SlideShare a Scribd company logo
1 of 65
Prokaryotic  Gene Regulation Beyond the Lac Operon
Prokaryotic Genetics Tools ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Bacterial Conjugation   ,[object Object],[object Object],[object Object],[object Object]
Transferring DNA ,[object Object],[object Object],[object Object],[object Object],[object Object]
Uses of Bacterial Conjugation ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Manifestations of the Fertility Factor   Manifestation Description Hfr The F element is  integrated into the genome. When conjugation occurs, the F genes travel across the pilus, dragging the rest of the genome behind it.  Eventually, the pilus breaks, so most often the entire genome is not transferred. The bacterial genome can be measured in minutes from the origin of transfer: The amount of time it takes for a particular gene to be transferred from one bacterium to another indicates how far it is from the origin of replication. F' Also called the F' episome. This is a small circular piece of DNA that contains the fertility genes and a few other genes. These other genes are transferred very efficiently from one bacterium to the next because the length of the transferred DNA is short enough that it can move across the breach before the pilus breaks. F This is a small circular piece of DNA carrying only the fertility genes.
Phage and Phage Transduction   ,[object Object],[object Object],[object Object],[object Object]
Transformation ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Cross-feeding ,[object Object],[object Object],[object Object]
Pathways Involve Multiple Genes Both biosynthetic and catabolic pathways involve multiple enzymes and thus multiple genes
Complementation ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
A Complementation Example
The Arginine Example ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Sample Results ,[object Object],[object Object],[object Object],[object Object]
Biochemical Pathways   ,[object Object],[object Object],[object Object],[object Object]
Identifying the Mutants ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Epistasis ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Ordering Genes in a Pathway ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Why Gene Regulation ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Jacob and Monod ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Nitrogen Use Example ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Possibilities for Regulation ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Transcriptional Regulation ,[object Object],[object Object],[object Object],[object Object]
Lactose Catabolism ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
The Lactose Enzymes ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
The Lac Operon ,[object Object],[object Object],[object Object],[object Object]
A Diagram of the Lac Operon
Elements of the Lac Operon ELEMENT PURPOSE Operator (Lac O) Binding site for repressor Promoter (Lac P) Binding site for RNA polymerase Repressor (Lac I) Gene encoding lac repressor protein Binds to DNA at operator and blocks binding of RNA polymerase at promoter Pi Promoter for LacI CAP Binding site for cAMP/CAP complex
And Another Diagram
Lac Operon Action ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Induction of the Lac Operon
 
[object Object],[object Object],[object Object]
Catabolite Repression ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Action of CAP
 
Methods for Studying Lac Regulation ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Types of Lac Mutations ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Lac Operon Mutants GENOTYPE PHENOTYPE +IPTG -IPTG Wild Type + - Lac Z- - - Lac P- - - Lac O- + + Lac I- + + Lac I(s) - - Lac O-Lac I(s) + +
Binding Sites vs. Proteins ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Cis and Trans ,[object Object],[object Object],[object Object],[object Object],[object Object]
Diffusible Proteins Act Trans
DNA Binding Sites Act Cis
Does a Gene Acts Cis or Trans? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
Results of the Cis-Trans Test ,[object Object],[object Object],[object Object],[object Object],[object Object]
Strategies for Understanding Regulation ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Life After the Lac Operon ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
The Tryptophan Operon: A Repressor ,[object Object],[object Object],[object Object],[object Object]
The Tryptophan Operon
Regulating Tryptophan Synthesis ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Repression of the Tryptophan Operon
 
The Histidine Operon: An Attenuator ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Attenuation and Termination ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
                                                                        
The Lambda Phage Cycle: Decision Control ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
And Glowing Squid? ,[object Object],[object Object],[object Object],[object Object],[object Object]
Regulating Luciferase Production ,[object Object],[object Object],[object Object],[object Object],[object Object]
Quorum Sensing: An Activator ,[object Object],[object Object],[object Object],[object Object]
The Lux Operon ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
Production Without Inducer? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Other Uses of Quorum Sensing ,[object Object],[object Object],[object Object],[object Object]

More Related Content

What's hot

DNA SEQUENCING METHODS AND STRATEGIES FOR GENOME SEQUENCING
DNA SEQUENCING METHODS AND STRATEGIES FOR GENOME SEQUENCINGDNA SEQUENCING METHODS AND STRATEGIES FOR GENOME SEQUENCING
DNA SEQUENCING METHODS AND STRATEGIES FOR GENOME SEQUENCINGPuneet Kulyana
 
Southern hybridization
Southern hybridizationSouthern hybridization
Southern hybridizationAnushi Jain
 
Transcription of DNA to RNA by Dr. Anurag Yadav
Transcription of DNA to RNA by Dr. Anurag YadavTranscription of DNA to RNA by Dr. Anurag Yadav
Transcription of DNA to RNA by Dr. Anurag YadavDr Anurag Yadav
 
Formation and expression ofpseudogenes
Formation and expression ofpseudogenesFormation and expression ofpseudogenes
Formation and expression ofpseudogenesShilpa Malaghan
 
Various model of DNA replication
Various model of DNA replicationVarious model of DNA replication
Various model of DNA replicationEmaSushan
 
2 whole genome sequencing and analysis
2 whole genome sequencing and analysis2 whole genome sequencing and analysis
2 whole genome sequencing and analysissaberhussain9
 
Regulation of eukaryotic gene expression
Regulation of eukaryotic gene expressionRegulation of eukaryotic gene expression
Regulation of eukaryotic gene expressionMd Murad Khan
 
Junk DNA/ Non-coding DNA and its Importance (Regulatory RNAs, RNA interferen...
Junk DNA/ Non-coding DNA and its Importance  (Regulatory RNAs, RNA interferen...Junk DNA/ Non-coding DNA and its Importance  (Regulatory RNAs, RNA interferen...
Junk DNA/ Non-coding DNA and its Importance (Regulatory RNAs, RNA interferen...Pradeep Singh Narwat
 
Role of transcriptomics in gene expression studies and
Role of transcriptomics in gene expression studies andRole of transcriptomics in gene expression studies and
Role of transcriptomics in gene expression studies andSarla Rao
 
Molecular chaperones
Molecular chaperonesMolecular chaperones
Molecular chaperonesanju vs
 
Galactose operon and Histidine operon
Galactose operon  and Histidine operon  Galactose operon  and Histidine operon
Galactose operon and Histidine operon PunithKumars6
 
Basics of molecular biology tools and techniques
Basics of molecular biology tools and techniquesBasics of molecular biology tools and techniques
Basics of molecular biology tools and techniquesBOTANYWith
 

What's hot (20)

Replication fork final
Replication fork finalReplication fork final
Replication fork final
 
DNA SEQUENCING METHODS AND STRATEGIES FOR GENOME SEQUENCING
DNA SEQUENCING METHODS AND STRATEGIES FOR GENOME SEQUENCINGDNA SEQUENCING METHODS AND STRATEGIES FOR GENOME SEQUENCING
DNA SEQUENCING METHODS AND STRATEGIES FOR GENOME SEQUENCING
 
Transposons
Transposons  Transposons
Transposons
 
Southern hybridization
Southern hybridizationSouthern hybridization
Southern hybridization
 
Transcription of DNA to RNA by Dr. Anurag Yadav
Transcription of DNA to RNA by Dr. Anurag YadavTranscription of DNA to RNA by Dr. Anurag Yadav
Transcription of DNA to RNA by Dr. Anurag Yadav
 
Formation and expression ofpseudogenes
Formation and expression ofpseudogenesFormation and expression ofpseudogenes
Formation and expression ofpseudogenes
 
Various model of DNA replication
Various model of DNA replicationVarious model of DNA replication
Various model of DNA replication
 
Primer design
Primer designPrimer design
Primer design
 
2 whole genome sequencing and analysis
2 whole genome sequencing and analysis2 whole genome sequencing and analysis
2 whole genome sequencing and analysis
 
DNA analysis
DNA analysisDNA analysis
DNA analysis
 
Transcriptomics approaches
Transcriptomics approachesTranscriptomics approaches
Transcriptomics approaches
 
Northern blotting
Northern blottingNorthern blotting
Northern blotting
 
Regulation of eukaryotic gene expression
Regulation of eukaryotic gene expressionRegulation of eukaryotic gene expression
Regulation of eukaryotic gene expression
 
Junk DNA/ Non-coding DNA and its Importance (Regulatory RNAs, RNA interferen...
Junk DNA/ Non-coding DNA and its Importance  (Regulatory RNAs, RNA interferen...Junk DNA/ Non-coding DNA and its Importance  (Regulatory RNAs, RNA interferen...
Junk DNA/ Non-coding DNA and its Importance (Regulatory RNAs, RNA interferen...
 
Role of transcriptomics in gene expression studies and
Role of transcriptomics in gene expression studies andRole of transcriptomics in gene expression studies and
Role of transcriptomics in gene expression studies and
 
Molecular chaperones
Molecular chaperonesMolecular chaperones
Molecular chaperones
 
REGULATION OF GENE EXPRESSION IN PROKARYOTES & EUKARYOTES
REGULATION OF GENE EXPRESSION IN PROKARYOTES & EUKARYOTESREGULATION OF GENE EXPRESSION IN PROKARYOTES & EUKARYOTES
REGULATION OF GENE EXPRESSION IN PROKARYOTES & EUKARYOTES
 
Molecular chaperones
Molecular chaperonesMolecular chaperones
Molecular chaperones
 
Galactose operon and Histidine operon
Galactose operon  and Histidine operon  Galactose operon  and Histidine operon
Galactose operon and Histidine operon
 
Basics of molecular biology tools and techniques
Basics of molecular biology tools and techniquesBasics of molecular biology tools and techniques
Basics of molecular biology tools and techniques
 

Similar to Prokaryotic Gene Regulation Tools and Techniques

genomic proteomic changes by Suyash Garg.pptx
genomic proteomic changes by Suyash Garg.pptxgenomic proteomic changes by Suyash Garg.pptx
genomic proteomic changes by Suyash Garg.pptxsuyashempire
 
An Understanding Of Bacterial Transformation By Plasmid Dna
An Understanding Of Bacterial Transformation By Plasmid DnaAn Understanding Of Bacterial Transformation By Plasmid Dna
An Understanding Of Bacterial Transformation By Plasmid DnaGina Buck
 
A Study On Bacterial Transformation
A Study On Bacterial TransformationA Study On Bacterial Transformation
A Study On Bacterial TransformationJessica Myers
 
Chapter 4 Explain How Bacterial Plasmids Differ From...
Chapter 4 Explain How Bacterial Plasmids Differ From...Chapter 4 Explain How Bacterial Plasmids Differ From...
Chapter 4 Explain How Bacterial Plasmids Differ From...Melissa Luster
 
regulation of genome activity
 regulation of genome activity regulation of genome activity
regulation of genome activityNawfal Aldujaily
 
Biological Transformation Of Bacteria And Pglo Plasmid Dna
Biological Transformation Of Bacteria And Pglo Plasmid DnaBiological Transformation Of Bacteria And Pglo Plasmid Dna
Biological Transformation Of Bacteria And Pglo Plasmid DnaTracy Berry
 
Gene and Genome by Amit Rulhania
Gene and Genome by Amit RulhaniaGene and Genome by Amit Rulhania
Gene and Genome by Amit RulhaniaAmit Rulhania
 
How is Genetic Information Passed on from the.pptx
How is Genetic Information Passed on from the.pptxHow is Genetic Information Passed on from the.pptx
How is Genetic Information Passed on from the.pptxDiovieLubos2
 
Describe how the structure of the DNA double helix was discovered. E.pdf
Describe how the structure of the DNA double helix was discovered.  E.pdfDescribe how the structure of the DNA double helix was discovered.  E.pdf
Describe how the structure of the DNA double helix was discovered. E.pdfarchanadesignfashion
 
Gene expression and regulation
Gene expression and regulationGene expression and regulation
Gene expression and regulationTapeshwar Yadav
 
Lab Report Green Fluorescent Protein
Lab Report Green Fluorescent ProteinLab Report Green Fluorescent Protein
Lab Report Green Fluorescent ProteinTina Jordan
 
trnspsns-170820132104.pdf
trnspsns-170820132104.pdftrnspsns-170820132104.pdf
trnspsns-170820132104.pdfAnukrittiMehra
 

Similar to Prokaryotic Gene Regulation Tools and Techniques (20)

Gene regulation
Gene regulationGene regulation
Gene regulation
 
genomic proteomic changes by Suyash Garg.pptx
genomic proteomic changes by Suyash Garg.pptxgenomic proteomic changes by Suyash Garg.pptx
genomic proteomic changes by Suyash Garg.pptx
 
An Understanding Of Bacterial Transformation By Plasmid Dna
An Understanding Of Bacterial Transformation By Plasmid DnaAn Understanding Of Bacterial Transformation By Plasmid Dna
An Understanding Of Bacterial Transformation By Plasmid Dna
 
A Study On Bacterial Transformation
A Study On Bacterial TransformationA Study On Bacterial Transformation
A Study On Bacterial Transformation
 
Examples Of Epigenetics
Examples Of EpigeneticsExamples Of Epigenetics
Examples Of Epigenetics
 
Chapter 4 Explain How Bacterial Plasmids Differ From...
Chapter 4 Explain How Bacterial Plasmids Differ From...Chapter 4 Explain How Bacterial Plasmids Differ From...
Chapter 4 Explain How Bacterial Plasmids Differ From...
 
regulation of genome activity
 regulation of genome activity regulation of genome activity
regulation of genome activity
 
Biological Transformation Of Bacteria And Pglo Plasmid Dna
Biological Transformation Of Bacteria And Pglo Plasmid DnaBiological Transformation Of Bacteria And Pglo Plasmid Dna
Biological Transformation Of Bacteria And Pglo Plasmid Dna
 
Gene and Genome by Amit Rulhania
Gene and Genome by Amit RulhaniaGene and Genome by Amit Rulhania
Gene and Genome by Amit Rulhania
 
How is Genetic Information Passed on from the.pptx
How is Genetic Information Passed on from the.pptxHow is Genetic Information Passed on from the.pptx
How is Genetic Information Passed on from the.pptx
 
Bacterial Genetics
Bacterial GeneticsBacterial Genetics
Bacterial Genetics
 
Describe how the structure of the DNA double helix was discovered. E.pdf
Describe how the structure of the DNA double helix was discovered.  E.pdfDescribe how the structure of the DNA double helix was discovered.  E.pdf
Describe how the structure of the DNA double helix was discovered. E.pdf
 
Ambe 101 @ lec 7,8
Ambe 101 @ lec 7,8Ambe 101 @ lec 7,8
Ambe 101 @ lec 7,8
 
genetics.pptx
genetics.pptxgenetics.pptx
genetics.pptx
 
Gene expression and regulation
Gene expression and regulationGene expression and regulation
Gene expression and regulation
 
Lesson 13.4
Lesson 13.4Lesson 13.4
Lesson 13.4
 
PROF. N.B. BANARASE
PROF. N.B. BANARASEPROF. N.B. BANARASE
PROF. N.B. BANARASE
 
Lab Report Green Fluorescent Protein
Lab Report Green Fluorescent ProteinLab Report Green Fluorescent Protein
Lab Report Green Fluorescent Protein
 
trnspsns-170820132104.pdf
trnspsns-170820132104.pdftrnspsns-170820132104.pdf
trnspsns-170820132104.pdf
 
Transposons in bacteria
Transposons in bacteriaTransposons in bacteria
Transposons in bacteria
 

More from Jolie Yu

Classification
ClassificationClassification
ClassificationJolie Yu
 
Bacteria & Viruses
Bacteria & VirusesBacteria & Viruses
Bacteria & VirusesJolie Yu
 
Evolution1
Evolution1Evolution1
Evolution1Jolie Yu
 
Evolution2
Evolution2Evolution2
Evolution2Jolie Yu
 
Evolution3
Evolution3Evolution3
Evolution3Jolie Yu
 
Population Genetics
Population GeneticsPopulation Genetics
Population GeneticsJolie Yu
 
Eukaryotic Gene Regulation
Eukaryotic Gene RegulationEukaryotic Gene Regulation
Eukaryotic Gene RegulationJolie Yu
 
Molecular Genetics Part II
Molecular Genetics Part IIMolecular Genetics Part II
Molecular Genetics Part IIJolie Yu
 
Molecular Genetics
Molecular GeneticsMolecular Genetics
Molecular GeneticsJolie Yu
 
Biotechnology
BiotechnologyBiotechnology
BiotechnologyJolie Yu
 
Genetic Linkage
Genetic LinkageGenetic Linkage
Genetic LinkageJolie Yu
 
Chi Square
Chi SquareChi Square
Chi SquareJolie Yu
 
Cell Reproduction
Cell ReproductionCell Reproduction
Cell ReproductionJolie Yu
 
Photosynthesis
PhotosynthesisPhotosynthesis
PhotosynthesisJolie Yu
 
Cellular Energy pt.2
Cellular Energy pt.2Cellular Energy pt.2
Cellular Energy pt.2Jolie Yu
 
Cellular Energy pt.1
Cellular Energy pt.1Cellular Energy pt.1
Cellular Energy pt.1Jolie Yu
 
Membranes pt. 2
Membranes pt. 2Membranes pt. 2
Membranes pt. 2Jolie Yu
 

More from Jolie Yu (20)

Protists
ProtistsProtists
Protists
 
Fungi
FungiFungi
Fungi
 
Classification
ClassificationClassification
Classification
 
Bacteria & Viruses
Bacteria & VirusesBacteria & Viruses
Bacteria & Viruses
 
Evolution1
Evolution1Evolution1
Evolution1
 
Evolution2
Evolution2Evolution2
Evolution2
 
Evolution3
Evolution3Evolution3
Evolution3
 
Population Genetics
Population GeneticsPopulation Genetics
Population Genetics
 
Eukaryotic Gene Regulation
Eukaryotic Gene RegulationEukaryotic Gene Regulation
Eukaryotic Gene Regulation
 
Molecular Genetics Part II
Molecular Genetics Part IIMolecular Genetics Part II
Molecular Genetics Part II
 
Molecular Genetics
Molecular GeneticsMolecular Genetics
Molecular Genetics
 
Biotechnology
BiotechnologyBiotechnology
Biotechnology
 
Mendel
MendelMendel
Mendel
 
Genetic Linkage
Genetic LinkageGenetic Linkage
Genetic Linkage
 
Chi Square
Chi SquareChi Square
Chi Square
 
Cell Reproduction
Cell ReproductionCell Reproduction
Cell Reproduction
 
Photosynthesis
PhotosynthesisPhotosynthesis
Photosynthesis
 
Cellular Energy pt.2
Cellular Energy pt.2Cellular Energy pt.2
Cellular Energy pt.2
 
Cellular Energy pt.1
Cellular Energy pt.1Cellular Energy pt.1
Cellular Energy pt.1
 
Membranes pt. 2
Membranes pt. 2Membranes pt. 2
Membranes pt. 2
 

Prokaryotic Gene Regulation Tools and Techniques

  • 1. Prokaryotic Gene Regulation Beyond the Lac Operon
  • 2.
  • 3.
  • 4.
  • 5.
  • 6. Manifestations of the Fertility Factor Manifestation Description Hfr The F element is integrated into the genome. When conjugation occurs, the F genes travel across the pilus, dragging the rest of the genome behind it. Eventually, the pilus breaks, so most often the entire genome is not transferred. The bacterial genome can be measured in minutes from the origin of transfer: The amount of time it takes for a particular gene to be transferred from one bacterium to another indicates how far it is from the origin of replication. F' Also called the F' episome. This is a small circular piece of DNA that contains the fertility genes and a few other genes. These other genes are transferred very efficiently from one bacterium to the next because the length of the transferred DNA is short enough that it can move across the breach before the pilus breaks. F This is a small circular piece of DNA carrying only the fertility genes.
  • 7.
  • 8.
  • 9.
  • 10. Pathways Involve Multiple Genes Both biosynthetic and catabolic pathways involve multiple enzymes and thus multiple genes
  • 11.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27. A Diagram of the Lac Operon
  • 28. Elements of the Lac Operon ELEMENT PURPOSE Operator (Lac O) Binding site for repressor Promoter (Lac P) Binding site for RNA polymerase Repressor (Lac I) Gene encoding lac repressor protein Binds to DNA at operator and blocks binding of RNA polymerase at promoter Pi Promoter for LacI CAP Binding site for cAMP/CAP complex
  • 30.
  • 31. Induction of the Lac Operon
  • 32.  
  • 33.
  • 34.
  • 36.  
  • 37.
  • 38.
  • 39. Lac Operon Mutants GENOTYPE PHENOTYPE +IPTG -IPTG Wild Type + - Lac Z- - - Lac P- - - Lac O- + + Lac I- + + Lac I(s) - - Lac O-Lac I(s) + +
  • 40.
  • 41.
  • 43. DNA Binding Sites Act Cis
  • 44.
  • 45.  
  • 46.
  • 47.
  • 48.
  • 49.
  • 51.
  • 52. Repression of the Tryptophan Operon
  • 53.  
  • 54.
  • 55.
  • 57.
  • 58.  
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.  
  • 64.
  • 65.