SlideShare a Scribd company logo
Approximations To Areas
(1) Trapezoidal Rule
  y
                           y = f(x)




        a              b    x
Approximations To Areas
(1) Trapezoidal Rule
  y
                           y = f(x)




        a              b    x
Approximations To Areas
(1) Trapezoidal Rule
  y
                           y = f(x)      ba
                                      A      f a   f b 
                                          2




        a              b    x
Approximations To Areas
(1) Trapezoidal Rule
  y
                           y = f(x)      ba
                                      A      f a   f b 
                                          2


                                       y                          y = f(x)
        a              b    x




                                              a             b         x
Approximations To Areas
(1) Trapezoidal Rule
  y
                           y = f(x)      ba
                                      A      f a   f b 
                                          2


                                       y                          y = f(x)
        a              b    x




                                              a     c       b         x
Approximations To Areas
 (1) Trapezoidal Rule
    y
                                 y = f(x)         ba
                                               A      f a   f b 
                                                   2


                                                y                          y = f(x)
           a              b       x
   ca                      bc
A      f a   f c        f c   f b 
    2                        2


                                                       a     c       b         x
Approximations To Areas
 (1) Trapezoidal Rule
    y
                                   y = f(x)          ba
                                                  A      f a   f b 
                                                      2


                                                   y                          y = f(x)
            a               b        x
   ca                      bc
A      f a   f c           f c   f b 
    2                          2
   ca
       f a   2 f c   f b 
    2
                                                          a     c       b         x
y
            y = f(x)




    a   b   x
y
                    y = f(x)




    a   c   d   b   x
y
                    y = f(x)
                           ca                      d c
                        A      f a   f c          f c   f d 
                            2                         2
                                    bd
                                           f d   f b 
                                       2
    a   c   d   b   x
y
                    y = f(x)
                        ca                        d c
                     A        f a   f c           f c   f d 
                          2                          2
                                   bd
                                          f d   f b 
                                      2
    a   c   d   b   x  c  a  f a   2 f c   2 f d   f b 
                          2
y
                      y = f(x)
                          ca                        d c
                       A        f a   f c           f c   f d 
                            2                          2
                                     bd
                                            f d   f b 
                                        2
     a    c   d   b   x  c  a  f a   2 f c   2 f d   f b 
                            2
In general;
y
                            y = f(x)
                                ca                        d c
                             A        f a   f c           f c   f d 
                                  2                          2
                                           bd
                                                  f d   f b 
                                              2
     a    c    d    b       x  c  a  f a   2 f c   2 f d   f b 
                                  2
In general;             b
              Area   f  x dx
                        a
y
                            y = f(x)
                                ca                        d c
                             A        f a   f c           f c   f d 
                                  2                          2
                                           bd
                                                  f d   f b 
                                              2
     a    c    d    b       x  c  a  f a   2 f c   2 f d   f b 
                                  2
In general;             b
              Area   f  x dx
                        a
                     h
                     y0  2 yothers  yn 
                     2
y
                              y = f(x)
                                  ca                        d c
                               A        f a   f c           f c   f d 
                                    2                          2
                                             bd
                                                    f d   f b 
                                                2
     a      c    d    b       x  c  a  f a   2 f c   2 f d   f b 
                                    2
In general;               b
                Area   f  x dx
                          a
                       h
                       y0  2 yothers  yn 
                       2
          ba
where h 
            n
      n  number of trapeziums
y
                              y = f(x)
                                  ca                        d c
                               A        f a   f c           f c   f d 
                                    2                          2
                                             bd
                                                    f d   f b 
                                                2
     a      c    d    b       x  c  a  f a   2 f c   2 f d   f b 
                                    2
In general;               b
                Area   f  x dx
                          a
                       h
                       y0  2 yothers  yn         NOTE: there is
                       2
          ba                                         always one more
where h                                              function value
            n
                                                      than interval
      n  number of trapeziums
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the

     area under the curve y  4  x     , between x  0 and x  2
                                         1
                                       2 2


     correct to 3 decimal points 
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the

     area under the curve y  4  x     , between x  0 and x  2
                                         1
                                       2 2


     correct to 3 decimal points 
     ba
  h
       n
     20
   
       4
    0.5
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the

     area under the curve y  4  x     , between x  0 and x  2
                                         1
                                       2 2


     correct to 3 decimal points 
     ba
  h
       n              x        0        0.5       1       1.5    2
     20              y        2      1.9365   1.7321   1.3229   0
   
       4
    0.5
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the

     area under the curve y  4  x     , between x  0 and x  2
                                         1
                                       2 2


     correct to 3 decimal points 
     ba
  h
       n              x        0        0.5       1       1.5    2
     20              y        2      1.9365   1.7321   1.3229   0
                      h
       4         Area  y0  2 yothers  yn 
    0.5               2
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the

     area under the curve y  4  x     , between x  0 and x  2
                                         1
                                       2 2


     correct to 3 decimal points 
     ba                       1                                 1
  h
       n              x        0        0.5       1       1.5    2
     20              y        2      1.9365   1.7321   1.3229   0
                      h
       4         Area  y0  2 yothers  yn 
    0.5               2
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the

     area under the curve y  4  x     , between x  0 and x  2
                                         1
                                       2 2


     correct to 3 decimal points 
     ba                       1        2        2       2       1
  h
       n              x        0        0.5       1       1.5    2
     20              y        2      1.9365   1.7321   1.3229   0
                      h
       4         Area  y0  2 yothers  yn 
    0.5               2
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the

     area under the curve y  4  x     , between x  0 and x  2
                                         1
                                       2 2


     correct to 3 decimal points 
     ba                       1        2        2       2       1
  h
       n              x        0        0.5       1       1.5    2
     20              y        2      1.9365   1.7321   1.3229   0
                       h
       4         Area  y0  2 yothers  yn 
    0.5                2
                        0.5
                           2  21.9365  1.7321  1.3229  0
                         2
                       2.996 units 2
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the

     area under the curve y  4  x     , between x  0 and x  2
                                         1
                                       2 2


     correct to 3 decimal points 
     ba                       1        2        2       2       1
  h
       n              x        0        0.5       1       1.5    2
     20              y        2      1.9365   1.7321   1.3229   0
                       h
       4         Area  y0  2 yothers  yn 
    0.5                2
                        0.5
                           2  21.9365  1.7321  1.3229  0
                         2
                       2.996 units 2           exact value  π 
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the

     area under the curve y  4  x     , between x  0 and x  2
                                         1
                                       2 2


     correct to 3 decimal points 
     ba                       1        2        2       2       1
  h
       n              x        0        0.5       1       1.5    2
     20              y        2      1.9365   1.7321   1.3229   0
                       h
       4         Area  y0  2 yothers  yn 
    0.5                2
                        0.5
                           2  21.9365  1.7321  1.3229  0
                         2
                       2.996 units 2           exact value  π 
             3.142  2.996
   % error                100
                 3.142
            4.6%
(2) Simpson’s Rule
(2) Simpson’s Rule
                      b
              Area   f  x dx
                      a
(2) Simpson’s Rule
                       b
              Area   f  x dx
                       a
                      h
                      y0  4 yodd  2 yeven  yn 
                      3
(2) Simpson’s Rule
                       b
               Area   f  x dx
                       a
                      h
                      y0  4 yodd  2 yeven  yn 
                      3
             ba
   where h 
               n
         n  number of intervals
(2) Simpson’s Rule
                           b
                   Area   f  x dx
                           a
                          h
                          y0  4 yodd  2 yeven  yn 
                          3
                 ba
       where h 
                   n
             n  number of intervals
e.g.
             x       0       0.5       1       1.5    2
             y       2     1.9365   1.7321   1.3229   0
(2) Simpson’s Rule
                           b
                   Area   f  x dx
                           a
                          h
                          y0  4 yodd  2 yeven  yn 
                          3
                 ba
       where h 
                   n
             n  number of intervals
e.g.
             x       0       0.5       1       1.5    2
             y       2     1.9365   1.7321   1.3229   0
      h
Area  y0  4 yodd  2 yeven  yn 
      3
(2) Simpson’s Rule
                           b
                   Area   f  x dx
                           a
                          h
                          y0  4 yodd  2 yeven  yn 
                          3
                 ba
       where h 
                   n
             n  number of intervals
e.g.                 1                                1
             x       0       0.5       1       1.5    2
             y       2     1.9365   1.7321   1.3229   0
      h
Area  y0  4 yodd  2 yeven  yn 
      3
(2) Simpson’s Rule
                           b
                   Area   f  x dx
                           a
                          h
                          y0  4 yodd  2 yeven  yn 
                          3
                 ba
       where h 
                   n
             n  number of intervals
e.g.                 1         4              4       1
             x       0       0.5       1       1.5    2
             y       2     1.9365   1.7321   1.3229   0
      h
Area  y0  4 yodd  2 yeven  yn 
      3
(2) Simpson’s Rule
                           b
                   Area   f  x dx
                           a
                          h
                          y0  4 yodd  2 yeven  yn 
                          3
                 ba
       where h 
                   n
             n  number of intervals
e.g.                 1         4        2     4       1
             x       0       0.5       1       1.5    2
             y       2     1.9365   1.7321   1.3229   0
      h
Area  y0  4 yodd  2 yeven  yn 
      3
(2) Simpson’s Rule
                           b
                   Area   f  x dx
                           a
                          h
                          y0  4 yodd  2 yeven  yn 
                          3
                 ba
       where h 
                   n
             n  number of intervals
e.g.                 1         4        2     4       1
             x       0       0.5       1       1.5    2
             y       2     1.9365   1.7321   1.3229   0
      h
Area  y0  4 yodd  2 yeven  yn 
      3
      0.5
         2  41.9365  1.3229  21.7321  0
       3
     3.084 units 2
(2) Simpson’s Rule
                           b
                   Area   f  x dx
                           a
                          h
                          y0  4 yodd  2 yeven  yn 
                          3
                 ba
       where h 
                   n
             n  number of intervals
e.g.                 1         4        2     4       1
             x       0       0.5       1       1.5    2
             y       2     1.9365   1.7321   1.3229   0
      h
Area  y0  4 yodd  2 yeven  yn 
      3
      0.5
         2  41.9365  1.3229  21.7321  0 3.142  3.084
       3                                   % error              100
     3.084 units 2                                     3.142
                                                    1.8%
Alternative working out!!!
(1) Trapezoidal Rule
Alternative working out!!!
(1) Trapezoidal Rule
                1        2        2       2       1
        x       0        0.5       1       1.5    2
        y       2      1.9365   1.7321   1.3229   0
Alternative working out!!!
(1) Trapezoidal Rule
                  1       2        2       2         1
        x         0       0.5       1       1.5      2
        y         2     1.9365   1.7321   1.3229     0


             2  2 1.9365  1.7321  1.3229   0
    Area                                              2  0
                     1 2  2  2 1
          2.996 units 2
(2) Simpson’s Rule
                1      4        2       4       1
        x      0       0.5       1       1.5    2
        y      2     1.9365   1.7321   1.3229   0
(2) Simpson’s Rule
                   1       4       2       4       1
        x         0       0.5       1       1.5    2
        y         2     1.9365   1.7321   1.3229   0


             2  4 1.9365  1.3229   2 1.7321  0
    Area                                                  2  0
                         1 4  2  4 1
          3.084 units 2
(2) Simpson’s Rule
                   1       4       2       4       1
        x         0       0.5       1       1.5    2
        y         2     1.9365   1.7321   1.3229   0


             2  4 1.9365  1.3229   2 1.7321  0
    Area                                                  2  0
                         1 4  2  4 1
          3.084 units 2




                        Exercise 11I; odds

                        Exercise 11J; evens

More Related Content

What's hot

Chapter 7 solution of equations
Chapter 7 solution of equationsChapter 7 solution of equations
Chapter 7 solution of equations
paufong
 
ลิมิต
ลิมิตลิมิต
ลิมิต
srisuwanthum
 
Exercise #8 notes
Exercise #8 notesExercise #8 notes
Exercise #8 notes
Kelly Scallion
 
Mathematics sample assignment
Mathematics sample assignmentMathematics sample assignment
Mathematics sample assignment
All Assignment Experts
 
Exercise #10 notes
Exercise #10 notesExercise #10 notes
Exercise #10 notes
Kelly Scallion
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
Chalio Solano
 
Pc12 sol c03_review
Pc12 sol c03_reviewPc12 sol c03_review
Pc12 sol c03_review
Garden City
 
X2 T04 06 curve sketching - roots of functions
X2 T04 06 curve sketching - roots of functionsX2 T04 06 curve sketching - roots of functions
X2 T04 06 curve sketching - roots of functions
Nigel Simmons
 
Pratikum 1 hardiansyah
Pratikum 1 hardiansyahPratikum 1 hardiansyah
Pratikum 1 hardiansyah
Wirha Sykerz
 
Pratikum 2 urai wira s
Pratikum 2 urai wira sPratikum 2 urai wira s
Pratikum 2 urai wira s
Wirha Sykerz
 
Pc12 sol c04_cp
Pc12 sol c04_cpPc12 sol c04_cp
Pc12 sol c04_cp
Garden City
 
11X1 T14 04 areas
11X1 T14 04 areas11X1 T14 04 areas
11X1 T14 04 areas
Nigel Simmons
 
X2 t07 06 roots of functions (2012)
X2 t07 06 roots of functions (2012)X2 t07 06 roots of functions (2012)
X2 t07 06 roots of functions (2012)
Nigel Simmons
 

What's hot (13)

Chapter 7 solution of equations
Chapter 7 solution of equationsChapter 7 solution of equations
Chapter 7 solution of equations
 
ลิมิต
ลิมิตลิมิต
ลิมิต
 
Exercise #8 notes
Exercise #8 notesExercise #8 notes
Exercise #8 notes
 
Mathematics sample assignment
Mathematics sample assignmentMathematics sample assignment
Mathematics sample assignment
 
Exercise #10 notes
Exercise #10 notesExercise #10 notes
Exercise #10 notes
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
Pc12 sol c03_review
Pc12 sol c03_reviewPc12 sol c03_review
Pc12 sol c03_review
 
X2 T04 06 curve sketching - roots of functions
X2 T04 06 curve sketching - roots of functionsX2 T04 06 curve sketching - roots of functions
X2 T04 06 curve sketching - roots of functions
 
Pratikum 1 hardiansyah
Pratikum 1 hardiansyahPratikum 1 hardiansyah
Pratikum 1 hardiansyah
 
Pratikum 2 urai wira s
Pratikum 2 urai wira sPratikum 2 urai wira s
Pratikum 2 urai wira s
 
Pc12 sol c04_cp
Pc12 sol c04_cpPc12 sol c04_cp
Pc12 sol c04_cp
 
11X1 T14 04 areas
11X1 T14 04 areas11X1 T14 04 areas
11X1 T14 04 areas
 
X2 t07 06 roots of functions (2012)
X2 t07 06 roots of functions (2012)X2 t07 06 roots of functions (2012)
X2 t07 06 roots of functions (2012)
 

Viewers also liked

11 x1 t16 03 indefinite integral (2012)
11 x1 t16 03 indefinite integral (2012)11 x1 t16 03 indefinite integral (2012)
11 x1 t16 03 indefinite integral (2012)Nigel Simmons
 
11 x1 t16 01 area under curve (2012)
11 x1 t16 01 area under curve (2012)11 x1 t16 01 area under curve (2012)
11 x1 t16 01 area under curve (2012)
Nigel Simmons
 
11 x1 t16 02 definite integral (2012)
11 x1 t16 02 definite integral (2012)11 x1 t16 02 definite integral (2012)
11 x1 t16 02 definite integral (2012)
Nigel Simmons
 
11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 
11 x1 t12 01 first derivative (2013)
11 x1 t12 01 first derivative (2013)11 x1 t12 01 first derivative (2013)
11 x1 t12 01 first derivative (2013)
Nigel Simmons
 
11 x1 t12 04 concavity (2013)
11 x1 t12 04 concavity (2013)11 x1 t12 04 concavity (2013)
11 x1 t12 04 concavity (2013)
Nigel Simmons
 
11 x1 t12 06 maxima & minima (2013)
11 x1 t12 06 maxima & minima (2013)11 x1 t12 06 maxima & minima (2013)
11 x1 t12 06 maxima & minima (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t12 05 curve sketching (2013)
11 x1 t12 05 curve sketching (2013)11 x1 t12 05 curve sketching (2013)
11 x1 t12 05 curve sketching (2013)
Nigel Simmons
 
11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t12 03 second derivative (2013)
11 x1 t12 03 second derivative (2013)11 x1 t12 03 second derivative (2013)
11 x1 t12 03 second derivative (2013)
Nigel Simmons
 
11 x1 t12 07 primitive function (2013)
11 x1 t12 07 primitive function (2013)11 x1 t12 07 primitive function (2013)
11 x1 t12 07 primitive function (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t12 02 critical points (2013)
11 x1 t12 02 critical points (2013)11 x1 t12 02 critical points (2013)
11 x1 t12 02 critical points (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

Viewers also liked (18)

11 x1 t16 03 indefinite integral (2012)
11 x1 t16 03 indefinite integral (2012)11 x1 t16 03 indefinite integral (2012)
11 x1 t16 03 indefinite integral (2012)
 
11 x1 t16 01 area under curve (2012)
11 x1 t16 01 area under curve (2012)11 x1 t16 01 area under curve (2012)
11 x1 t16 01 area under curve (2012)
 
11 x1 t16 02 definite integral (2012)
11 x1 t16 02 definite integral (2012)11 x1 t16 02 definite integral (2012)
11 x1 t16 02 definite integral (2012)
 
11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
11 x1 t12 01 first derivative (2013)
11 x1 t12 01 first derivative (2013)11 x1 t12 01 first derivative (2013)
11 x1 t12 01 first derivative (2013)
 
11 x1 t12 04 concavity (2013)
11 x1 t12 04 concavity (2013)11 x1 t12 04 concavity (2013)
11 x1 t12 04 concavity (2013)
 
11 x1 t12 06 maxima & minima (2013)
11 x1 t12 06 maxima & minima (2013)11 x1 t12 06 maxima & minima (2013)
11 x1 t12 06 maxima & minima (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t12 05 curve sketching (2013)
11 x1 t12 05 curve sketching (2013)11 x1 t12 05 curve sketching (2013)
11 x1 t12 05 curve sketching (2013)
 
11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t12 03 second derivative (2013)
11 x1 t12 03 second derivative (2013)11 x1 t12 03 second derivative (2013)
11 x1 t12 03 second derivative (2013)
 
11 x1 t12 07 primitive function (2013)
11 x1 t12 07 primitive function (2013)11 x1 t12 07 primitive function (2013)
11 x1 t12 07 primitive function (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t12 02 critical points (2013)
11 x1 t12 02 critical points (2013)11 x1 t12 02 critical points (2013)
11 x1 t12 02 critical points (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Similar to 11 x1 t16 07 approximations (2012)

บทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันบทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชัน
Thipayarat Mocha
 
บทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันบทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชัน
Thipayarat Mocha
 
Equations of Tangents and Normals
Equations of Tangents and NormalsEquations of Tangents and Normals
Equations of Tangents and Normals
coburgmaths
 
ฟังก์ชัน(function)
ฟังก์ชัน(function)ฟังก์ชัน(function)
ฟังก์ชัน(function)
Yodhathai Reesrikom
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
Kyro Fitkry
 
Pc12 sol c04_cp
Pc12 sol c04_cpPc12 sol c04_cp
Pc12 sol c04_cp
Garden City
 
Formulario de calculo
Formulario de calculoFormulario de calculo
Formulario de calculo
Henry Romero
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
UrbanX4
 
0207 ch 2 day 7
0207 ch 2 day 70207 ch 2 day 7
0207 ch 2 day 7
festivalelmo
 
Pc12 sol c04_4-1
Pc12 sol c04_4-1Pc12 sol c04_4-1
Pc12 sol c04_4-1
Garden City
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t04 06 cosine rule (2013)
11 x1 t04 06 cosine rule (2013)11 x1 t04 06 cosine rule (2013)
11 x1 t04 06 cosine rule (2013)
Nigel Simmons
 
11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)
Nigel Simmons
 
11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)
Nigel Simmons
 
11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)
Nigel Simmons
 
Figures
FiguresFigures
Figures
Drradz Maths
 
Figures
FiguresFigures
Figures
Drradz Maths
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
Nigel Simmons
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt project
cea0001
 
Key pat1 1-53
Key pat1 1-53Key pat1 1-53

Similar to 11 x1 t16 07 approximations (2012) (20)

บทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันบทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชัน
 
บทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันบทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชัน
 
Equations of Tangents and Normals
Equations of Tangents and NormalsEquations of Tangents and Normals
Equations of Tangents and Normals
 
ฟังก์ชัน(function)
ฟังก์ชัน(function)ฟังก์ชัน(function)
ฟังก์ชัน(function)
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
 
Pc12 sol c04_cp
Pc12 sol c04_cpPc12 sol c04_cp
Pc12 sol c04_cp
 
Formulario de calculo
Formulario de calculoFormulario de calculo
Formulario de calculo
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
 
0207 ch 2 day 7
0207 ch 2 day 70207 ch 2 day 7
0207 ch 2 day 7
 
Pc12 sol c04_4-1
Pc12 sol c04_4-1Pc12 sol c04_4-1
Pc12 sol c04_4-1
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t04 06 cosine rule (2013)
11 x1 t04 06 cosine rule (2013)11 x1 t04 06 cosine rule (2013)
11 x1 t04 06 cosine rule (2013)
 
11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)
 
11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)
 
11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)
 
Figures
FiguresFigures
Figures
 
Figures
FiguresFigures
Figures
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt project
 
Key pat1 1-53
Key pat1 1-53Key pat1 1-53
Key pat1 1-53
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)Nigel Simmons
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
 

Recently uploaded

Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
NgcHiNguyn25
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
tarandeep35
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
Celine George
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
Celine George
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
mulvey2
 
World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024
ak6969907
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
National Information Standards Organization (NISO)
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
heathfieldcps1
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
simonomuemu
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
Scholarhat
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
Celine George
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
Academy of Science of South Africa
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
GeorgeMilliken2
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
AyyanKhan40
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
Dr. Mulla Adam Ali
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
Colégio Santa Teresinha
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
Celine George
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Fajar Baskoro
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
TechSoup
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
PECB
 

Recently uploaded (20)

Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
 
World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
 

11 x1 t16 07 approximations (2012)

  • 1. Approximations To Areas (1) Trapezoidal Rule y y = f(x) a b x
  • 2. Approximations To Areas (1) Trapezoidal Rule y y = f(x) a b x
  • 3. Approximations To Areas (1) Trapezoidal Rule y y = f(x) ba A  f a   f b  2 a b x
  • 4. Approximations To Areas (1) Trapezoidal Rule y y = f(x) ba A  f a   f b  2 y y = f(x) a b x a b x
  • 5. Approximations To Areas (1) Trapezoidal Rule y y = f(x) ba A  f a   f b  2 y y = f(x) a b x a c b x
  • 6. Approximations To Areas (1) Trapezoidal Rule y y = f(x) ba A  f a   f b  2 y y = f(x) a b x ca bc A  f a   f c    f c   f b  2 2 a c b x
  • 7. Approximations To Areas (1) Trapezoidal Rule y y = f(x) ba A  f a   f b  2 y y = f(x) a b x ca bc A  f a   f c    f c   f b  2 2 ca   f a   2 f c   f b  2 a c b x
  • 8. y y = f(x) a b x
  • 9. y y = f(x) a c d b x
  • 10. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x
  • 11. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x  c  a  f a   2 f c   2 f d   f b  2
  • 12. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x  c  a  f a   2 f c   2 f d   f b  2 In general;
  • 13. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x  c  a  f a   2 f c   2 f d   f b  2 In general; b Area   f  x dx a
  • 14. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x  c  a  f a   2 f c   2 f d   f b  2 In general; b Area   f  x dx a h  y0  2 yothers  yn  2
  • 15. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x  c  a  f a   2 f c   2 f d   f b  2 In general; b Area   f  x dx a h  y0  2 yothers  yn  2 ba where h  n n  number of trapeziums
  • 16. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x  c  a  f a   2 f c   2 f d   f b  2 In general; b Area   f  x dx a h  y0  2 yothers  yn  NOTE: there is 2 ba always one more where h  function value n than interval n  number of trapeziums
  • 17. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points 
  • 18. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba h n 20  4  0.5
  • 19. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba h n x 0 0.5 1 1.5 2 20 y 2 1.9365 1.7321 1.3229 0  4  0.5
  • 20. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba h n x 0 0.5 1 1.5 2 20 y 2 1.9365 1.7321 1.3229 0  h 4 Area  y0  2 yothers  yn   0.5 2
  • 21. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba 1 1 h n x 0 0.5 1 1.5 2 20 y 2 1.9365 1.7321 1.3229 0  h 4 Area  y0  2 yothers  yn   0.5 2
  • 22. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba 1 2 2 2 1 h n x 0 0.5 1 1.5 2 20 y 2 1.9365 1.7321 1.3229 0  h 4 Area  y0  2 yothers  yn   0.5 2
  • 23. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba 1 2 2 2 1 h n x 0 0.5 1 1.5 2 20 y 2 1.9365 1.7321 1.3229 0  h 4 Area  y0  2 yothers  yn   0.5 2 0.5  2  21.9365  1.7321  1.3229  0 2  2.996 units 2
  • 24. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba 1 2 2 2 1 h n x 0 0.5 1 1.5 2 20 y 2 1.9365 1.7321 1.3229 0  h 4 Area  y0  2 yothers  yn   0.5 2 0.5  2  21.9365  1.7321  1.3229  0 2  2.996 units 2 exact value  π 
  • 25. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba 1 2 2 2 1 h n x 0 0.5 1 1.5 2 20 y 2 1.9365 1.7321 1.3229 0  h 4 Area  y0  2 yothers  yn   0.5 2 0.5  2  21.9365  1.7321  1.3229  0 2  2.996 units 2 exact value  π  3.142  2.996 % error  100 3.142  4.6%
  • 27. (2) Simpson’s Rule b Area   f  x dx a
  • 28. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3
  • 29. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals
  • 30. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals e.g. x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0
  • 31. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals e.g. x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 h Area  y0  4 yodd  2 yeven  yn  3
  • 32. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals e.g. 1 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 h Area  y0  4 yodd  2 yeven  yn  3
  • 33. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals e.g. 1 4 4 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 h Area  y0  4 yodd  2 yeven  yn  3
  • 34. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals e.g. 1 4 2 4 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 h Area  y0  4 yodd  2 yeven  yn  3
  • 35. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals e.g. 1 4 2 4 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 h Area  y0  4 yodd  2 yeven  yn  3 0.5  2  41.9365  1.3229  21.7321  0 3  3.084 units 2
  • 36. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals e.g. 1 4 2 4 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 h Area  y0  4 yodd  2 yeven  yn  3 0.5  2  41.9365  1.3229  21.7321  0 3.142  3.084 3 % error  100  3.084 units 2 3.142  1.8%
  • 37. Alternative working out!!! (1) Trapezoidal Rule
  • 38. Alternative working out!!! (1) Trapezoidal Rule 1 2 2 2 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0
  • 39. Alternative working out!!! (1) Trapezoidal Rule 1 2 2 2 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 2  2 1.9365  1.7321  1.3229   0 Area    2  0 1 2  2  2 1  2.996 units 2
  • 40. (2) Simpson’s Rule 1 4 2 4 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0
  • 41. (2) Simpson’s Rule 1 4 2 4 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 2  4 1.9365  1.3229   2 1.7321  0 Area    2  0 1 4  2  4 1  3.084 units 2
  • 42. (2) Simpson’s Rule 1 4 2 4 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 2  4 1.9365  1.3229   2 1.7321  0 Area    2  0 1 4  2  4 1  3.084 units 2 Exercise 11I; odds Exercise 11J; evens