serviced by the component T a b l e 1 0 . 9 A v e r a g e e m i s s i o n f a c t o r s f o r e s t i m a t i n g f u g i t i v e e m i s s i o n s E q u i p m e n t t y p e S e r v i c e T O C e m i s s i o n f a c t o r ( k g / h r / s o u r c e ) S O C M I R e f i n e r y M a r k e t i n g T e r m i n a l V a l v e s G a s L i g h t l i q u i d H e a v y l i q u i d 0 . 0 0 5 9 7 0 . 0 0 4 0 3 0 . 0 0 0 2 3 0 . 0 2 6 8 0 . 0 1 0 9 0 . 0 0 0 2 3 1 . 3 x 1 0 - 5 4 . 3 x 1 0 - 5 - P u m p s e a l s G a s L i g h t l i q u i d H e a v y l i q u i d - 0 . 0 1 9 9 0 . 0 0 8 6 2 - 0 .1 4 4 0 .0 2 1 6 . 5 x 1 0 - 5 5 . 4 x 1 0 - 4 -
  • 132. 113322 SSccrreeeenniinngg RRaannggeess AApppprrooaacchh Leak/ No-leak approach more exact than the average emissions approach  relies on screening data from the facility, rather than on industry wide averages E F N F N T O C G G L L = ( × ) + ( × ) T O C e m i s s i o n r a t e f o r a n e q u i p m e n t t y p e F G = a p p l i c a b l e e m i s s i o n f a c t o r f o r s o u r c e s w i t h s c r e e n i n g v a l u e s g r e a t e r t h a n o r e q u a l t o 1 0 , 0 0 0 p p m v ( k g / h r / s o u r c e ) N G = e q u i p m e n t c o u n t f o r s o u r c e s w i t h s c r e e n i n g v a l u e s g r e a t e r t h a n o r e q u a l t o 1 0 , 0 0 0 p p m v F L = a p p l i c a b l e e m i s s i o n f a c t o r f o r s o u r c e s w i t h s c r e e n i n g v a l u e s l e s s t h a n 1 0 , 0 0 0 p p m v ( k g / h r / s o u r c e ) N L = e q u i p m e n t c o u n t f o r s o u r c e s w i t h s c r e e n i n g v a l u e s l e s s t h a n 1 0 , 0 0 0 p p m v
  • 133. 113333 EEPPAA CCoorrrreellaattiioonn AApppprrooaacchh Predicts mass emission rates as a function of screening values for a particular equipment type Total fugitive emissions = sum of the emissions associated with each of the screening values Default-zero leak rate is the mass emission rate associated with a screening value of zero
  • 134. 113344 EEPPAA CCoorrrreellaattiioonn AApppprrooaacchh T a b l e 1 0 . 1 1 E P A c o r r e l a t i o n s f o r e s t i m a t i n g f u g i t i v e e m i s s i o n s E q u i p m e n t t y p e T O C l e a k r a t e f r o m c o r r e l a t i o n * ( k g / h r / u n i t ) D e f a u l t - z e r o e m i s s i o n r a t e ( k g / h r / u n i t ) S O C M I R e f i n e r y G a s v a l v e s 1 . 8 x 1 0 - 6 S V 0 . 8 7 3 - 6 . 6 x 1 0 - 7 L i q u i d l i q u i d v a l v e s 6 . 4 1 x 1 0 - 6 S V 0 . 7 9 7 - 4 . 9 x 1 0 - 7 V a l v e s ( a l l ) - 2 . 2 9 x 1 0 - 6 S V 0 .7 4 6 7 . 8 x 1 0 - 6 L i g h t l i q u i d p u m p s 1 . 9 0 x 1 0 - 5 S V 0 . 8 2 4 - 7 . 5 x 1 0 - 6 P u m p s e a l s ( a l l ) - 5 . 0 3 x 1 0 - 5 S V 0 .6 1 0 2 . 4 x 1 0 - 5 C o n n e c t o r s 3 . 0 5 x 1 0 - 6 S V 0 . 8 8 5 - 6 . 1 x 1 0 - 7 C o n n e c t o r s - 1 . 5 3 x 1 0 - 6 S V 0 .7 3 5 7 . 5 x 1 0 - 6 F l a n g e s - 4 . 6 1 x 1 0 - 6 S V 0 .7 0 3 3 . 1 x 1 0 - 7 O p e n - e n d e d l i n e s - 2 . 2 0 x 1 0 - 6 S V 0 .7 0 4 2 . 0 x 1 0 - 6
  • 135. 113355 UUnniitt--SSppeecciiffiicc CCoorrrreellaattiioonn AApppprrooaacchh Most exact, but most expensive method Screening values and corresponding mass emissions data are collected for a statistically significant number of units A minimum number of leak rate measurements and screening value pairs must be obtained to develop the correlations
  • 136. 113366 CCoonnttrroolllliinngg FFuuggiittiivvee EEmmiissssiioonnss Modifying or replacing existing equipment Implementing a leak detection and repair (LDAR) program
  • 137. 113377 EEqquuiippmmeenntt MMooddiiffiiccaattiioonn E q u i p m e n t t y p e M o d i f i c a t i o n A p p r o x i m a t e c o n t r o l e f f i c i e n c y ( % ) P u m p s S e a l l e s s d e s i g n 1 0 0 C l o s e d - v e n t s y s t e m 9 0 D u a l m e c h a n i c a l s e a l w i t h b a r r i e r f l u i d m a i n t a i n e d a t a h i g h e r p r e s s u r e t h a n t h e p u m p e d f l u i d 1 0 0 C o m p r e s s o r s C l o s e d - v e n t s y s t e m 9 0 D u a l m e c h a n i c a l s e a l w i t h b a r r i e r f l u i d m a i n t a i n e d a t a h i g h e r p r e s s u r e t h a n t h e p u m p e d f l u i d 1 0 0 P r e s s u r e - r e l i e f d e v i c e s C l o s e d - v e n t s y s t e m v a r i e s R u p t u r e d i s k a s s e m b l y 1 0 0 V a l v e s S e a l l e s s d e s i g n 1 0 0 C o n n e c t o r s W e l d t o g e t h e r 1 0 0 O p e n - e n d e d l i n e s B l i n d , c a p , p l u g o r s e c o n d v a l v e 1 0 0 S a m p l i n g C l o s e d - lo o p s a m p l i n g 1 0 0 c o n n e c t i o n s
  • 138. 113388 VVaallvveess UUsseedd iinn IInndduussttrryy
  • 139. 11339 VVaallvveess UUsseedd iinn IInndduussttrryy ((ccoonntt..))
  • 140. 114400 LLDDAARR PPrrooggrraammss Designed to identify pieces of equipment that are emitting sufficient amounts of material to warrant reduction of emissions through repair Best applied to equipment types that can be repaired on-line or to equipment for which equipment modification is not suitable
  • 141. 114411 FFuuggiittiivvee EEmmiissssiioonnss ffrroomm SSttoorraaggee TTaannkkss There are six basic tank designs Fixed roof  vertical or horizontal  least expensive  least acceptable for storing liquids  emission are caused by changes in • temperature • pressure • liquid level ( a ) T y p i c a l f i x e d - r o o f t a n k .
  • 142. FFuuggiittiivvee EEmmiissssiioonnss ffrroomm SSttoorraaggee TTaannkkss External floating roof 114422 – open-topped cylindrical steel shell – steel plate roof that floats on the surface of the liquid – emission limited to evaporation losses from • an imperfect rim seal system • fittings in the floating deck • any exposed liquid on the tank wall when liquid is withdrawn and the roof lowers Domed external floating roof – similar to internal floating roof tank – existing floated roof tank retrofitted with a fixed roof to block winds and minimize evaporative loses
  • 143. 114433 EExxtteerrnnaall FFllooaattiinngg RRooooff TTaannkkss ( b ) E x t e r n a l f l o a t i n g r o o f t a n k ( p o n t o o n t y p e ) . ( d ) D o m e d e x t e r n a l f l o a t i n g r o o f t a n k .
  • 144. FFuuggiittiivvee EEmmiissssiioonnss ffrroomm SSttoorraaggee TTaannkkss 114444 (( cc )) II nn tt ee rr nn aa ll ff ll oo aa tt ii nn gg rr oo oo ff tt aa nn kk .. Internal floating roof – permanent fixed roof with a floating roof inside – evaporative losses from • deck fittings • non-welded deck seams • annular space between floating deck and the wall
  • 145. FFuuggiittiivvee EEmmiissssiioonnss ffrroomm SSttoorraaggee TTaannkkss Variable vapor space 114455 – expandable vapor reservoirs to accommodate volume fluctuations due to: • temperature • barometric pressure changes – uses a flexible diaphragm membrane to provide expandable volume – losses are limited to: • tank filling times when vapor displaced by liquid exceeds tank’s storage capacity
  • 146. FFuuggiittiivvee EEmmiissssiioonnss ffrroomm SSttoorraaggee TTaannkkss Pressure tanks 114466  low or high pressure – used for storing organic liquids and gases with high vapor pressures – equipped with pressure/vacuum vent to prevent venting loss from • boiling • breathing loss from temperature and pressure changes
  • 147. 114477 EEmmiissssiioonnss EEssttiimmaattiioonn ffrroomm SSttoorraaggee TTaannkkss L L L T S W = + LT = total losses, kg/yr LS = standing storage losses, kg/yr LW = working losses, kg/yr The standing storage losses are due to breathing of the vapors above the liquid in the storage tank L V W K K S V V E S = 3 6 5 VV = vapor space volume, m3 WV = vapor density, kg/m3 KE = vapor space expansion factor, dimensionless KS = vented space saturation factor, dimensionless 365 = days/year W M P V V A L A = V R T MV = vapor molecular weight R = universal gas constant, mm Hg-L/K-mol PVA = vapor pressure at daily average liquid surface temperature, TLA = daily average liquid surface temperature, K K T T P P D D D V L A - - V B A V A = + E P P TV = daily temperature range, K PV = daily pressure range, PB = breather vent pressure setting range, PA = atmospheric pressure,
  • 148. 114488 EEmmiissssiioonnss EEssttiimmaattiioonn ffrroomm SSttoorraaggee TTaannkkss K S P H V A V O = + 1 1 0 .0 5 3 HVO = vapor space outage, ft = height of a cylinder of tank diameter, D, whose volume is equivalent to the vapor space volume of the tank L M P Q K K W V V A N P = 0 .0 0 1 0 Q = annual net throughput (tank capacity (bbl) times annual turnover rate), bbl/yr KN = turnover factor, dimensionless for turnovers > 36/year, KN = (180 + N)/6N for turnovers  36, KN = 1 where N = number of tank volume turnovers per year KP = working loss product factor, dimensionless for crude oils = 0.75 for all other liquids = 1.0
  • 149. FFuuggiittiivvee EEmmiissssiioonnss ffrroomm WWaassttee,, 11449 TTrreeaattmmeenntt aanndd DDiissppoossaall I = important S = secondary N = negligible or not applicable Surface Wastewater treatment plants Land Pathway impoundments Aerated Non-aerated treatment Landfill Volatilization I I I I I Biodegradation I I I I S Photodecomp. S N N N N Hydrolysis S S S N N Oxidation/red’n N N N N N Adsorption N S S N N Hydroxyl radical N N N N N
  • 150. 115500 AAUUTTOOMMOOBBIILLEE EEMMIISSSSIIOONN Automobiles are ‘necessary evils’, while they have made living easy and convenient, they have also made human life more complicated and vulnerable to both toxic emissions and an increased risk of accidents.
  • 151. 115511 AAUUTTOOMMOOBBIILLEE EEMMIISSSSIIOONN --EENNVVIIRROONNMMEENNTTAALL IISSSSUUEESS  Delhi – total pollution load declines from 412,000t – 328,000 t (1998-2020)  By 2020, two wheelers and cars contribute 80% HC emissions in Delhi  Two wheelers alone contribute 70% of CO2 emissions  Annual Pollution load in Mumbai declines by 40%  Particulates, SOx and NOx declines due to the decline in diesel usage  CO2 emissions by 2020 under BAU in Delhi would be 2.57 times the present value  In Mumbai it would be 2.7 times  CO2 emissions in Delhi are 2.4 times higher than Mumbai at any given time
  • 152. 115522
  • 153. 115533 AAUUTTOOMMOOBBIILLEE EEMMIISSSSIIOONN Following factors make pollution from the vehicles more serious in developing countries Poor quality of vehicles creating more particulates and burning fuels inefficiently. Lower quality of fuel being used leads to far greater quantities of pollutants. Concentration of motor vehicles in a few large cities Exposure of a larger percentage of population that lives and moves in the open.
  • 154. 115544
  • 155. 115555
  • 156. 115566 PPOOLLLLUUTTAANNTTSS PPRROODDUUCCEEDD BBYY AAUUTTOOMMOOBBIILLEE EEMMIISSSSIIOONN  HC-Unburned fuel molecules or partialburning  NOx-under high pressure and temperature  conditions in an engine  CO-Due to incomplete combustion  CO2-Due to perfect combustion
  • 158. 115588 MMoobbiillee AAiirr PPoolllluuttiioonn VVaann  Mobile system to monitor Air, Water, Noise & meteorological parameters  Design to meet customers needs  Self contained with Air conditioner and power gensets  Designed to suit Indian road conditions
  • 159. 11559 EExxttrraaccttiivvee mmuullttiiggaass aannaallyyzzeerr ssyysstteemm  For continuous emission monitoring.  Used to measure the concentration of oxides of nitrogen (NOX), sulphur dioxide (SO2), carbon dioxide (CO, CO2), oxygen (O2), hydrocarbons (HCs) and water vapour (H2O) in the flue gas of large combustion processes, incinerators and other processes when it is required by legislation.
  • 160. 116600 AAuuttoo eexxhhaauusstt AAnnaallyysseerr ffoorr PPeettrrooll
  • 163. 116633 VVoollaattiillee OOrrggaanniicc VVaappoouurr MMoonniittoorr Based on a portable photo ionization detector (PID). It detects a wide range of volatile organic compounds (VOCs) and various other gases.
  • 164. 116644  Based on a portable photo ionization detector (PID) with a barcode scanner.  It is a practical way to log and detect a wide range of volatile organic compounds (VOCs) and various other gases.  Bar code scanner simplifies tracking fugitive emissions
  • 165. 116655 NNoonn MMeetthhaannee HHyyddrrooCCaarrbboonn AAnnaallyyzzeerr Hydrocarbon detection from sub-ppm to 1,000 ppm levels
  • 166. 116666 OOiill iinn WWaatteerr AAnnaallyyzzeerr CONTINUOUS MONITORING SYSTEM FOR OIL IN WATER
  • 167. 116677
  • 168. 116688  Neem in Indian culture has been ranked higher than 'Kalpavriksha', the mythological wish-fulfilling tree.  In 'Sharh-e-Mufridat Al- Qanoon, neem has been named as 'Shajar-e-Mubarak', 'the blessed tree', because of its highly beneficial properties.  Although scientific studies are wanting, neem is reputed to purify air and the environment of noxious elements. Its shade not only cools but prevents the occurrence of many diseases.

Editor's Notes

  1. World Resources Institute http://www.wri.org/wri/wr-98-99/airpoll.htm
  2. London, England, 1953 From December 5 to 8, 1952, London experienced the worst air pollution disaster ever reported. The meteorological conditions were ideal for a pollution. Anti-cyclonic or high pressure weather with stagnating continental polar air masses trapped under subsidence inversions produced a shallow mixing layer with an almost complete absence of vertical and horizontal air motion. Fireplaces and industries supplied the hygroscopic condensation nuclei into the air to form dense fog. The daily temperatures were below the average. With such adverse conditions the concentrations of pollutants reached high values. With these adverse conditions, elderly people were particulary effected. Deaths from bronchitis increased by a factor of 10, influenza by 7, pneumonia by 5, tuberculosis by 4.5, other respiratory diseases by 6, heart diseases by 3 and lung cancer by 2. When a change in weather finally cleared the fog, 4,000 Londoners had perished in their &amp;quot;pea soup&amp;quot;. Pollution disasters with similarly high concentrations occurred in 1957-1958 and again 1962-1963. But the number of casualties during these disasters were less than that of 1952.
  3. World Resources Institute http://www.wri.org/wri/wr-98-99/airpoll.htm
  4. World Resources Institute http://www.wri.org/wri/wr-98-99/airpoll.htm
  5. World Resources Institute http://www.wri.org/wri/wr-98-99/airpoll.htm
  6. World Resources Institute http://www.wri.org/wri/wr-98-99/airpoll.htm
  7. World Resources Institute http://www.wri.org/wri/wr-98-99/airpoll.htm
  8. World Resources Institute http://www.wri.org/wri/wr-98-99/airpoll.htm