SlideShare a Scribd company logo
1 of 37
Download to read offline
Approximations To Areas
(1) Trapezoidal Rule
  y
                       y = f(x)




       a           b    x
Approximations To Areas
(1) Trapezoidal Rule
  y
                       y = f(x)




       a           b    x
Approximations To Areas
(1) Trapezoidal Rule
  y
                       y = f(x)      ba
                                  A      f a   f b 
                                      2




       a           b    x
Approximations To Areas
(1) Trapezoidal Rule
  y
                       y = f(x)      ba
                                  A      f a   f b 
                                      2


                                   y                          y = f(x)
       a           b    x




                                          a             b         x
Approximations To Areas
(1) Trapezoidal Rule
  y
                       y = f(x)      ba
                                  A      f a   f b 
                                      2


                                   y                          y = f(x)
       a           b    x




                                          a     c       b         x
Approximations To Areas
(1) Trapezoidal Rule
     y
                                  y = f(x)          ba
                                                 A      f a   f b 
                                                     2


                                                  y                          y = f(x)
           a               b        x
     ca                      bc
A        f a   f c        f c   f b 
      2                        2


                                                         a     c       b         x
Approximations To Areas
(1) Trapezoidal Rule
     y
                                  y = f(x)          ba
                                                 A      f a   f b 
                                                     2


                                                  y                          y = f(x)
          a               b        x
  ca                      bc
A     f a   f c           f c   f b 
   2                          2
  ca
      f a   2 f c   f b 
   2
                                                         a     c       b         x
y
            y = f(x)




    a   b   x
y
                    y = f(x)




    a   c   d   b   x
y
                    y = f(x)
                           ca                      d c
                        A      f a   f c          f c   f d 
                            2                         2
                                    bd
                                           f d   f b 
                                       2
    a   c   d   b   x
y
                    y = f(x)
                        ca                        d c
                     A        f a   f c           f c   f d 
                          2                          2
                                   bd
                                          f d   f b 
                                      2
    a   c   d   b   x  c  a  f a   2 f c   2 f d   f b 
                          2
y
                      y = f(x)
                          ca                        d c
                       A        f a   f c           f c   f d 
                            2                          2
                                     bd
                                            f d   f b 
                                        2
     a    c   d   b   x  c  a  f a   2 f c   2 f d   f b 
                            2
In general;
y
                            y = f(x)
                                ca                        d c
                             A        f a   f c           f c   f d 
                                  2                          2
                                           bd
                                                  f d   f b 
                                              2
     a    c    d    b       x  c  a  f a   2 f c   2 f d   f b 
                                  2
In general;             b
              Area   f  x dx
                        a
y
                            y = f(x)
                                ca                        d c
                             A        f a   f c           f c   f d 
                                  2                          2
                                           bd
                                                  f d   f b 
                                              2
     a    c    d    b       x  c  a  f a   2 f c   2 f d   f b 
                                  2
In general;             b
              Area   f  x dx
                        a
                        h
                         y0  2 yothers  yn 
                        2
y
                              y = f(x)
                                  ca                        d c
                               A        f a   f c           f c   f d 
                                    2                          2
                                             bd
                                                    f d   f b 
                                                2
     a      c    d    b       x  c  a  f a   2 f c   2 f d   f b 
                                    2
In general;               b
                Area   f  x dx
                          a
                          h
                           y0  2 yothers  yn 
                          2
          ba
where h 
            n
      n  number of trapeziums
y
                              y = f(x)
                                  ca                        d c
                               A        f a   f c           f c   f d 
                                    2                          2
                                             bd
                                                    f d   f b 
                                                2
     a      c    d    b       x  c  a  f a   2 f c   2 f d   f b 
                                    2
In general;               b
                Area   f  x dx
                          a
                          h
                           y0  2 yothers  yn     NOTE: there is
                          2
          ba                                         always one more
where h                                              function value
            n
                                                      than interval
      n  number of trapeziums
e.g. Use the Trapezoidal Rule with 4 intervals to estimate the

     area under the curve y  4  x     , between x  0 and x  2
                                         1
                                       2 2


     correct to 3 decimal points 
e.g. Use the Trapezoidal Rule with 4 intervals to estimate the

   area under the curve y  4  x     , between x  0 and x  2
                                       1
                                     2 2


   correct to 3 decimal points 
     ba
  h
       n
     20
   
       4
    0.5
e.g. Use the Trapezoidal Rule with 4 intervals to estimate the

   area under the curve y  4  x  , between x  0 and x  2
                                     1
                                   2 2


   correct to 3 decimal points 
     ba
  h
       n             x      0       0.5     1     1.5      2
                     y
     20                    2     1.9365 1.7321 1.3229     0
   
       4
    0.5
e.g. Use the Trapezoidal Rule with 4 intervals to estimate the

   area under the curve y  4  x  , between x  0 and x  2
                                     1
                                   2 2


   correct to 3 decimal points 
     ba
  h
       n             x      0       0.5       1   1.5      2
                     y
     20                    2     1.9365 1.7321 1.3229     0
                      h
       4        Area  y0  2 yothers  yn 
    0.5               2
e.g. Use the Trapezoidal Rule with 4 intervals to estimate the

   area under the curve y  4  x  , between x  0 and x  2
                                     1
                                   2 2


   correct to 3 decimal points 
     ba                     1                            1
  h
       n             x      0       0.5       1   1.5      2
                     y
     20                    2     1.9365 1.7321 1.3229     0
                      h
       4        Area  y0  2 yothers  yn 
    0.5               2
e.g. Use the Trapezoidal Rule with 4 intervals to estimate the

   area under the curve y  4  x  , between x  0 and x  2
                                     1
                                   2 2


   correct to 3 decimal points 
     ba                     1      2        2     2      1
  h
       n             x      0       0.5       1   1.5      2
                     y
     20                    2     1.9365 1.7321 1.3229     0
                      h
       4        Area  y0  2 yothers  yn 
    0.5               2
e.g. Use the Trapezoidal Rule with 4 intervals to estimate the

   area under the curve y  4  x  , between x  0 and x  2
                                     1
                                   2 2


   correct to 3 decimal points 
     ba                      1       2       2      2      1
  h
       n             x        0       0.5     1      1.5     2
                     y
     20                      2     1.9365 1.7321 1.3229     0
                        h
       4        Area  y0  2 yothers  yn 
    0.5                 2
                         0.5
                            2  21.9365  1.7321  1.3229  0
                          2
                        2.996 units 2
e.g. Use the Trapezoidal Rule with 4 intervals to estimate the

   area under the curve y  4  x  , between x  0 and x  2
                                     1
                                   2 2


   correct to 3 decimal points 
     ba                      1       2       2      2       1
  h
       n             x        0       0.5     1      1.5     2
                     y
     20                      2     1.9365 1.7321 1.3229     0
                        h
       4        Area  y0  2 yothers  yn 
    0.5                 2
                         0.5
                            2  21.9365  1.7321  1.3229  0
                          2
                        2.996 units 2           exact value  π 
e.g. Use the Trapezoidal Rule with 4 intervals to estimate the

   area under the curve y  4  x  , between x  0 and x  2
                                     1
                                   2 2


   correct to 3 decimal points 
     ba                      1       2       2      2       1
  h
       n             x        0       0.5     1      1.5     2
                     y
     20                      2     1.9365 1.7321 1.3229     0
                        h
       4        Area  y0  2 yothers  yn 
    0.5                 2
                         0.5
                            2  21.9365  1.7321  1.3229  0
                          2
                        2.996 units 2           exact value  π 
             3.142  2.996
   % error                100
                 3.142
            4.6%
(2) Simpson’s Rule
(2) Simpson’s Rule
                      b
              Area   f  x dx
                      a
(2) Simpson’s Rule
                       b
              Area   f  x dx
                       a
                      h
                      y0  4 yodd  2 yeven  yn 
                      3
(2) Simpson’s Rule
                       b
               Area   f  x dx
                       a
                      h
                      y0  4 yodd  2 yeven  yn 
                      3
             ba
   where h 
               n
         n  number of intervals
(2) Simpson’s Rule
                           b
                   Area   f  x dx
                           a
                          h
                          y0  4 yodd  2 yeven  yn 
                          3
                 ba
       where h 
                   n
             n  number of intervals
e.g.
             x       0       0.5       1       1.5    2
             y       2     1.9365   1.7321   1.3229   0
(2) Simpson’s Rule
                             b
                    Area   f  x dx
                             a
                           h
                           y0  4 yodd  2 yeven  yn 
                           3
                 ba
       where h 
                   n
             n  number of intervals
e.g.
             x        0       0.5       1       1.5    2
             y        2     1.9365   1.7321   1.3229   0
         h
Area      y0  4 yodd  2 yeven  yn 
         3
(2) Simpson’s Rule
                             b
                    Area   f  x dx
                             a
                            h
                            y0  4 yodd  2 yeven  yn 
                            3
                 ba
       where h 
                   n
             n  number of intervals
e.g.                   1                                1
             x        0       0.5       1       1.5     2
             y        2     1.9365   1.7321   1.3229    0
         h
Area      y0  4 yodd  2 yeven  yn 
         3
(2) Simpson’s Rule
                             b
                    Area   f  x dx
                             a
                            h
                            y0  4 yodd  2 yeven  yn 
                            3
                 ba
       where h 
                   n
             n  number of intervals
e.g.                   1         4             4        1
             x        0       0.5       1       1.5     2
             y        2     1.9365   1.7321   1.3229    0
         h
Area      y0  4 yodd  2 yeven  yn 
         3
(2) Simpson’s Rule
                             b
                    Area   f  x dx
                             a
                            h
                            y0  4 yodd  2 yeven  yn 
                            3
                 ba
       where h 
                   n
             n  number of intervals
e.g.                   1         4         2    4       1
             x        0       0.5       1        1.5    2
             y        2     1.9365   1.7321    1.3229   0
         h
Area      y0  4 yodd  2 yeven  yn 
         3
(2) Simpson’s Rule
                           b
                   Area   f  x dx
                           a
                          h
                          y0  4 yodd  2 yeven  yn 
                          3
                 ba
       where h 
                   n
             n  number of intervals
e.g.                 1         4        2     4       1
             x       0       0.5       1       1.5      2
             y       2     1.9365   1.7321   1.3229     0
         h
Area      y0  4 yodd  2 yeven  yn 
         3
         0.5
            2  41.9365  1.3229  21.7321  0
          3
        3.084 units 2
(2) Simpson’s Rule
                           b
                   Area   f  x dx
                           a
                          h
                          y0  4 yodd  2 yeven  yn 
                          3
                 ba
       where h 
                   n
             n  number of intervals
e.g.                 1         4        2     4       1
             x       0       0.5       1       1.5    2
             y       2     1.9365   1.7321   1.3229   0
         h
Area      y0  4 yodd  2 yeven  yn 
         3
         0.5
            2  41.9365  1.3229  21.7321  0 3.142  3.084
          3                                   % error              100
        3.084 units 2                                      3.142
                                                       1.8%
Exercise 11I; odds

Exercise 11J; evens

More Related Content

What's hot (15)

Ee107 mock exam1_q&s_20feb2013_khl
Ee107 mock exam1_q&s_20feb2013_khlEe107 mock exam1_q&s_20feb2013_khl
Ee107 mock exam1_q&s_20feb2013_khl
 
Exercise #8 notes
Exercise #8 notesExercise #8 notes
Exercise #8 notes
 
Calculas
CalculasCalculas
Calculas
 
Exercise #10 notes
Exercise #10 notesExercise #10 notes
Exercise #10 notes
 
Mathematics sample assignment
Mathematics sample assignmentMathematics sample assignment
Mathematics sample assignment
 
Pc12 sol c03_review
Pc12 sol c03_reviewPc12 sol c03_review
Pc12 sol c03_review
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
ลิมิต
ลิมิตลิมิต
ลิมิต
 
Week 8 - Trigonometry
Week 8 - TrigonometryWeek 8 - Trigonometry
Week 8 - Trigonometry
 
Unit ii vector calculus
Unit ii vector calculusUnit ii vector calculus
Unit ii vector calculus
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt project
 
Pc12 sol c04_cp
Pc12 sol c04_cpPc12 sol c04_cp
Pc12 sol c04_cp
 
X2 t07 06 roots of functions (2012)
X2 t07 06 roots of functions (2012)X2 t07 06 roots of functions (2012)
X2 t07 06 roots of functions (2012)
 
Pratikum 1 hardiansyah
Pratikum 1 hardiansyahPratikum 1 hardiansyah
Pratikum 1 hardiansyah
 
Pratikum 2 urai wira s
Pratikum 2 urai wira sPratikum 2 urai wira s
Pratikum 2 urai wira s
 

Viewers also liked

25285 mws gen_int_ppt_trapcontinuous
25285 mws gen_int_ppt_trapcontinuous25285 mws gen_int_ppt_trapcontinuous
25285 mws gen_int_ppt_trapcontinuous
Jyoti Parange
 
Section 1-4 -- Trapezoid Rule
Section 1-4 -- Trapezoid RuleSection 1-4 -- Trapezoid Rule
Section 1-4 -- Trapezoid Rule
chrismac47
 
8.2 integration by parts
8.2 integration by parts8.2 integration by parts
8.2 integration by parts
dicosmo178
 

Viewers also liked (20)

Calc 4.6
Calc 4.6Calc 4.6
Calc 4.6
 
Applied numerical methods lec11
Applied numerical methods lec11Applied numerical methods lec11
Applied numerical methods lec11
 
25285 mws gen_int_ppt_trapcontinuous
25285 mws gen_int_ppt_trapcontinuous25285 mws gen_int_ppt_trapcontinuous
25285 mws gen_int_ppt_trapcontinuous
 
Section 1-4 -- Trapezoid Rule
Section 1-4 -- Trapezoid RuleSection 1-4 -- Trapezoid Rule
Section 1-4 -- Trapezoid Rule
 
Math1.1
Math1.1Math1.1
Math1.1
 
8.2 integration by parts
8.2 integration by parts8.2 integration by parts
8.2 integration by parts
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Rice
RiceRice
Rice
 
Es272 ch6
Es272 ch6Es272 ch6
Es272 ch6
 
Integration
IntegrationIntegration
Integration
 
Newton raphson method
Newton raphson methodNewton raphson method
Newton raphson method
 
Newton raphson method
Newton raphson methodNewton raphson method
Newton raphson method
 
Trapezoidal rule
Trapezoidal ruleTrapezoidal rule
Trapezoidal rule
 
Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2
 
newton raphson method
newton raphson methodnewton raphson method
newton raphson method
 
Presentation on Numerical Method (Trapezoidal Method)
Presentation on Numerical Method (Trapezoidal Method)Presentation on Numerical Method (Trapezoidal Method)
Presentation on Numerical Method (Trapezoidal Method)
 
Application of Numerical method in Real Life
Application of Numerical method in Real LifeApplication of Numerical method in Real Life
Application of Numerical method in Real Life
 
Applications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First DegreeApplications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First Degree
 
APPLICATION OF NUMERICAL METHODS IN SMALL SIZE
APPLICATION OF NUMERICAL METHODS IN SMALL SIZEAPPLICATION OF NUMERICAL METHODS IN SMALL SIZE
APPLICATION OF NUMERICAL METHODS IN SMALL SIZE
 
Differential equations
Differential equationsDifferential equations
Differential equations
 

Similar to 11X1 T14 07 approximations

11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)
Nigel Simmons
 
11X1 T16 07 approximations (2011)
11X1 T16 07 approximations (2011)11X1 T16 07 approximations (2011)
11X1 T16 07 approximations (2011)
Nigel Simmons
 
บทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันบทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชัน
Thipayarat Mocha
 
บทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันบทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชัน
Thipayarat Mocha
 
Equations of Tangents and Normals
Equations of Tangents and NormalsEquations of Tangents and Normals
Equations of Tangents and Normals
coburgmaths
 
ฟังก์ชัน(function)
ฟังก์ชัน(function)ฟังก์ชัน(function)
ฟังก์ชัน(function)
Yodhathai Reesrikom
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
UrbanX4
 
Formulario de calculo
Formulario de calculoFormulario de calculo
Formulario de calculo
Henry Romero
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
Pc12 sol c04_4-1
Pc12 sol c04_4-1Pc12 sol c04_4-1
Pc12 sol c04_4-1
Garden City
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
Nigel Simmons
 
11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)
Nigel Simmons
 
11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)
Nigel Simmons
 
11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)
Nigel Simmons
 

Similar to 11X1 T14 07 approximations (20)

11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)
 
11X1 T16 07 approximations (2011)
11X1 T16 07 approximations (2011)11X1 T16 07 approximations (2011)
11X1 T16 07 approximations (2011)
 
บทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันบทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชัน
 
บทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันบทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชัน
 
Equations of Tangents and Normals
Equations of Tangents and NormalsEquations of Tangents and Normals
Equations of Tangents and Normals
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
 
Pc12 sol c04_cp
Pc12 sol c04_cpPc12 sol c04_cp
Pc12 sol c04_cp
 
ฟังก์ชัน(function)
ฟังก์ชัน(function)ฟังก์ชัน(function)
ฟังก์ชัน(function)
 
Figures
FiguresFigures
Figures
 
Figures
FiguresFigures
Figures
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
 
0207 ch 2 day 7
0207 ch 2 day 70207 ch 2 day 7
0207 ch 2 day 7
 
Formulario de calculo
Formulario de calculoFormulario de calculo
Formulario de calculo
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
Pc12 sol c04_4-1
Pc12 sol c04_4-1Pc12 sol c04_4-1
Pc12 sol c04_4-1
 
Fourier series 2
Fourier series 2Fourier series 2
Fourier series 2
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
 
11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)
 
11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)
 
11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
SanaAli374401
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
MateoGardella
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
MateoGardella
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 

Recently uploaded (20)

Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 

11X1 T14 07 approximations

  • 1. Approximations To Areas (1) Trapezoidal Rule y y = f(x) a b x
  • 2. Approximations To Areas (1) Trapezoidal Rule y y = f(x) a b x
  • 3. Approximations To Areas (1) Trapezoidal Rule y y = f(x) ba A  f a   f b  2 a b x
  • 4. Approximations To Areas (1) Trapezoidal Rule y y = f(x) ba A  f a   f b  2 y y = f(x) a b x a b x
  • 5. Approximations To Areas (1) Trapezoidal Rule y y = f(x) ba A  f a   f b  2 y y = f(x) a b x a c b x
  • 6. Approximations To Areas (1) Trapezoidal Rule y y = f(x) ba A  f a   f b  2 y y = f(x) a b x ca bc A  f a   f c    f c   f b  2 2 a c b x
  • 7. Approximations To Areas (1) Trapezoidal Rule y y = f(x) ba A  f a   f b  2 y y = f(x) a b x ca bc A  f a   f c    f c   f b  2 2 ca   f a   2 f c   f b  2 a c b x
  • 8. y y = f(x) a b x
  • 9. y y = f(x) a c d b x
  • 10. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x
  • 11. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x  c  a  f a   2 f c   2 f d   f b  2
  • 12. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x  c  a  f a   2 f c   2 f d   f b  2 In general;
  • 13. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x  c  a  f a   2 f c   2 f d   f b  2 In general; b Area   f  x dx a
  • 14. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x  c  a  f a   2 f c   2 f d   f b  2 In general; b Area   f  x dx a h  y0  2 yothers  yn  2
  • 15. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x  c  a  f a   2 f c   2 f d   f b  2 In general; b Area   f  x dx a h  y0  2 yothers  yn  2 ba where h  n n  number of trapeziums
  • 16. y y = f(x) ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x  c  a  f a   2 f c   2 f d   f b  2 In general; b Area   f  x dx a h  y0  2 yothers  yn  NOTE: there is 2 ba always one more where h  function value n than interval n  number of trapeziums
  • 17. e.g. Use the Trapezoidal Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points 
  • 18. e.g. Use the Trapezoidal Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba h n 20  4  0.5
  • 19. e.g. Use the Trapezoidal Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba h n x 0 0.5 1 1.5 2 y 20 2 1.9365 1.7321 1.3229 0  4  0.5
  • 20. e.g. Use the Trapezoidal Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba h n x 0 0.5 1 1.5 2 y 20 2 1.9365 1.7321 1.3229 0  h 4 Area  y0  2 yothers  yn   0.5 2
  • 21. e.g. Use the Trapezoidal Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba 1 1 h n x 0 0.5 1 1.5 2 y 20 2 1.9365 1.7321 1.3229 0  h 4 Area  y0  2 yothers  yn   0.5 2
  • 22. e.g. Use the Trapezoidal Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba 1 2 2 2 1 h n x 0 0.5 1 1.5 2 y 20 2 1.9365 1.7321 1.3229 0  h 4 Area  y0  2 yothers  yn   0.5 2
  • 23. e.g. Use the Trapezoidal Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba 1 2 2 2 1 h n x 0 0.5 1 1.5 2 y 20 2 1.9365 1.7321 1.3229 0  h 4 Area  y0  2 yothers  yn   0.5 2 0.5  2  21.9365  1.7321  1.3229  0 2  2.996 units 2
  • 24. e.g. Use the Trapezoidal Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba 1 2 2 2 1 h n x 0 0.5 1 1.5 2 y 20 2 1.9365 1.7321 1.3229 0  h 4 Area  y0  2 yothers  yn   0.5 2 0.5  2  21.9365  1.7321  1.3229  0 2  2.996 units 2 exact value  π 
  • 25. e.g. Use the Trapezoidal Rule with 4 intervals to estimate the area under the curve y  4  x  , between x  0 and x  2 1 2 2 correct to 3 decimal points  ba 1 2 2 2 1 h n x 0 0.5 1 1.5 2 y 20 2 1.9365 1.7321 1.3229 0  h 4 Area  y0  2 yothers  yn   0.5 2 0.5  2  21.9365  1.7321  1.3229  0 2  2.996 units 2 exact value  π  3.142  2.996 % error  100 3.142  4.6%
  • 27. (2) Simpson’s Rule b Area   f  x dx a
  • 28. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3
  • 29. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals
  • 30. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals e.g. x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0
  • 31. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals e.g. x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 h Area  y0  4 yodd  2 yeven  yn  3
  • 32. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals e.g. 1 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 h Area  y0  4 yodd  2 yeven  yn  3
  • 33. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals e.g. 1 4 4 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 h Area  y0  4 yodd  2 yeven  yn  3
  • 34. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals e.g. 1 4 2 4 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 h Area  y0  4 yodd  2 yeven  yn  3
  • 35. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals e.g. 1 4 2 4 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 h Area  y0  4 yodd  2 yeven  yn  3 0.5  2  41.9365  1.3229  21.7321  0 3  3.084 units 2
  • 36. (2) Simpson’s Rule b Area   f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba where h  n n  number of intervals e.g. 1 4 2 4 1 x 0 0.5 1 1.5 2 y 2 1.9365 1.7321 1.3229 0 h Area  y0  4 yodd  2 yeven  yn  3 0.5  2  41.9365  1.3229  21.7321  0 3.142  3.084 3 % error  100  3.084 units 2 3.142  1.8%