SlideShare a Scribd company logo
Approximations To Areas
(1) Trapezoidal Rule
  y
                           y = f(x)




        a              b    x
Approximations To Areas
(1) Trapezoidal Rule
  y
                           y = f(x)




        a              b    x
Approximations To Areas
(1) Trapezoidal Rule
  y
                           y = f(x)      ba
                                      A      f a   f b 
                                          2




        a              b    x
Approximations To Areas
(1) Trapezoidal Rule
  y
                           y = f(x)      ba
                                      A      f a   f b 
                                          2


                                       y                          y = f(x)
        a              b    x




                                              a             b         x
Approximations To Areas
(1) Trapezoidal Rule
  y
                           y = f(x)      ba
                                      A      f a   f b 
                                          2


                                       y                          y = f(x)
        a              b    x




                                              a     c       b         x
Approximations To Areas
 (1) Trapezoidal Rule
    y
                                 y = f(x)         ba
                                               A      f a   f b 
                                                   2


                                                y                          y = f(x)
           a              b       x
   ca                      bc
A      f a   f c        f c   f b 
    2                        2


                                                       a     c       b         x
Approximations To Areas
 (1) Trapezoidal Rule
    y
                                   y = f(x)          ba
                                                  A      f a   f b 
                                                      2


                                                   y                          y = f(x)
            a               b        x
   ca                      bc
A      f a   f c           f c   f b 
    2                          2
   ca
       f a   2 f c   f b 
    2
                                                          a     c       b         x
y
            y = f(x)




    a   b   x
y
                    y = f(x)




    a   c   d   b   x
y
                    y = f(x)
                           ca                      d c
                        A      f a   f c          f c   f d 
                            2                         2
                                    bd
                                           f d   f b 
                                       2
    a   c   d   b   x
y
                    y = f(x)
                        ca                        d c
                     A        f a   f c           f c   f d 
                          2                          2
                                   bd
                                          f d   f b 
                                      2
    a   c   d   b   x  c  a  f a   2 f c   2 f d   f b 
                          2
y
                      y = f(x)
                          ca                        d c
                       A        f a   f c           f c   f d 
                            2                          2
                                     bd
                                            f d   f b 
                                        2
     a    c   d   b   x  c  a  f a   2 f c   2 f d   f b 
                            2
In general;
y
                            y = f(x)
                                ca                        d c
                             A        f a   f c           f c   f d 
                                  2                          2
                                           bd
                                                  f d   f b 
                                              2
     a    c    d    b       x  c  a  f a   2 f c   2 f d   f b 
                                  2
In general;             b
              Area   f  x dx
                        a
y
                            y = f(x)
                                ca                        d c
                             A        f a   f c           f c   f d 
                                  2                          2
                                           bd
                                                  f d   f b 
                                              2
     a    c    d    b       x  c  a  f a   2 f c   2 f d   f b 
                                  2
In general;             b
              Area   f  x dx
                        a
                     h
                     y0  2 yothers  yn 
                     2
y
                              y = f(x)
                                  ca                        d c
                               A        f a   f c           f c   f d 
                                    2                          2
                                             bd
                                                    f d   f b 
                                                2
     a      c    d    b       x  c  a  f a   2 f c   2 f d   f b 
                                    2
In general;               b
                Area   f  x dx
                          a
                       h
                       y0  2 yothers  yn 
                       2
          ba
where h 
            n
      n  number of trapeziums
y
                              y = f(x)
                                  ca                        d c
                               A        f a   f c           f c   f d 
                                    2                          2
                                             bd
                                                    f d   f b 
                                                2
     a      c    d    b       x  c  a  f a   2 f c   2 f d   f b 
                                    2
In general;               b
                Area   f  x dx
                          a
                       h
                       y0  2 yothers  yn         NOTE: there is
                       2
          ba                                         always one more
where h                                              function value
            n
                                                      than interval
      n  number of trapeziums
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the

     area under the curve y  4  x     , between x  0 and x  2
                                         1
                                       2 2


     correct to 3 decimal points 
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the

     area under the curve y  4  x     , between x  0 and x  2
                                         1
                                       2 2


     correct to 3 decimal points 
     ba
  h
       n
     20
   
       4
    0.5
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the

     area under the curve y  4  x     , between x  0 and x  2
                                         1
                                       2 2


     correct to 3 decimal points 
     ba
  h
       n              x        0        0.5       1       1.5    2
     20              y        2      1.9365   1.7321   1.3229   0
   
       4
    0.5
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the

     area under the curve y  4  x     , between x  0 and x  2
                                         1
                                       2 2


     correct to 3 decimal points 
     ba
  h
       n              x        0        0.5       1       1.5    2
     20              y        2      1.9365   1.7321   1.3229   0
                      h
       4         Area  y0  2 yothers  yn 
    0.5               2
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the

     area under the curve y  4  x     , between x  0 and x  2
                                         1
                                       2 2


     correct to 3 decimal points 
     ba                       1                                 1
  h
       n              x        0        0.5       1       1.5    2
     20              y        2      1.9365   1.7321   1.3229   0
                      h
       4         Area  y0  2 yothers  yn 
    0.5               2
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the

     area under the curve y  4  x     , between x  0 and x  2
                                         1
                                       2 2


     correct to 3 decimal points 
     ba                       1        2        2       2       1
  h
       n              x        0        0.5       1       1.5    2
     20              y        2      1.9365   1.7321   1.3229   0
                      h
       4         Area  y0  2 yothers  yn 
    0.5               2
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the

     area under the curve y  4  x     , between x  0 and x  2
                                         1
                                       2 2


     correct to 3 decimal points 
     ba                       1        2        2       2       1
  h
       n              x        0        0.5       1       1.5    2
     20              y        2      1.9365   1.7321   1.3229   0
                       h
       4         Area  y0  2 yothers  yn 
    0.5                2
                        0.5
                           2  21.9365  1.7321  1.3229  0
                         2
                       2.996 units 2
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the

     area under the curve y  4  x     , between x  0 and x  2
                                         1
                                       2 2


     correct to 3 decimal points 
     ba                       1        2        2       2       1
  h
       n              x        0        0.5       1       1.5    2
     20              y        2      1.9365   1.7321   1.3229   0
                       h
       4         Area  y0  2 yothers  yn 
    0.5                2
                        0.5
                           2  21.9365  1.7321  1.3229  0
                         2
                       2.996 units 2           exact value  π 
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the

     area under the curve y  4  x     , between x  0 and x  2
                                         1
                                       2 2


     correct to 3 decimal points 
     ba                       1        2        2       2       1
  h
       n              x        0        0.5       1       1.5    2
     20              y        2      1.9365   1.7321   1.3229   0
                       h
       4         Area  y0  2 yothers  yn 
    0.5                2
                        0.5
                           2  21.9365  1.7321  1.3229  0
                         2
                       2.996 units 2           exact value  π 
             3.142  2.996
   % error                100
                 3.142
            4.6%
(2) Simpson’s Rule
(2) Simpson’s Rule
                      b
              Area   f  x dx
                      a
(2) Simpson’s Rule
                       b
              Area   f  x dx
                       a
                      h
                      y0  4 yodd  2 yeven  yn 
                      3
(2) Simpson’s Rule
                       b
               Area   f  x dx
                       a
                      h
                      y0  4 yodd  2 yeven  yn 
                      3
             ba
   where h 
               n
         n  number of intervals
(2) Simpson’s Rule
                           b
                   Area   f  x dx
                           a
                          h
                          y0  4 yodd  2 yeven  yn 
                          3
                 ba
       where h 
                   n
             n  number of intervals
e.g.
             x       0       0.5       1       1.5    2
             y       2     1.9365   1.7321   1.3229   0
(2) Simpson’s Rule
                           b
                   Area   f  x dx
                           a
                          h
                          y0  4 yodd  2 yeven  yn 
                          3
                 ba
       where h 
                   n
             n  number of intervals
e.g.
             x       0       0.5       1       1.5    2
             y       2     1.9365   1.7321   1.3229   0
      h
Area  y0  4 yodd  2 yeven  yn 
      3
(2) Simpson’s Rule
                           b
                   Area   f  x dx
                           a
                          h
                          y0  4 yodd  2 yeven  yn 
                          3
                 ba
       where h 
                   n
             n  number of intervals
e.g.                 1                                1
             x       0       0.5       1       1.5    2
             y       2     1.9365   1.7321   1.3229   0
      h
Area  y0  4 yodd  2 yeven  yn 
      3
(2) Simpson’s Rule
                           b
                   Area   f  x dx
                           a
                          h
                          y0  4 yodd  2 yeven  yn 
                          3
                 ba
       where h 
                   n
             n  number of intervals
e.g.                 1         4              4       1
             x       0       0.5       1       1.5    2
             y       2     1.9365   1.7321   1.3229   0
      h
Area  y0  4 yodd  2 yeven  yn 
      3
(2) Simpson’s Rule
                           b
                   Area   f  x dx
                           a
                          h
                          y0  4 yodd  2 yeven  yn 
                          3
                 ba
       where h 
                   n
             n  number of intervals
e.g.                 1         4        2     4       1
             x       0       0.5       1       1.5    2
             y       2     1.9365   1.7321   1.3229   0
      h
Area  y0  4 yodd  2 yeven  yn 
      3
(2) Simpson’s Rule
                           b
                   Area   f  x dx
                           a
                          h
                          y0  4 yodd  2 yeven  yn 
                          3
                 ba
       where h 
                   n
             n  number of intervals
e.g.                 1         4        2     4       1
             x       0       0.5       1       1.5    2
             y       2     1.9365   1.7321   1.3229   0
      h
Area  y0  4 yodd  2 yeven  yn 
      3
      0.5
         2  41.9365  1.3229  21.7321  0
       3
     3.084 units 2
(2) Simpson’s Rule
                           b
                   Area   f  x dx
                           a
                          h
                          y0  4 yodd  2 yeven  yn 
                          3
                 ba
       where h 
                   n
             n  number of intervals
e.g.                 1         4        2     4       1
             x       0       0.5       1       1.5    2
             y       2     1.9365   1.7321   1.3229   0
      h
Area  y0  4 yodd  2 yeven  yn 
      3
      0.5
         2  41.9365  1.3229  21.7321  0 3.142  3.084
       3                                   % error              100
     3.084 units 2                                     3.142
                                                    1.8%
Alternative working out!!!
(1) Trapezoidal Rule
Alternative working out!!!
(1) Trapezoidal Rule
                1        2        2       2       1
        x       0        0.5       1       1.5    2
        y       2      1.9365   1.7321   1.3229   0
Alternative working out!!!
(1) Trapezoidal Rule
                  1       2        2       2         1
        x         0       0.5       1       1.5      2
        y         2     1.9365   1.7321   1.3229     0


             2  2 1.9365  1.7321  1.3229   0
    Area                                              2  0
                     1 2  2  2 1
          2.996 units 2
(2) Simpson’s Rule
                1      4        2       4       1
        x      0       0.5       1       1.5    2
        y      2     1.9365   1.7321   1.3229   0
(2) Simpson’s Rule
                   1       4       2       4       1
        x         0       0.5       1       1.5    2
        y         2     1.9365   1.7321   1.3229   0


             2  4 1.9365  1.3229   2 1.7321  0
    Area                                                  2  0
                         1 4  2  4 1
          3.084 units 2
(2) Simpson’s Rule
                   1       4       2       4       1
        x         0       0.5       1       1.5    2
        y         2     1.9365   1.7321   1.3229   0


             2  4 1.9365  1.3229   2 1.7321  0
    Area                                                  2  0
                         1 4  2  4 1
          3.084 units 2




                        Exercise 11I; odds

                        Exercise 11J; evens

More Related Content

What's hot

Chapter 7 solution of equations
Chapter 7 solution of equationsChapter 7 solution of equations
Chapter 7 solution of equations
paufong
 
ลิมิต
ลิมิตลิมิต
ลิมิต
srisuwanthum
 
Exercise #8 notes
Exercise #8 notesExercise #8 notes
Exercise #8 notes
Kelly Scallion
 
Mathematics sample assignment
Mathematics sample assignmentMathematics sample assignment
Mathematics sample assignment
All Assignment Experts
 
Exercise #10 notes
Exercise #10 notesExercise #10 notes
Exercise #10 notes
Kelly Scallion
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
Chalio Solano
 
Pc12 sol c03_review
Pc12 sol c03_reviewPc12 sol c03_review
Pc12 sol c03_review
Garden City
 
X2 T04 06 curve sketching - roots of functions
X2 T04 06 curve sketching - roots of functionsX2 T04 06 curve sketching - roots of functions
X2 T04 06 curve sketching - roots of functions
Nigel Simmons
 
Pratikum 2 urai wira s
Pratikum 2 urai wira sPratikum 2 urai wira s
Pratikum 2 urai wira s
Wirha Sykerz
 
Pratikum 1 hardiansyah
Pratikum 1 hardiansyahPratikum 1 hardiansyah
Pratikum 1 hardiansyah
Wirha Sykerz
 
Pc12 sol c04_cp
Pc12 sol c04_cpPc12 sol c04_cp
Pc12 sol c04_cp
Garden City
 
11X1 T14 04 areas
11X1 T14 04 areas11X1 T14 04 areas
11X1 T14 04 areas
Nigel Simmons
 
X2 t07 06 roots of functions (2012)
X2 t07 06 roots of functions (2012)X2 t07 06 roots of functions (2012)
X2 t07 06 roots of functions (2012)
Nigel Simmons
 

What's hot (13)

Chapter 7 solution of equations
Chapter 7 solution of equationsChapter 7 solution of equations
Chapter 7 solution of equations
 
ลิมิต
ลิมิตลิมิต
ลิมิต
 
Exercise #8 notes
Exercise #8 notesExercise #8 notes
Exercise #8 notes
 
Mathematics sample assignment
Mathematics sample assignmentMathematics sample assignment
Mathematics sample assignment
 
Exercise #10 notes
Exercise #10 notesExercise #10 notes
Exercise #10 notes
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
Pc12 sol c03_review
Pc12 sol c03_reviewPc12 sol c03_review
Pc12 sol c03_review
 
X2 T04 06 curve sketching - roots of functions
X2 T04 06 curve sketching - roots of functionsX2 T04 06 curve sketching - roots of functions
X2 T04 06 curve sketching - roots of functions
 
Pratikum 2 urai wira s
Pratikum 2 urai wira sPratikum 2 urai wira s
Pratikum 2 urai wira s
 
Pratikum 1 hardiansyah
Pratikum 1 hardiansyahPratikum 1 hardiansyah
Pratikum 1 hardiansyah
 
Pc12 sol c04_cp
Pc12 sol c04_cpPc12 sol c04_cp
Pc12 sol c04_cp
 
11X1 T14 04 areas
11X1 T14 04 areas11X1 T14 04 areas
11X1 T14 04 areas
 
X2 t07 06 roots of functions (2012)
X2 t07 06 roots of functions (2012)X2 t07 06 roots of functions (2012)
X2 t07 06 roots of functions (2012)
 

Viewers also liked

Bahan kuliah 1 metoda numerik
Bahan kuliah 1   metoda numerikBahan kuliah 1   metoda numerik
Bahan kuliah 1 metoda numerikSriyono Nozbee
 
Satuan acara perkuliahan Metode Numerik Pendidikan matematika UMT
Satuan acara perkuliahan Metode Numerik Pendidikan matematika UMTSatuan acara perkuliahan Metode Numerik Pendidikan matematika UMT
Satuan acara perkuliahan Metode Numerik Pendidikan matematika UMT
rukmono budi utomo
 
Metode numerik-buku-ajar-unila
Metode numerik-buku-ajar-unilaMetode numerik-buku-ajar-unila
Metode numerik-buku-ajar-unila
Ibad Ahmad
 
Tugas Metode Numerik Newton 6 a1 Prodi pendidikan matematika UMT
Tugas Metode Numerik Newton 6 a1 Prodi pendidikan matematika UMTTugas Metode Numerik Newton 6 a1 Prodi pendidikan matematika UMT
Tugas Metode Numerik Newton 6 a1 Prodi pendidikan matematika UMT
rukmono budi utomo
 
4. akar persamaan tak linier
4. akar persamaan tak linier4. akar persamaan tak linier
4. akar persamaan tak linier
Afista Galih Pradana
 
Makalah Metode Numerik : Sistem Persamaan Linear
Makalah Metode Numerik : Sistem Persamaan Linear Makalah Metode Numerik : Sistem Persamaan Linear
Makalah Metode Numerik : Sistem Persamaan Linear
Kannal Bakti Pakinde
 
Multimedia1
Multimedia1Multimedia1
Multimedia1
UIA
 

Viewers also liked (7)

Bahan kuliah 1 metoda numerik
Bahan kuliah 1   metoda numerikBahan kuliah 1   metoda numerik
Bahan kuliah 1 metoda numerik
 
Satuan acara perkuliahan Metode Numerik Pendidikan matematika UMT
Satuan acara perkuliahan Metode Numerik Pendidikan matematika UMTSatuan acara perkuliahan Metode Numerik Pendidikan matematika UMT
Satuan acara perkuliahan Metode Numerik Pendidikan matematika UMT
 
Metode numerik-buku-ajar-unila
Metode numerik-buku-ajar-unilaMetode numerik-buku-ajar-unila
Metode numerik-buku-ajar-unila
 
Tugas Metode Numerik Newton 6 a1 Prodi pendidikan matematika UMT
Tugas Metode Numerik Newton 6 a1 Prodi pendidikan matematika UMTTugas Metode Numerik Newton 6 a1 Prodi pendidikan matematika UMT
Tugas Metode Numerik Newton 6 a1 Prodi pendidikan matematika UMT
 
4. akar persamaan tak linier
4. akar persamaan tak linier4. akar persamaan tak linier
4. akar persamaan tak linier
 
Makalah Metode Numerik : Sistem Persamaan Linear
Makalah Metode Numerik : Sistem Persamaan Linear Makalah Metode Numerik : Sistem Persamaan Linear
Makalah Metode Numerik : Sistem Persamaan Linear
 
Multimedia1
Multimedia1Multimedia1
Multimedia1
 

Similar to 11X1 T16 07 approximations (2011)

บทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันบทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชัน
Thipayarat Mocha
 
บทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันบทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชัน
Thipayarat Mocha
 
Equations of Tangents and Normals
Equations of Tangents and NormalsEquations of Tangents and Normals
Equations of Tangents and Normals
coburgmaths
 
ฟังก์ชัน(function)
ฟังก์ชัน(function)ฟังก์ชัน(function)
ฟังก์ชัน(function)
Yodhathai Reesrikom
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
Kyro Fitkry
 
Pc12 sol c04_cp
Pc12 sol c04_cpPc12 sol c04_cp
Pc12 sol c04_cp
Garden City
 
Formulario de calculo
Formulario de calculoFormulario de calculo
Formulario de calculo
Henry Romero
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
UrbanX4
 
0207 ch 2 day 7
0207 ch 2 day 70207 ch 2 day 7
0207 ch 2 day 7
festivalelmo
 
Pc12 sol c04_4-1
Pc12 sol c04_4-1Pc12 sol c04_4-1
Pc12 sol c04_4-1
Garden City
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t04 06 cosine rule (2013)
11 x1 t04 06 cosine rule (2013)11 x1 t04 06 cosine rule (2013)
11 x1 t04 06 cosine rule (2013)
Nigel Simmons
 
11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)
Nigel Simmons
 
11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)
Nigel Simmons
 
11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)
Nigel Simmons
 
Figures
FiguresFigures
Figures
Drradz Maths
 
Figures
FiguresFigures
Figures
Drradz Maths
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
Nigel Simmons
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt project
cea0001
 
Key pat1 1-53
Key pat1 1-53Key pat1 1-53

Similar to 11X1 T16 07 approximations (2011) (20)

บทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันบทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชัน
 
บทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันบทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชัน
 
Equations of Tangents and Normals
Equations of Tangents and NormalsEquations of Tangents and Normals
Equations of Tangents and Normals
 
ฟังก์ชัน(function)
ฟังก์ชัน(function)ฟังก์ชัน(function)
ฟังก์ชัน(function)
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
 
Pc12 sol c04_cp
Pc12 sol c04_cpPc12 sol c04_cp
Pc12 sol c04_cp
 
Formulario de calculo
Formulario de calculoFormulario de calculo
Formulario de calculo
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
 
0207 ch 2 day 7
0207 ch 2 day 70207 ch 2 day 7
0207 ch 2 day 7
 
Pc12 sol c04_4-1
Pc12 sol c04_4-1Pc12 sol c04_4-1
Pc12 sol c04_4-1
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t04 06 cosine rule (2013)
11 x1 t04 06 cosine rule (2013)11 x1 t04 06 cosine rule (2013)
11 x1 t04 06 cosine rule (2013)
 
11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)
 
11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)
 
11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)
 
Figures
FiguresFigures
Figures
 
Figures
FiguresFigures
Figures
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt project
 
Key pat1 1-53
Key pat1 1-53Key pat1 1-53
Key pat1 1-53
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

Youngest c m in India- Pema Khandu Biography
Youngest c m in India- Pema Khandu BiographyYoungest c m in India- Pema Khandu Biography
Youngest c m in India- Pema Khandu Biography
VoterMood
 
Essential Tools for Modern PR Business .pptx
Essential Tools for Modern PR Business .pptxEssential Tools for Modern PR Business .pptx
Essential Tools for Modern PR Business .pptx
Pragencyuk
 
13062024_First India Newspaper Jaipur.pdf
13062024_First India Newspaper Jaipur.pdf13062024_First India Newspaper Jaipur.pdf
13062024_First India Newspaper Jaipur.pdf
FIRST INDIA
 
Howard Fineman, Veteran Political Journalist and TV Pundit, Dies at 75
Howard Fineman, Veteran Political Journalist and TV Pundit, Dies at 75Howard Fineman, Veteran Political Journalist and TV Pundit, Dies at 75
Howard Fineman, Veteran Political Journalist and TV Pundit, Dies at 75
LUMINATIVE MEDIA/PROJECT COUNSEL MEDIA GROUP
 
A draft Ukraine-Russia treaty from April 2022
A draft Ukraine-Russia treaty from April 2022A draft Ukraine-Russia treaty from April 2022
A draft Ukraine-Russia treaty from April 2022
dynamo777
 
在线办理(latrobe毕业证书)拉筹伯大学毕业证Offer一模一样
在线办理(latrobe毕业证书)拉筹伯大学毕业证Offer一模一样在线办理(latrobe毕业证书)拉筹伯大学毕业证Offer一模一样
在线办理(latrobe毕业证书)拉筹伯大学毕业证Offer一模一样
ckn2izdm
 
Snigdha-Sreenath-Minor-v-Travancore-Devaswom-Board-WPCNO-39847-OF-2023-2024-L...
Snigdha-Sreenath-Minor-v-Travancore-Devaswom-Board-WPCNO-39847-OF-2023-2024-L...Snigdha-Sreenath-Minor-v-Travancore-Devaswom-Board-WPCNO-39847-OF-2023-2024-L...
Snigdha-Sreenath-Minor-v-Travancore-Devaswom-Board-WPCNO-39847-OF-2023-2024-L...
bhavenpr
 
MAGNA CARTA (minimum 40 characters required)
MAGNA CARTA (minimum 40 characters required)MAGNA CARTA (minimum 40 characters required)
MAGNA CARTA (minimum 40 characters required)
Filippo64
 

Recently uploaded (8)

Youngest c m in India- Pema Khandu Biography
Youngest c m in India- Pema Khandu BiographyYoungest c m in India- Pema Khandu Biography
Youngest c m in India- Pema Khandu Biography
 
Essential Tools for Modern PR Business .pptx
Essential Tools for Modern PR Business .pptxEssential Tools for Modern PR Business .pptx
Essential Tools for Modern PR Business .pptx
 
13062024_First India Newspaper Jaipur.pdf
13062024_First India Newspaper Jaipur.pdf13062024_First India Newspaper Jaipur.pdf
13062024_First India Newspaper Jaipur.pdf
 
Howard Fineman, Veteran Political Journalist and TV Pundit, Dies at 75
Howard Fineman, Veteran Political Journalist and TV Pundit, Dies at 75Howard Fineman, Veteran Political Journalist and TV Pundit, Dies at 75
Howard Fineman, Veteran Political Journalist and TV Pundit, Dies at 75
 
A draft Ukraine-Russia treaty from April 2022
A draft Ukraine-Russia treaty from April 2022A draft Ukraine-Russia treaty from April 2022
A draft Ukraine-Russia treaty from April 2022
 
在线办理(latrobe毕业证书)拉筹伯大学毕业证Offer一模一样
在线办理(latrobe毕业证书)拉筹伯大学毕业证Offer一模一样在线办理(latrobe毕业证书)拉筹伯大学毕业证Offer一模一样
在线办理(latrobe毕业证书)拉筹伯大学毕业证Offer一模一样
 
Snigdha-Sreenath-Minor-v-Travancore-Devaswom-Board-WPCNO-39847-OF-2023-2024-L...
Snigdha-Sreenath-Minor-v-Travancore-Devaswom-Board-WPCNO-39847-OF-2023-2024-L...Snigdha-Sreenath-Minor-v-Travancore-Devaswom-Board-WPCNO-39847-OF-2023-2024-L...
Snigdha-Sreenath-Minor-v-Travancore-Devaswom-Board-WPCNO-39847-OF-2023-2024-L...
 
MAGNA CARTA (minimum 40 characters required)
MAGNA CARTA (minimum 40 characters required)MAGNA CARTA (minimum 40 characters required)
MAGNA CARTA (minimum 40 characters required)
 

11X1 T16 07 approximations (2011)

  • 1. Approximations To Areas (1) Trapezoidal Rule y y = f(x) a b x
  • 2. Approximations To Areas (1) Trapezoidal Rule y y = f(x) a b x
  • 3. Approximations To Areas (1) Trapezoidal Rule y y = f(x) ba A  f a   f b  2 a b x
  • 4. Approximations To Areas (1) Trapezoidal Rule y y = f(x) ba A  f a   f b  2 y y = f(x) a b x a b x
  • 5. Approximations To Areas (1) Trapezoidal Rule y y = f(x) ba A  f a   f b  2 y y = f(x) a b x a c b x
  • 6. Approximations To Areas (1) Trapezoidal Rule y y = f(x) ba A  f a   f b  2 y y = f(x) a b x ca bc A  f a   f c    f c   f b  2 2 a c b x
  • 7. Approximations To Areas (1) Trapezoidal Rule y y = f(x) ba A  f a   f b  2 y y = f(x) a b x ca bc A  f a   f c    f c   f b  2 2 ca   f a   2 f c   f b  2 a c b x
  • 8. y y = f(x) a b x
  • 9. y y = f(x) a c d b x
  • 10. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x
  • 11. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x  c  a  f a   2 f c   2 f d   f b  2
  • 12. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x  c  a  f a   2 f c   2 f d   f b  2 In general;
  • 13. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x  c  a  f a   2 f c   2 f d   f b  2 In general; b Area   f  x dx a
  • 14. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x  c  a  f a   2 f c   2 f d   f b  2 In general; b Area   f  x dx a h  y0  2 yothers  yn  2
  • 15. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x  c  a  f a   2 f c   2 f d   f b  2 In general; b Area   f  x dx a h  y0  2 yothers  yn  2 ba where h  n n  number of trapeziums
  • 16. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x  c  a  f a   2 f c   2 f d   f b  2 In general; b Area   f  x dx a h  y0  2 yothers  yn  NOTE: there is 2 ba always one more where h  function value n than interval n  number of trapeziums
  • 17. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points 
  • 18. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba h n 20  4  0.5
  • 19. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba h n x 0 0.5 1 1.5 2 20 y 2 1.9365 1.7321 1.3229 0  4  0.5
  • 20. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba h n x 0 0.5 1 1.5 2 20 y 2 1.9365 1.7321 1.3229 0  h 4 Area  y0  2 yothers  yn   0.5 2
  • 21. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba 1 1 h n x 0 0.5 1 1.5 2 20 y 2 1.9365 1.7321 1.3229 0  h 4 Area  y0  2 yothers  yn   0.5 2
  • 22. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba 1 2 2 2 1 h n x 0 0.5 1 1.5 2 20 y 2 1.9365 1.7321 1.3229 0  h 4 Area  y0  2 yothers  yn   0.5 2
  • 23. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba 1 2 2 2 1 h n x 0 0.5 1 1.5 2 20 y 2 1.9365 1.7321 1.3229 0  h 4 Area  y0  2 yothers  yn   0.5 2 0.5  2  21.9365  1.7321  1.3229  0 2  2.996 units 2
  • 24. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba 1 2 2 2 1 h n x 0 0.5 1 1.5 2 20 y 2 1.9365 1.7321 1.3229 0  h 4 Area  y0  2 yothers  yn   0.5 2 0.5  2  21.9365  1.7321  1.3229  0 2  2.996 units 2 exact value  π 
  • 25. e.g. Use the Trapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba 1 2 2 2 1 h n x 0 0.5 1 1.5 2 20 y 2 1.9365 1.7321 1.3229 0  h 4 Area  y0  2 yothers  yn   0.5 2 0.5  2  21.9365  1.7321  1.3229  0 2  2.996 units 2 exact value  π  3.142  2.996 % error  100 3.142  4.6%
  • 27. (2) Simpson’s Rule b Area   f  x dx a
  • 28. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3
  • 29. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals
  • 30. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals e.g. x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0
  • 31. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals e.g. x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 h Area  y0  4 yodd  2 yeven  yn  3
  • 32. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals e.g. 1 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 h Area  y0  4 yodd  2 yeven  yn  3
  • 33. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals e.g. 1 4 4 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 h Area  y0  4 yodd  2 yeven  yn  3
  • 34. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals e.g. 1 4 2 4 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 h Area  y0  4 yodd  2 yeven  yn  3
  • 35. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals e.g. 1 4 2 4 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 h Area  y0  4 yodd  2 yeven  yn  3 0.5  2  41.9365  1.3229  21.7321  0 3  3.084 units 2
  • 36. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals e.g. 1 4 2 4 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 h Area  y0  4 yodd  2 yeven  yn  3 0.5  2  41.9365  1.3229  21.7321  0 3.142  3.084 3 % error  100  3.084 units 2 3.142  1.8%
  • 37. Alternative working out!!! (1) Trapezoidal Rule
  • 38. Alternative working out!!! (1) Trapezoidal Rule 1 2 2 2 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0
  • 39. Alternative working out!!! (1) Trapezoidal Rule 1 2 2 2 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 2  2 1.9365  1.7321  1.3229   0 Area    2  0 1 2  2  2 1  2.996 units 2
  • 40. (2) Simpson’s Rule 1 4 2 4 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0
  • 41. (2) Simpson’s Rule 1 4 2 4 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 2  4 1.9365  1.3229   2 1.7321  0 Area    2  0 1 4  2  4 1  3.084 units 2
  • 42. (2) Simpson’s Rule 1 4 2 4 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 2  4 1.9365  1.3229   2 1.7321  0 Area    2  0 1 4  2  4 1  3.084 units 2 Exercise 11I; odds Exercise 11J; evens