Factorising
Factorising
1) Look for a common factor
Factorising
1) Look for a common factor
2) (i) 2 terms
 difference of two squares
Factorising
1) Look for a common factor
2) (i) 2 terms
 difference of two squares
 sum/difference of two cubes
Factorising
1) Look for a common factor
2) (i) 2 terms
 difference of two squares
 sum/difference of two cubes
(ii) 3 terms
 quadratic trinomial
Factorising
1) Look for a common factor
2) (i) 2 terms
 difference of two squares
 sum/difference of two cubes
(ii) 3 terms
 quadratic trinomial
(iii) 4 terms
 grouping in pairs
1. Common Factor

factorising
=
dividing by common factor
1. Common Factor
e.g. (i ) ax  bx

factorising
=
dividing by common factor
1. Common Factor
e.g. (i ) ax  bx  x  a  b 

factorising
=
dividing by common factor
1. Common Factor
e.g. (i ) ax  bx  x  a  b 
(ii ) 5 x 2  10 x

factorising
=
dividing by common factor
1. Common Factor
e.g. (i ) ax  bx  x  a  b 
(ii ) 5 x 2  10 x  5 x  x  2 

factorising
=
dividing by common factor
1. Common Factor
e.g. (i ) ax  bx  x  a  b 
(ii ) 5 x 2  10 x  5 x  x  2 

(iii ) mx  nx  my  ny

factorising
=
dividing by common factor
1. Common Factor
e.g. (i ) ax  bx  x  a  b 
(ii ) 5 x 2  10 x  5 x  x  2 

factorising
=
dividing by common factor

(iii ) mx  nx  my  ny  x  m  n   y  m  n 
1. Common Factor
e.g. (i ) ax  bx  x  a  b 
(ii ) 5 x 2  10 x  5 x  x  2 

factorising
=
dividing by common factor

(iii ) mx  nx  my  ny  x  m  n   y  m  n 
  m  n  x  y 
1. Common Factor
e.g. (i ) ax  bx  x  a  b 
(ii ) 5 x 2  10 x  5 x  x  2 

factorising
=
dividing by common factor

(iii ) mx  nx  my  ny  x  m  n   y  m  n 
  m  n  x  y 

2. Difference of Two Squares

a 2  b 2   a  b  a  b 
1. Common Factor
e.g. (i ) ax  bx  x  a  b 
(ii ) 5 x 2  10 x  5 x  x  2 

factorising
=
dividing by common factor

(iii ) mx  nx  my  ny  x  m  n   y  m  n 
  m  n  x  y 

2. Difference of Two Squares

a 2  b 2   a  b  a  b 
e.g. (i ) 16x 2  1
1. Common Factor
e.g. (i ) ax  bx  x  a  b 
(ii ) 5 x 2  10 x  5 x  x  2 

factorising
=
dividing by common factor

(iii ) mx  nx  my  ny  x  m  n   y  m  n 
  m  n  x  y 

2. Difference of Two Squares

a 2  b 2   a  b  a  b 
e.g. (i ) 16x 2  1 =  4 x  1 4 x  1
1. Common Factor
e.g. (i ) ax  bx  x  a  b 
(ii ) 5 x 2  10 x  5 x  x  2 

factorising
=
dividing by common factor

(iii ) mx  nx  my  ny  x  m  n   y  m  n 
  m  n  x  y 

2. Difference of Two Squares

a 2  b 2   a  b  a  b 
e.g. (i ) 16x 2  1 =  4 x  1 4 x  1
(ii ) 3 y 2  75
1. Common Factor
e.g. (i ) ax  bx  x  a  b 
(ii ) 5 x 2  10 x  5 x  x  2 

factorising
=
dividing by common factor

(iii ) mx  nx  my  ny  x  m  n   y  m  n 
  m  n  x  y 

2. Difference of Two Squares

a 2  b 2   a  b  a  b 
e.g. (i ) 16x 2  1 =  4 x  1 4 x  1
(ii ) 3 y 2  75 =3  y 2  25 
1. Common Factor
e.g. (i ) ax  bx  x  a  b 
(ii ) 5 x 2  10 x  5 x  x  2 

factorising
=
dividing by common factor

(iii ) mx  nx  my  ny  x  m  n   y  m  n 
  m  n  x  y 

2. Difference of Two Squares

a 2  b 2   a  b  a  b 
e.g. (i ) 16x 2  1 =  4 x  1 4 x  1
(ii ) 3 y 2  75 =3  y 2  25 
=3  y  5  y  5 
1. Common Factor
e.g. (i ) ax  bx  x  a  b 
(ii ) 5 x 2  10 x  5 x  x  2 

factorising
=
dividing by common factor

(iii ) mx  nx  my  ny  x  m  n   y  m  n 
  m  n  x  y 

2. Difference of Two Squares

a 2  b 2   a  b  a  b 
e.g. (i ) 16x 2  1 =  4 x  1 4 x  1
(ii ) 3 y 2  75 =3  y 2  25 
=3  y  5  y  5 
(iii ) 5 x  5 y  x 2  y 2
1. Common Factor
e.g. (i ) ax  bx  x  a  b 
(ii ) 5 x 2  10 x  5 x  x  2 

factorising
=
dividing by common factor

(iii ) mx  nx  my  ny  x  m  n   y  m  n 
  m  n  x  y 

2. Difference of Two Squares

a 2  b 2   a  b  a  b 
e.g. (i ) 16x 2  1 =  4 x  1 4 x  1
(ii ) 3 y 2  75 =3  y 2  25 
=3  y  5  y  5 
(iii ) 5 x  5 y  x 2  y 2 =5  x  y    x  y  x  y 
1. Common Factor
e.g. (i ) ax  bx  x  a  b 
(ii ) 5 x 2  10 x  5 x  x  2 

factorising
=
dividing by common factor

(iii ) mx  nx  my  ny  x  m  n   y  m  n 
  m  n  x  y 

2. Difference of Two Squares

a 2  b 2   a  b  a  b 
e.g. (i ) 16x 2  1 =  4 x  1 4 x  1
(ii ) 3 y 2  75 =3  y 2  25 
=3  y  5  y  5 
(iii ) 5 x  5 y  x 2  y 2 =5  x  y    x  y  x  y 
=  x  y  5  x  y 
3. Quadratic Trinomial
a) Monic Quadratic

 x  a  x  b   x 2   a  b  x  ab
3. Quadratic Trinomial
a) Monic Quadratic

 x  a  x  b   x 2   a  b  x  ab
e.g. (i ) x 2  9 x  18
3. Quadratic Trinomial
a) Monic Quadratic

 x  a  x  b   x 2   a  b  x  ab
e.g. (i ) x 2  9 x  18

  18
9
3. Quadratic Trinomial
a) Monic Quadratic

 x  a  x  b   x 2   a  b  x  ab
e.g. (i ) x 2  9 x  18
  x  6  x  3

  18
9
3. Quadratic Trinomial
a) Monic Quadratic

 x  a  x  b   x 2   a  b  x  ab
e.g. (i ) x 2  9 x  18
  x  6  x  3
(ii ) t 2  4t  3

  18
9
3. Quadratic Trinomial
a) Monic Quadratic

 x  a  x  b   x 2   a  b  x  ab
e.g. (i ) x 2  9 x  18
  x  6  x  3
(ii ) t 2  4t  3

  18
9
3
  4
3. Quadratic Trinomial
a) Monic Quadratic

 x  a  x  b   x 2   a  b  x  ab
e.g. (i ) x 2  9 x  18
  x  6  x  3
(ii ) t 2  4t  3
  t  3 t  1

  18
9
3
  4
3. Quadratic Trinomial
a) Monic Quadratic

 x  a  x  b   x 2   a  b  x  ab
e.g. (i ) x 2  9 x  18
  x  6  x  3
(ii ) t 2  4t  3
  t  3 t  1
(iii ) x 2  5 xy  4 y 2

  18
9
3
  4
3. Quadratic Trinomial
a) Monic Quadratic

 x  a  x  b   x 2   a  b  x  ab
e.g. (i ) x 2  9 x  18
  x  6  x  3
(ii ) t 2  4t  3
  t  3 t  1

  18
9
3
  4

(iii ) x 2  5 xy  4 y 2   4 y 2
  5 y
3. Quadratic Trinomial
a) Monic Quadratic

 x  a  x  b   x 2   a  b  x  ab
e.g. (i ) x 2  9 x  18
  x  6  x  3
(ii ) t 2  4t  3
  t  3 t  1

  18
9
3
  4

(iii ) x 2  5 xy  4 y 2   4 y 2
  x  y  x  4 y    5 y
b) Splitting the Middle
b) Splitting the Middle
e.g. (i ) 3x 2  4 x  7
b) Splitting the Middle
e.g. (i ) 3x  4 x  7
2

  21
4

Multiply the constant by the
coefficient of x squared
7  3
b) Splitting the Middle

  21
e.g. (i ) 3x  4 x  7
 3x 2  3x  7 x  7   4
2

Multiply the constant by the
coefficient of x squared
7  3
b) Splitting the Middle

  21
e.g. (i ) 3x  4 x  7
 3x 2  3x  7 x  7   4
 3 x  x  1  7  x  1
2

Multiply the constant by the
coefficient of x squared
7  3
b) Splitting the Middle

  21
e.g. (i ) 3x  4 x  7
 3x 2  3x  7 x  7   4
 3 x  x  1  7  x  1
2

  x  1 3 x  7 

Multiply the constant by the
coefficient of x squared
7  3
b) Splitting the Middle

  21
e.g. (i ) 3x  4 x  7
 3x 2  3x  7 x  7   4
 3 x  x  1  7  x  1
2

  x  1 3 x  7 
(ii ) 2 x 2  5 x  12

Multiply the constant by the
coefficient of x squared
7  3
b) Splitting the Middle

  21
e.g. (i ) 3x  4 x  7
 3x 2  3x  7 x  7   4
 3 x  x  1  7  x  1
2

  x  1 3 x  7 
(ii ) 2 x 2  5 x  12

  24
  5

Multiply the constant by the
coefficient of x squared
7  3
b) Splitting the Middle

  21
e.g. (i ) 3x  4 x  7
 3x 2  3x  7 x  7   4
 3 x  x  1  7  x  1
2

  x  1 3 x  7 

  24
(ii ) 2 x 2  5 x  12
 2 x 2  8 x  3 x  12   5

Multiply the constant by the
coefficient of x squared
7  3
b) Splitting the Middle

  21
e.g. (i ) 3x  4 x  7
 3x 2  3x  7 x  7   4
 3 x  x  1  7  x  1
2

  x  1 3 x  7 

  24
(ii ) 2 x 2  5 x  12
 2 x 2  8 x  3 x  12   5
 2 x  x  4  3 x  4

Multiply the constant by the
coefficient of x squared
7  3
b) Splitting the Middle

  21
e.g. (i ) 3x  4 x  7
 3x 2  3x  7 x  7   4
 3 x  x  1  7  x  1
2

  x  1 3 x  7 

  24
(ii ) 2 x 2  5 x  12
 2 x 2  8 x  3 x  12   5
 2 x  x  4  3 x  4
  x  4  2 x  3

Multiply the constant by the
coefficient of x squared
7  3
b) Splitting the Middle

  21
e.g. (i ) 3x  4 x  7
 3x 2  3x  7 x  7   4
 3 x  x  1  7  x  1
2

Multiply the constant by the
coefficient of x squared
7  3

  x  1 3 x  7 

  24
(ii ) 2 x 2  5 x  12
 2 x 2  8 x  3 x  12   5
 2 x  x  4  3 x  4
  x  4  2 x  3

Exercise 1C; 1e, 2f, 3d, 4ejo, 5adhkn, 6ace etc, 7ace etc, 8*bdfij

11 x1 t01 03 factorising (2014)

  • 1.
  • 2.
    Factorising 1) Look fora common factor
  • 3.
    Factorising 1) Look fora common factor 2) (i) 2 terms  difference of two squares
  • 4.
    Factorising 1) Look fora common factor 2) (i) 2 terms  difference of two squares  sum/difference of two cubes
  • 5.
    Factorising 1) Look fora common factor 2) (i) 2 terms  difference of two squares  sum/difference of two cubes (ii) 3 terms  quadratic trinomial
  • 6.
    Factorising 1) Look fora common factor 2) (i) 2 terms  difference of two squares  sum/difference of two cubes (ii) 3 terms  quadratic trinomial (iii) 4 terms  grouping in pairs
  • 7.
  • 8.
    1. Common Factor e.g.(i ) ax  bx factorising = dividing by common factor
  • 9.
    1. Common Factor e.g.(i ) ax  bx  x  a  b  factorising = dividing by common factor
  • 10.
    1. Common Factor e.g.(i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x factorising = dividing by common factor
  • 11.
    1. Common Factor e.g.(i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor
  • 12.
    1. Common Factor e.g.(i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  (iii ) mx  nx  my  ny factorising = dividing by common factor
  • 13.
    1. Common Factor e.g.(i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n 
  • 14.
    1. Common Factor e.g.(i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 
  • 15.
    1. Common Factor e.g.(i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b 
  • 16.
    1. Common Factor e.g.(i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1
  • 17.
    1. Common Factor e.g.(i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1
  • 18.
    1. Common Factor e.g.(i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75
  • 19.
    1. Common Factor e.g.(i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25 
  • 20.
    1. Common Factor e.g.(i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5 
  • 21.
    1. Common Factor e.g.(i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5  (iii ) 5 x  5 y  x 2  y 2
  • 22.
    1. Common Factor e.g.(i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5  (iii ) 5 x  5 y  x 2  y 2 =5  x  y    x  y  x  y 
  • 23.
    1. Common Factor e.g.(i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5  (iii ) 5 x  5 y  x 2  y 2 =5  x  y    x  y  x  y  =  x  y  5  x  y 
  • 24.
    3. Quadratic Trinomial a)Monic Quadratic  x  a  x  b   x 2   a  b  x  ab
  • 25.
    3. Quadratic Trinomial a)Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18
  • 26.
    3. Quadratic Trinomial a)Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   18 9
  • 27.
    3. Quadratic Trinomial a)Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   x  6  x  3   18 9
  • 28.
    3. Quadratic Trinomial a)Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   x  6  x  3 (ii ) t 2  4t  3   18 9
  • 29.
    3. Quadratic Trinomial a)Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   x  6  x  3 (ii ) t 2  4t  3   18 9 3   4
  • 30.
    3. Quadratic Trinomial a)Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   x  6  x  3 (ii ) t 2  4t  3   t  3 t  1   18 9 3   4
  • 31.
    3. Quadratic Trinomial a)Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   x  6  x  3 (ii ) t 2  4t  3   t  3 t  1 (iii ) x 2  5 xy  4 y 2   18 9 3   4
  • 32.
    3. Quadratic Trinomial a)Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   x  6  x  3 (ii ) t 2  4t  3   t  3 t  1   18 9 3   4 (iii ) x 2  5 xy  4 y 2   4 y 2   5 y
  • 33.
    3. Quadratic Trinomial a)Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   x  6  x  3 (ii ) t 2  4t  3   t  3 t  1   18 9 3   4 (iii ) x 2  5 xy  4 y 2   4 y 2   x  y  x  4 y    5 y
  • 34.
  • 35.
    b) Splitting theMiddle e.g. (i ) 3x 2  4 x  7
  • 36.
    b) Splitting theMiddle e.g. (i ) 3x  4 x  7 2   21 4 Multiply the constant by the coefficient of x squared 7  3
  • 37.
    b) Splitting theMiddle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4 2 Multiply the constant by the coefficient of x squared 7  3
  • 38.
    b) Splitting theMiddle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2 Multiply the constant by the coefficient of x squared 7  3
  • 39.
    b) Splitting theMiddle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2   x  1 3 x  7  Multiply the constant by the coefficient of x squared 7  3
  • 40.
    b) Splitting theMiddle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2   x  1 3 x  7  (ii ) 2 x 2  5 x  12 Multiply the constant by the coefficient of x squared 7  3
  • 41.
    b) Splitting theMiddle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2   x  1 3 x  7  (ii ) 2 x 2  5 x  12   24   5 Multiply the constant by the coefficient of x squared 7  3
  • 42.
    b) Splitting theMiddle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2   x  1 3 x  7    24 (ii ) 2 x 2  5 x  12  2 x 2  8 x  3 x  12   5 Multiply the constant by the coefficient of x squared 7  3
  • 43.
    b) Splitting theMiddle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2   x  1 3 x  7    24 (ii ) 2 x 2  5 x  12  2 x 2  8 x  3 x  12   5  2 x  x  4  3 x  4 Multiply the constant by the coefficient of x squared 7  3
  • 44.
    b) Splitting theMiddle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2   x  1 3 x  7    24 (ii ) 2 x 2  5 x  12  2 x 2  8 x  3 x  12   5  2 x  x  4  3 x  4   x  4  2 x  3 Multiply the constant by the coefficient of x squared 7  3
  • 45.
    b) Splitting theMiddle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2 Multiply the constant by the coefficient of x squared 7  3   x  1 3 x  7    24 (ii ) 2 x 2  5 x  12  2 x 2  8 x  3 x  12   5  2 x  x  4  3 x  4   x  4  2 x  3 Exercise 1C; 1e, 2f, 3d, 4ejo, 5adhkn, 6ace etc, 7ace etc, 8*bdfij