Complex Numbers - 2

          N. B. Vyas
    Department of Mathematics,
Atmiya Institute of Tech. and Science,
            Rajkot (Guj.)




      N. B. Vyas     Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ




               N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer




               N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n




               N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ




               N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ)




               N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 +




               N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)




                N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)
  = ( n C0 cosn θ




                N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)
  = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .)




                N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)
  = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .)
     + i ( n C1 cosn−1 θ sinθ




                N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)
  = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .)
     + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .)




                    N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)
  = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .)
     + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .)
  By comparing real and imaginary parts on both
  sides, we get


                    N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)
  = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .)
     + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .)
  By comparing real and imaginary parts on both
  sides, we get
  cos nθ = n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .
                    N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)
  = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .)
     + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .)
  By comparing real and imaginary parts on both
  sides, we get
  cos nθ = n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .
  sin nθ = n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .
                    N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ




                   N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then




                     N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1
  Also = cosθ − isinθ
       z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n =
       z                     z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z
        1
  ∴z+ =
        z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z
        1
  ∴ z + = 2cosθ ⇒ cosθ =
        z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z
        1                    1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
        z                    2       z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
            1
  and z n + n =
           z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
            1
  and z n + n = 2cos nθ ⇒ cos nθ =
           z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
            1                         1         1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
           z                          2        z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
            1                         1         1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
           z                          2        z

  cosn θ =




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
        1                     1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
        z                    z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
             1                        1         1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
            z                         2        z
            1      1 n
  cosn θ = n z +
           2       z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
        1                     1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
        z                    z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
             1                        1         1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
            z                         2        z
            1      1 n
  cosn θ = n z +
           2       z

  similarly sinθ =




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
        1                     1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
        z                    z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
             1                        1         1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
            z                         2        z
            1       1 n
  cosn θ = n z +
           2        z
                   1       1
  similarly sinθ =     z−       and sin nθ =
                   2i      z



                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
        1                     1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
        z                    z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
             1                        1          1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
            z                         2         z
            1       1 n
  cosn θ = n z +
           2        z
                   1       1                   1        1
  similarly sinθ =     z−       and sin nθ =       zn − n
                   2i      z                  2i       z



                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
        1                     1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
        z                    z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
             1                        1          1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
            z                         2         z
            1       1 n
  cosn θ = n z +
           2        z
                   1       1                   1        1
  similarly sinθ =     z−       and sin nθ =       zn − n
                   2i      z                  2i       z

  sinn θ =

                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
        1                     1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
        z                    z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
              1                       1          1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
             z                        2         z
            1       1 n
  cosn θ = n z +
           2        z
                    1      1                   1        1
  similarly sinθ =     z−       and sin nθ =       zn − n
                   2i      z                  2i       z
               1      1 n
  sinn θ =         z−
            (2i)n     z
                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
        1                     1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
        z                    z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
              1                       1          1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
             z                        2         z
            1       1 n
  cosn θ = n z +
           2        z
                    1      1                   1        1
  similarly sinθ =     z−       and sin nθ =       zn − n
                   2i      z                  2i       z
               1      1 n
  sinn θ =         z−
            (2i)n     z
                      N. B. Vyas   Complex Numbers - 2
Examples




Ex. Prove that cos4θ = cos4 θ − 6cos2 θsin2 θ + sin4 θ




                        N. B. Vyas   Complex Numbers - 2
Examples




Ex. Using De Moivre’s theorem prove the following:




                       N. B. Vyas   Complex Numbers - 2
Examples




Ex. Using De Moivre’s theorem prove the following:
    (i) cos6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1




                          N. B. Vyas   Complex Numbers - 2
Examples




Ex. Using De Moivre’s theorem prove the following:
    (i) cos6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1
    (ii) sin6θ = 3 sin2θ − 4 sin3 2θ




                          N. B. Vyas   Complex Numbers - 2
Examples




Ex. Using De Moivre’s theorem prove the following:
    (i) cos6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1
    (ii) sin6θ = 3 sin2θ − 4 sin3 2θ
                     6 tanθ − 20 tan3 θ + 6 tan5 θ
    (iii) tan6θ =
                  1 − 15 tan2 θ + 15 tan4 θ − tan6 θ




                          N. B. Vyas   Complex Numbers - 2
Examples




Ex. Prove that
             1
    cos8 θ = 7 (cos8θ +8cos6θ +28cos4θ +56cos2θ +35)
            2




                  N. B. Vyas   Complex Numbers - 2
Examples

Sol.: We know that,




                      N. B. Vyas   Complex Numbers - 2
Examples

Sol.: We know that,
                            8
           8        1
    (2cosθ) =    z+
                    z




                      N. B. Vyas   Complex Numbers - 2
Examples

Sol.: We know that,
                            8
           8          1
    (2cosθ) =      z+
                      z

    = 8 C0 z 8 +




                      N. B. Vyas   Complex Numbers - 2
Examples

Sol.: We know that,
                             8
            8          1
    (2cosθ) =       z+
                       z
                             1
    = 8 C 0 z 8 + 8 C1 z 7          +
                             z




                       N. B. Vyas   Complex Numbers - 2
Examples

Sol.: We know that,
                            8
           8           1
    (2cosθ) =       z+
                       z
                                                          2
       8    8   8      7    1         8        6     1
    = C 0 z + C1 z                 + C2 z                     +
                            z                        z




                      N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                        2
          8         8       8        7    1         8        6     1
    = C 0 z + C1 z                               + C2 z                     +
                                          z                        z
                            3
     8          5       1
         C3 z                   +
                        z




                                    N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                      2
          8         8       8         7   1        8       6     1
    = C 0 z + C1 z                             + C2 z                     +
                                          z                      z
                            3                      4
     8          5       1         8       4    1
         C3 z                   + C4 z                 +
                        z                      z




                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                          2
          8         8       8         7   1        8       6     1
    = C 0 z + C1 z                             + C2 z                         +
                                          z                      z
                            3                      4                              5
     8          5       1         8       4    1          8           3       1
         C3 z                   + C4 z                 + C5 z                         +
                        z                      z                              z




                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                             2
          8         8       8         7   1         8            6   1
    = C 0 z + C1 z                             + C2 z                            +
                                          z                          z
                            3                           4                            5
     8          5       1         8       4     1                8       3       1
         C3 z                   + C4 z                      + C5 z                       +
                        z                       z                                z
                            6                       7                            8
     8          2       1         8            1             8           1
         C6 z                   + C7 z                  + C8
                        z                      z                         z



                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                             2
          8         8       8         7   1         8            6   1
    = C 0 z + C1 z                             + C2 z                            +
                                          z                          z
                            3                           4                            5
     8          5       1         8       4     1                8       3       1
         C3 z                   + C4 z                      + C5 z                       +
                        z                       z                                z
                            6                       7                            8
     8          2       1         8            1             8           1
         C6 z                   + C7 z                  + C8
                        z                      z                         z
    = z8 +

                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                             2
          8         8       8         7   1         8            6   1
    = C 0 z + C1 z                             + C2 z                            +
                                          z                          z
                            3                           4                            5
     8          5       1         8       4     1                8       3       1
         C3 z                   + C4 z                      + C5 z                       +
                        z                       z                                z
                            6                       7                            8
     8          2       1         8            1             8           1
         C6 z                   + C7 z                  + C8
                        z                      z                         z
    = z 8 + 8z 6 +

                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                             2
          8         8       8         7   1         8            6   1
    = C 0 z + C1 z                             + C2 z                            +
                                          z                          z
                            3                           4                            5
     8          5       1         8       4     1                8       3       1
         C3 z                   + C4 z                      + C5 z                       +
                        z                       z                                z
                            6                       7                            8
     8          2       1         8            1             8           1
         C6 z                   + C7 z                  + C8
                        z                      z                         z
    = z 8 + 8z 6 + 28z 4 +

                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                             2
          8         8       8         7   1         8            6   1
    = C 0 z + C1 z                             + C2 z                            +
                                          z                          z
                            3                           4                            5
     8          5       1         8       4     1                8       3       1
         C3 z                   + C4 z                      + C5 z                       +
                        z                       z                                z
                            6                       7                            8
     8          2       1         8            1             8           1
         C6 z                   + C7 z                  + C8
                        z                      z                         z
    = z 8 + 8z 6 + 28z 4 + 56z 2 +

                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                              2
          8         8       8         7   1         8            6    1
    = C 0 z + C1 z                             + C2 z                             +
                                          z                           z
                            3                           4                             5
     8          5       1         8       4     1                8        3       1
         C3 z                   + C4 z                      + C5 z                        +
                        z                       z                                 z
                            6                       7                             8
     8          2       1         8            1             8            1
         C6 z                   + C7 z                  + C8
                        z                      z                          z
                                                                     56
    = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 +                                 +
                                                                     z2
                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                              2
          8         8       8         7   1         8            6    1
    = C 0 z + C1 z                             + C2 z                             +
                                          z                           z
                            3                           4                             5
     8          5       1         8       4     1                8        3       1
         C3 z                   + C4 z                      + C5 z                        +
                        z                       z                                 z
                            6                       7                             8
     8          2       1         8            1             8            1
         C6 z                   + C7 z                  + C8
                        z                      z                          z
                                                                     56 28
    = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 +                                +   +
                                                                     z2 z4
                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                              2
          8         8       8         7   1         8            6    1
    = C 0 z + C1 z                             + C2 z                             +
                                          z                           z
                            3                           4                             5
     8          5       1         8       4     1                8        3       1
         C3 z                   + C4 z                      + C5 z                        +
                        z                       z                                 z
                            6                       7                             8
     8          2       1         8            1             8            1
         C6 z                   + C7 z                  + C8
                        z                      z                          z
                                                                     56 28  8  1
    = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 +                                + 4+ 6+ 8
                                                                     z2 z  z  z
                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                              2
          8         8       8         7   1         8            6    1
    = C 0 z + C1 z                             + C2 z                             +
                                          z                           z
                            3                           4                             5
     8          5       1         8       4     1                8        3       1
         C3 z                   + C4 z                      + C5 z                        +
                        z                       z                                 z
                            6                       7                             8
     8          2       1         8            1             8            1
         C6 z                   + C7 z                  + C8
                        z                      z                          z
                                                                     56 28  8  1
    = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 +                                + 4+ 6+ 8
                                                                     z2 z  z  z
                                  N. B. Vyas    Complex Numbers - 2
Examples



             1
  =   z8 +        +
             z8




                      N. B. Vyas   Complex Numbers - 2
Examples



             1                  1
  =   z8 +        + 8 z6 +            +
             z8                 z6




                   N. B. Vyas   Complex Numbers - 2
Examples



             1                  1                     1
  =   z8 +        + 8 z6 +            + 28 z 4 +           +
             z8                 z6                    z4




                   N. B. Vyas   Complex Numbers - 2
Examples



          1           1                          1
  =   z8 +   + 8 z6 + 6          + 28 z 4 +           +
          z8         z                           z4
           1
  56 z 2 + 2 + 70
          z




              N. B. Vyas   Complex Numbers - 2
Examples



           1          1                          1
  =   z8 +   + 8 z6 + 6          + 28 z 4 +           +
          z8         z                           z4
           1
  56 z 2 + 2 + 70
           z
  = 2cos8θ +




              N. B. Vyas   Complex Numbers - 2
Examples



           1            1                         1
  =   z8 +     + 8 z6 + 6         + 28 z 4 +           +
          z8           z                          z4
           1
  56 z 2 + 2 + 70
           z
  = 2cos8θ + 16cos6θ +




               N. B. Vyas   Complex Numbers - 2
Examples



           1             1              1
  =   z8 +     + 8 z 6 + 6 + 28 z 4 + 4 +
          z8             z              z
           1
  56 z 2 + 2 + 70
           z
  = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ +




               N. B. Vyas   Complex Numbers - 2
Examples



           1             1              1
  =   z8 +     + 8 z 6 + 6 + 28 z 4 + 4 +
          z8             z              z
           1
  56 z 2 + 2 + 70
           z
  = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ + 70




                N. B. Vyas   Complex Numbers - 2
Examples



            1            1              1
  =   z8 +     + 8 z 6 + 6 + 28 z 4 + 4 +
           z8            z              z
            1
  56 z 2 + 2 + 70
           z
  = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ + 70
           1
∴ cos8 θ = 7
          2




                N. B. Vyas   Complex Numbers - 2
Examples



            1             1              1
  =   z8 +      + 8 z 6 + 6 + 28 z 4 + 4 +
           z8             z             z
            1
  56 z 2 + 2 + 70
           z
  = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ + 70
           1
∴ cos8 θ = 7 (cos8θ +8cos6θ +28cos4θ +56cos2θ +35)
          2




                 N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx




                 N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx and e−ix = cosx − isinx




                 N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx and e−ix = cosx − isinx
  are known as Euler’s formula.




                 N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx and e−ix = cosx − isinx
  are known as Euler’s formula.
  By adding, we get them, we get




                 N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx and e−ix = cosx − isinx
  are known as Euler’s formula.
  By adding, we get them, we get
          eix + e−ix
  cosx =
               2




                 N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx and e−ix = cosx − isinx
  are known as Euler’s formula.
  By adding, we get them, we get
          eix + e−ix            eix − e−ix
  cosx =             and sinx =
               2                    2i




                 N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx and e−ix = cosx − isinx
  are known as Euler’s formula.
  By adding, we get them, we get
           eix + e−ix            eix − e−ix
  cosx =              and sinx =
                2                    2i
  are known as circular functions and are true for
  all real values of x.




                N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx and e−ix = cosx − isinx
  are known as Euler’s formula.
  By adding, we get them, we get
           eix + e−ix            eix − e−ix
  cosx =              and sinx =
                2                    2i
  are known as circular functions and are true for
  all real values of x.
  They are also known as Euler’s exponential
  form of cosines and sines.


                N. B. Vyas   Complex Numbers - 2
Hyperbolic functions


  The hyperbolic sine of x is denoted by sinh(x),




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions


  The hyperbolic sine of x is denoted by sinh(x),
  the hyperbolic cosine of x is defined by cosh(x)




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions


  The hyperbolic sine of x is denoted by sinh(x),
  the hyperbolic cosine of x is defined by cosh(x)
  and hyperbolic tangent of x is defined by tanh(x)




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions


  The hyperbolic sine of x is denoted by sinh(x),
  the hyperbolic cosine of x is defined by cosh(x)
  and hyperbolic tangent of x is defined by tanh(x)
  and are defined respectively as




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions


  The hyperbolic sine of x is denoted by sinh(x),
  the hyperbolic cosine of x is defined by cosh(x)
  and hyperbolic tangent of x is defined by tanh(x)
  and are defined respectively as
            ex − e−x
  sinh(x) =
                2




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions


  The hyperbolic sine of x is denoted by sinh(x),
  the hyperbolic cosine of x is defined by cosh(x)
  and hyperbolic tangent of x is defined by tanh(x)
  and are defined respectively as
            ex − e−x
  sinh(x) =
                2
            ex + e−x
  cosh(x) =
                2




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions


  The hyperbolic sine of x is denoted by sinh(x),
  the hyperbolic cosine of x is defined by cosh(x)
  and hyperbolic tangent of x is defined by tanh(x)
  and are defined respectively as
            ex − e−x
  sinh(x) =
                2
            ex + e−x
  cosh(x) =
                2
                 ex − e−x
  and tanh(x) = x         ;x R
                  e + e−x


                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions



  The reciprocals of these functions are defined as
  below




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions



  The reciprocals of these functions are defined as
  below
                  2
  cosech(x) = x
              e − e−x




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions



  The reciprocals of these functions are defined as
  below
                  2
  cosech(x) = x
              e − e−x
                2
  sech(x) = x
            e − e−x




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions



  The reciprocals of these functions are defined as
  below
                  2
  cosech(x) = x
              e − e−x
                2
  sech(x) = x
            e − e−x
                 ex + e−x
  and coth(x) = x
                 e − e−x



                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


                      eix − e−ix
  We know that sinx =
                          2i




                N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


                      eix − e−ix
  We know that sinx =
                          2i
  replacing x by ix




                N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


                           eix − e−ix
  We know that sinx =
                               2i
  replacing x by ix
            ei(ix) − e−i(ix)    e−x − ex
  sin(ix) =                  =
                   2i              2i




                   N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


                            eix − e−ix
  We know that sinx =
                                2i
  replacing x by ix
             ei(ix) − e−i(ix)    e−x − ex
  sin(ix) =                   =
                    2i              2i
        x    −x         x      −x
       e −e            e −e
  =−             =i
          2i                2




                   N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


                            eix − e−ix
  We know that sinx =
                                2i
  replacing x by ix
             ei(ix) − e−i(ix)    e−x − ex
  sin(ix) =                   =
                    2i              2i
        x    −x         x      −x
       e −e            e −e
  =−             =i
          2i                2
  ∴ sin(ix) = isinh(x)



                   N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cos(ix) = cosh(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cos(ix) = cosh(x)
  tan(ix) = i tanh(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cos(ix) = cosh(x)
  tan(ix) = i tanh(x)
  cosec(ix) = −i cosech(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cos(ix) = cosh(x)
  tan(ix) = i tanh(x)
  cosec(ix) = −i cosech(x)
  sec(ix) = sech(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cos(ix) = cosh(x)
  tan(ix) = i tanh(x)
  cosec(ix) = −i cosech(x)
  sec(ix) = sech(x)
  cot(ix) = −i coth(x)



                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


  Also we can replace x by ix in




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


  Also we can replace x by ix in
  sin(ix) = isinh(x), we get




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


  Also we can replace x by ix in
  sin(ix) = isinh(x), we get
  sin i(ix) = isinh(ix)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


  Also we can replace x by ix in
  sin(ix) = isinh(x), we get
  sin i(ix) = isinh(ix)
  ⇒ sin(−x) = isinh(ix)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


  Also we can replace x by ix in
  sin(ix) = isinh(x), we get
  sin i(ix) = isinh(ix)
  ⇒ sin(−x) = isinh(ix)
  ⇒ −sinx = isinh(ix)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


  Also we can replace x by ix in
  sin(ix) = isinh(x), we get
  sin i(ix) = isinh(ix)
  ⇒ sin(−x) = isinh(ix)
  ⇒ −sinx = isinh(ix)
  ⇒ i2 sinx = isinh(ix)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


  Also we can replace x by ix in
  sin(ix) = isinh(x), we get
  sin i(ix) = isinh(ix)
  ⇒ sin(−x) = isinh(ix)
  ⇒ −sinx = isinh(ix)
  ⇒ i2 sinx = isinh(ix)
∴ sinh(ix) = isinx


                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cosh(ix) = cos(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cosh(ix) = cos(x)
  tanh(ix) = i tan(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cosh(ix) = cos(x)
  tanh(ix) = i tan(x)
  cosech(ix) = −i cosec(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cosh(ix) = cos(x)
  tanh(ix) = i tan(x)
  cosech(ix) = −i cosec(x)
  sech(ix) = sec(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cosh(ix) = cos(x)
  tanh(ix) = i tan(x)
  cosech(ix) = −i cosec(x)
  sech(ix) = sec(x)
  coth(ix) = −i cot(x)



                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Identities of Hyperbolic functions can be derived
  from the identities of circular functions by
  replacing x by ix




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Identities of Hyperbolic functions can be derived
  from the identities of circular functions by
  replacing x by ix
  Now sin2 x + cos2 x = 1




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Identities of Hyperbolic functions can be derived
  from the identities of circular functions by
  replacing x by ix
  Now sin2 x + cos2 x = 1
  sin2 (ix) + cos2 (ix) = 1 ⇒
  [i sinh(x)]2 + [cosh(x)]2 = 1




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Identities of Hyperbolic functions can be derived
  from the identities of circular functions by
  replacing x by ix
  Now sin2 x + cos2 x = 1
  sin2 (ix) + cos2 (ix) = 1 ⇒
  [i sinh(x)]2 + [cosh(x)]2 = 1
  ⇒ cosh2 (x) − sinh2 (x) = 1




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Identities of Hyperbolic functions can be derived
  from the identities of circular functions by
  replacing x by ix
  Now sin2 x + cos2 x = 1
  sin2 (ix) + cos2 (ix) = 1 ⇒
  [i sinh(x)]2 + [cosh(x)]2 = 1
  ⇒ cosh2 (x) − sinh2 (x) = 1
  Similarly we can obtain




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Identities of Hyperbolic functions can be derived
  from the identities of circular functions by
  replacing x by ix
  Now sin2 x + cos2 x = 1
  sin2 (ix) + cos2 (ix) = 1 ⇒
  [i sinh(x)]2 + [cosh(x)]2 = 1
  ⇒ cosh2 (x) − sinh2 (x) = 1
  Similarly we can obtain
  sech2 (x) = 1 − tanh2 (x)


                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Identities of Hyperbolic functions can be derived
  from the identities of circular functions by
  replacing x by ix
  Now sin2 x + cos2 x = 1
  sin2 (ix) + cos2 (ix) = 1 ⇒
  [i sinh(x)]2 + [cosh(x)]2 = 1
  ⇒ cosh2 (x) − sinh2 (x) = 1
  Similarly we can obtain
  sech2 (x) = 1 − tanh2 (x)
  cosech2 (x) = coth2 (x) − 1

                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix




                     N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) =




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)




                     N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) =




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 =




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) =




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x)




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) =




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)

  tanh(3x) =




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)
             3tanh(x) + tanh3 (x)
  tanh(3x) =
                 1 + 3tanh2 (x)




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)
             3tanh(x) + tanh3 (x)
  tanh(3x) =
                 1 + 3tanh2 (x)

  sinh(x) =




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)
             3tanh(x) + tanh3 (x)
  tanh(3x) =
                 1 + 3tanh2 (x)
                       x
              2 tanh
  sinh(x) =            2
                     2
                         x
            1 − tanh
                         2




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)
             3tanh(x) + tanh3 (x)
  tanh(3x) =
                 1 + 3tanh2 (x)
                       x
              2 tanh
  sinh(x) =            2
                     2
                         x , cosh(x) =
            1 − tanh
                         2




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)
             3tanh(x) + tanh3 (x)
  tanh(3x) =
                 1 + 3tanh2 (x)
                       x                           x
              2 tanh                    1 + tanh2
  sinh(x) =            2                           2
                     2
                         x , cosh(x) =          2
                                                   x
            1 − tanh                    1 − tanh
                         2                         2




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)
             3tanh(x) + tanh3 (x)
  tanh(3x) =
                 1 + 3tanh2 (x)
                       x                           x
              2 tanh                    1 + tanh2
  sinh(x) =            2                           2
                     2
                         x , cosh(x) =          2
                                                   x
            1 − tanh                    1 − tanh
                         2                         2

  tanh(x) =


                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)
             3tanh(x) + tanh3 (x)
  tanh(3x) =
                 1 + 3tanh2 (x)
                       x                           x
              2 tanh                    1 + tanh2
  sinh(x) =            2                           2
                     2
                         x , cosh(x) =          2
                                                   x
            1 − tanh                    1 − tanh
                         2                         2
                       x
              2tanh
  tanh(x) =            2
                         x
            1 + tanh2
                         2
                      N. B. Vyas   Complex Numbers - 2
Logarithm of a Complex Number




  If z = ew , then we write w = lnz, called the natural logarithm of
  z. Thus the natural logarithmic function is the inverse of the
  exponential function and can be defined by
  w = lnz = ln(rei(θ+2kπ) ) = lnr + i(θ + 2kπ)
  ∀z , logz = ln|z| + iarg(z)




                      N. B. Vyas   Complex Numbers - 2

Complex numbers 2

  • 1.
    Complex Numbers -2 N. B. Vyas Department of Mathematics, Atmiya Institute of Tech. and Science, Rajkot (Guj.) N. B. Vyas Complex Numbers - 2
  • 2.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sin nθ and Cos nθ N. B. Vyas Complex Numbers - 2
  • 3.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer N. B. Vyas Complex Numbers - 2
  • 4.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n N. B. Vyas Complex Numbers - 2
  • 5.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ N. B. Vyas Complex Numbers - 2
  • 6.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) N. B. Vyas Complex Numbers - 2
  • 7.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + N. B. Vyas Complex Numbers - 2
  • 8.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) N. B. Vyas Complex Numbers - 2
  • 9.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) = ( n C0 cosn θ N. B. Vyas Complex Numbers - 2
  • 10.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .) N. B. Vyas Complex Numbers - 2
  • 11.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .) + i ( n C1 cosn−1 θ sinθ N. B. Vyas Complex Numbers - 2
  • 12.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .) + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .) N. B. Vyas Complex Numbers - 2
  • 13.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .) + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .) By comparing real and imaginary parts on both sides, we get N. B. Vyas Complex Numbers - 2
  • 14.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .) + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .) By comparing real and imaginary parts on both sides, we get cos nθ = n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . . N. B. Vyas Complex Numbers - 2
  • 15.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .) + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .) By comparing real and imaginary parts on both sides, we get cos nθ = n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . . sin nθ = n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . . N. B. Vyas Complex Numbers - 2
  • 16.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sinn θ and Cosn θ N. B. Vyas Complex Numbers - 2
  • 17.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then N. B. Vyas Complex Numbers - 2
  • 18.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 Also = cosθ − isinθ z N. B. Vyas Complex Numbers - 2
  • 19.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = z z N. B. Vyas Complex Numbers - 2
  • 20.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z N. B. Vyas Complex Numbers - 2
  • 21.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 ∴z+ = z N. B. Vyas Complex Numbers - 2
  • 22.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 ∴ z + = 2cosθ ⇒ cosθ = z N. B. Vyas Complex Numbers - 2
  • 23.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z N. B. Vyas Complex Numbers - 2
  • 24.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 and z n + n = z N. B. Vyas Complex Numbers - 2
  • 25.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 and z n + n = 2cos nθ ⇒ cos nθ = z N. B. Vyas Complex Numbers - 2
  • 26.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z N. B. Vyas Complex Numbers - 2
  • 27.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z cosn θ = N. B. Vyas Complex Numbers - 2
  • 28.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z 1 1 n cosn θ = n z + 2 z N. B. Vyas Complex Numbers - 2
  • 29.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z 1 1 n cosn θ = n z + 2 z similarly sinθ = N. B. Vyas Complex Numbers - 2
  • 30.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z 1 1 n cosn θ = n z + 2 z 1 1 similarly sinθ = z− and sin nθ = 2i z N. B. Vyas Complex Numbers - 2
  • 31.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z 1 1 n cosn θ = n z + 2 z 1 1 1 1 similarly sinθ = z− and sin nθ = zn − n 2i z 2i z N. B. Vyas Complex Numbers - 2
  • 32.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z 1 1 n cosn θ = n z + 2 z 1 1 1 1 similarly sinθ = z− and sin nθ = zn − n 2i z 2i z sinn θ = N. B. Vyas Complex Numbers - 2
  • 33.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z 1 1 n cosn θ = n z + 2 z 1 1 1 1 similarly sinθ = z− and sin nθ = zn − n 2i z 2i z 1 1 n sinn θ = z− (2i)n z N. B. Vyas Complex Numbers - 2
  • 34.
    Expansion Using DeMoivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z 1 1 n cosn θ = n z + 2 z 1 1 1 1 similarly sinθ = z− and sin nθ = zn − n 2i z 2i z 1 1 n sinn θ = z− (2i)n z N. B. Vyas Complex Numbers - 2
  • 35.
    Examples Ex. Prove thatcos4θ = cos4 θ − 6cos2 θsin2 θ + sin4 θ N. B. Vyas Complex Numbers - 2
  • 36.
    Examples Ex. Using DeMoivre’s theorem prove the following: N. B. Vyas Complex Numbers - 2
  • 37.
    Examples Ex. Using DeMoivre’s theorem prove the following: (i) cos6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1 N. B. Vyas Complex Numbers - 2
  • 38.
    Examples Ex. Using DeMoivre’s theorem prove the following: (i) cos6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1 (ii) sin6θ = 3 sin2θ − 4 sin3 2θ N. B. Vyas Complex Numbers - 2
  • 39.
    Examples Ex. Using DeMoivre’s theorem prove the following: (i) cos6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1 (ii) sin6θ = 3 sin2θ − 4 sin3 2θ 6 tanθ − 20 tan3 θ + 6 tan5 θ (iii) tan6θ = 1 − 15 tan2 θ + 15 tan4 θ − tan6 θ N. B. Vyas Complex Numbers - 2
  • 40.
    Examples Ex. Prove that 1 cos8 θ = 7 (cos8θ +8cos6θ +28cos4θ +56cos2θ +35) 2 N. B. Vyas Complex Numbers - 2
  • 41.
    Examples Sol.: We knowthat, N. B. Vyas Complex Numbers - 2
  • 42.
    Examples Sol.: We knowthat, 8 8 1 (2cosθ) = z+ z N. B. Vyas Complex Numbers - 2
  • 43.
    Examples Sol.: We knowthat, 8 8 1 (2cosθ) = z+ z = 8 C0 z 8 + N. B. Vyas Complex Numbers - 2
  • 44.
    Examples Sol.: We knowthat, 8 8 1 (2cosθ) = z+ z 1 = 8 C 0 z 8 + 8 C1 z 7 + z N. B. Vyas Complex Numbers - 2
  • 45.
    Examples Sol.: We knowthat, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z N. B. Vyas Complex Numbers - 2
  • 46.
    Examples Sol.: We knowthat, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 8 5 1 C3 z + z N. B. Vyas Complex Numbers - 2
  • 47.
    Examples Sol.: We knowthat, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 8 5 1 8 4 1 C3 z + C4 z + z z N. B. Vyas Complex Numbers - 2
  • 48.
    Examples Sol.: We knowthat, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z N. B. Vyas Complex Numbers - 2
  • 49.
    Examples Sol.: We knowthat, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z N. B. Vyas Complex Numbers - 2
  • 50.
    Examples Sol.: We knowthat, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z = z8 + N. B. Vyas Complex Numbers - 2
  • 51.
    Examples Sol.: We knowthat, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z = z 8 + 8z 6 + N. B. Vyas Complex Numbers - 2
  • 52.
    Examples Sol.: We knowthat, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z = z 8 + 8z 6 + 28z 4 + N. B. Vyas Complex Numbers - 2
  • 53.
    Examples Sol.: We knowthat, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z = z 8 + 8z 6 + 28z 4 + 56z 2 + N. B. Vyas Complex Numbers - 2
  • 54.
    Examples Sol.: We knowthat, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z 56 = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 + + z2 N. B. Vyas Complex Numbers - 2
  • 55.
    Examples Sol.: We knowthat, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z 56 28 = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 + + + z2 z4 N. B. Vyas Complex Numbers - 2
  • 56.
    Examples Sol.: We knowthat, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z 56 28 8 1 = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 + + 4+ 6+ 8 z2 z z z N. B. Vyas Complex Numbers - 2
  • 57.
    Examples Sol.: We knowthat, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z 56 28 8 1 = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 + + 4+ 6+ 8 z2 z z z N. B. Vyas Complex Numbers - 2
  • 58.
    Examples 1 = z8 + + z8 N. B. Vyas Complex Numbers - 2
  • 59.
    Examples 1 1 = z8 + + 8 z6 + + z8 z6 N. B. Vyas Complex Numbers - 2
  • 60.
    Examples 1 1 1 = z8 + + 8 z6 + + 28 z 4 + + z8 z6 z4 N. B. Vyas Complex Numbers - 2
  • 61.
    Examples 1 1 1 = z8 + + 8 z6 + 6 + 28 z 4 + + z8 z z4 1 56 z 2 + 2 + 70 z N. B. Vyas Complex Numbers - 2
  • 62.
    Examples 1 1 1 = z8 + + 8 z6 + 6 + 28 z 4 + + z8 z z4 1 56 z 2 + 2 + 70 z = 2cos8θ + N. B. Vyas Complex Numbers - 2
  • 63.
    Examples 1 1 1 = z8 + + 8 z6 + 6 + 28 z 4 + + z8 z z4 1 56 z 2 + 2 + 70 z = 2cos8θ + 16cos6θ + N. B. Vyas Complex Numbers - 2
  • 64.
    Examples 1 1 1 = z8 + + 8 z 6 + 6 + 28 z 4 + 4 + z8 z z 1 56 z 2 + 2 + 70 z = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ + N. B. Vyas Complex Numbers - 2
  • 65.
    Examples 1 1 1 = z8 + + 8 z 6 + 6 + 28 z 4 + 4 + z8 z z 1 56 z 2 + 2 + 70 z = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ + 70 N. B. Vyas Complex Numbers - 2
  • 66.
    Examples 1 1 1 = z8 + + 8 z 6 + 6 + 28 z 4 + 4 + z8 z z 1 56 z 2 + 2 + 70 z = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ + 70 1 ∴ cos8 θ = 7 2 N. B. Vyas Complex Numbers - 2
  • 67.
    Examples 1 1 1 = z8 + + 8 z 6 + 6 + 28 z 4 + 4 + z8 z z 1 56 z 2 + 2 + 70 z = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ + 70 1 ∴ cos8 θ = 7 (cos8θ +8cos6θ +28cos4θ +56cos2θ +35) 2 N. B. Vyas Complex Numbers - 2
  • 68.
    Circular Functions ofa Complex Numbers eix = cosx + isinx N. B. Vyas Complex Numbers - 2
  • 69.
    Circular Functions ofa Complex Numbers eix = cosx + isinx and e−ix = cosx − isinx N. B. Vyas Complex Numbers - 2
  • 70.
    Circular Functions ofa Complex Numbers eix = cosx + isinx and e−ix = cosx − isinx are known as Euler’s formula. N. B. Vyas Complex Numbers - 2
  • 71.
    Circular Functions ofa Complex Numbers eix = cosx + isinx and e−ix = cosx − isinx are known as Euler’s formula. By adding, we get them, we get N. B. Vyas Complex Numbers - 2
  • 72.
    Circular Functions ofa Complex Numbers eix = cosx + isinx and e−ix = cosx − isinx are known as Euler’s formula. By adding, we get them, we get eix + e−ix cosx = 2 N. B. Vyas Complex Numbers - 2
  • 73.
    Circular Functions ofa Complex Numbers eix = cosx + isinx and e−ix = cosx − isinx are known as Euler’s formula. By adding, we get them, we get eix + e−ix eix − e−ix cosx = and sinx = 2 2i N. B. Vyas Complex Numbers - 2
  • 74.
    Circular Functions ofa Complex Numbers eix = cosx + isinx and e−ix = cosx − isinx are known as Euler’s formula. By adding, we get them, we get eix + e−ix eix − e−ix cosx = and sinx = 2 2i are known as circular functions and are true for all real values of x. N. B. Vyas Complex Numbers - 2
  • 75.
    Circular Functions ofa Complex Numbers eix = cosx + isinx and e−ix = cosx − isinx are known as Euler’s formula. By adding, we get them, we get eix + e−ix eix − e−ix cosx = and sinx = 2 2i are known as circular functions and are true for all real values of x. They are also known as Euler’s exponential form of cosines and sines. N. B. Vyas Complex Numbers - 2
  • 76.
    Hyperbolic functions The hyperbolic sine of x is denoted by sinh(x), N. B. Vyas Complex Numbers - 2
  • 77.
    Hyperbolic functions The hyperbolic sine of x is denoted by sinh(x), the hyperbolic cosine of x is defined by cosh(x) N. B. Vyas Complex Numbers - 2
  • 78.
    Hyperbolic functions The hyperbolic sine of x is denoted by sinh(x), the hyperbolic cosine of x is defined by cosh(x) and hyperbolic tangent of x is defined by tanh(x) N. B. Vyas Complex Numbers - 2
  • 79.
    Hyperbolic functions The hyperbolic sine of x is denoted by sinh(x), the hyperbolic cosine of x is defined by cosh(x) and hyperbolic tangent of x is defined by tanh(x) and are defined respectively as N. B. Vyas Complex Numbers - 2
  • 80.
    Hyperbolic functions The hyperbolic sine of x is denoted by sinh(x), the hyperbolic cosine of x is defined by cosh(x) and hyperbolic tangent of x is defined by tanh(x) and are defined respectively as ex − e−x sinh(x) = 2 N. B. Vyas Complex Numbers - 2
  • 81.
    Hyperbolic functions The hyperbolic sine of x is denoted by sinh(x), the hyperbolic cosine of x is defined by cosh(x) and hyperbolic tangent of x is defined by tanh(x) and are defined respectively as ex − e−x sinh(x) = 2 ex + e−x cosh(x) = 2 N. B. Vyas Complex Numbers - 2
  • 82.
    Hyperbolic functions The hyperbolic sine of x is denoted by sinh(x), the hyperbolic cosine of x is defined by cosh(x) and hyperbolic tangent of x is defined by tanh(x) and are defined respectively as ex − e−x sinh(x) = 2 ex + e−x cosh(x) = 2 ex − e−x and tanh(x) = x ;x R e + e−x N. B. Vyas Complex Numbers - 2
  • 83.
    Hyperbolic functions The reciprocals of these functions are defined as below N. B. Vyas Complex Numbers - 2
  • 84.
    Hyperbolic functions The reciprocals of these functions are defined as below 2 cosech(x) = x e − e−x N. B. Vyas Complex Numbers - 2
  • 85.
    Hyperbolic functions The reciprocals of these functions are defined as below 2 cosech(x) = x e − e−x 2 sech(x) = x e − e−x N. B. Vyas Complex Numbers - 2
  • 86.
    Hyperbolic functions The reciprocals of these functions are defined as below 2 cosech(x) = x e − e−x 2 sech(x) = x e − e−x ex + e−x and coth(x) = x e − e−x N. B. Vyas Complex Numbers - 2
  • 87.
    Relation between Circular& Hyperbolic functions eix − e−ix We know that sinx = 2i N. B. Vyas Complex Numbers - 2
  • 88.
    Relation between Circular& Hyperbolic functions eix − e−ix We know that sinx = 2i replacing x by ix N. B. Vyas Complex Numbers - 2
  • 89.
    Relation between Circular& Hyperbolic functions eix − e−ix We know that sinx = 2i replacing x by ix ei(ix) − e−i(ix) e−x − ex sin(ix) = = 2i 2i N. B. Vyas Complex Numbers - 2
  • 90.
    Relation between Circular& Hyperbolic functions eix − e−ix We know that sinx = 2i replacing x by ix ei(ix) − e−i(ix) e−x − ex sin(ix) = = 2i 2i x −x x −x e −e e −e =− =i 2i 2 N. B. Vyas Complex Numbers - 2
  • 91.
    Relation between Circular& Hyperbolic functions eix − e−ix We know that sinx = 2i replacing x by ix ei(ix) − e−i(ix) e−x − ex sin(ix) = = 2i 2i x −x x −x e −e e −e =− =i 2i 2 ∴ sin(ix) = isinh(x) N. B. Vyas Complex Numbers - 2
  • 92.
    Relation between Circular& Hyperbolic functions Similarly, we can prove N. B. Vyas Complex Numbers - 2
  • 93.
    Relation between Circular& Hyperbolic functions Similarly, we can prove cos(ix) = cosh(x) N. B. Vyas Complex Numbers - 2
  • 94.
    Relation between Circular& Hyperbolic functions Similarly, we can prove cos(ix) = cosh(x) tan(ix) = i tanh(x) N. B. Vyas Complex Numbers - 2
  • 95.
    Relation between Circular& Hyperbolic functions Similarly, we can prove cos(ix) = cosh(x) tan(ix) = i tanh(x) cosec(ix) = −i cosech(x) N. B. Vyas Complex Numbers - 2
  • 96.
    Relation between Circular& Hyperbolic functions Similarly, we can prove cos(ix) = cosh(x) tan(ix) = i tanh(x) cosec(ix) = −i cosech(x) sec(ix) = sech(x) N. B. Vyas Complex Numbers - 2
  • 97.
    Relation between Circular& Hyperbolic functions Similarly, we can prove cos(ix) = cosh(x) tan(ix) = i tanh(x) cosec(ix) = −i cosech(x) sec(ix) = sech(x) cot(ix) = −i coth(x) N. B. Vyas Complex Numbers - 2
  • 98.
    Relation between Circular& Hyperbolic functions Also we can replace x by ix in N. B. Vyas Complex Numbers - 2
  • 99.
    Relation between Circular& Hyperbolic functions Also we can replace x by ix in sin(ix) = isinh(x), we get N. B. Vyas Complex Numbers - 2
  • 100.
    Relation between Circular& Hyperbolic functions Also we can replace x by ix in sin(ix) = isinh(x), we get sin i(ix) = isinh(ix) N. B. Vyas Complex Numbers - 2
  • 101.
    Relation between Circular& Hyperbolic functions Also we can replace x by ix in sin(ix) = isinh(x), we get sin i(ix) = isinh(ix) ⇒ sin(−x) = isinh(ix) N. B. Vyas Complex Numbers - 2
  • 102.
    Relation between Circular& Hyperbolic functions Also we can replace x by ix in sin(ix) = isinh(x), we get sin i(ix) = isinh(ix) ⇒ sin(−x) = isinh(ix) ⇒ −sinx = isinh(ix) N. B. Vyas Complex Numbers - 2
  • 103.
    Relation between Circular& Hyperbolic functions Also we can replace x by ix in sin(ix) = isinh(x), we get sin i(ix) = isinh(ix) ⇒ sin(−x) = isinh(ix) ⇒ −sinx = isinh(ix) ⇒ i2 sinx = isinh(ix) N. B. Vyas Complex Numbers - 2
  • 104.
    Relation between Circular& Hyperbolic functions Also we can replace x by ix in sin(ix) = isinh(x), we get sin i(ix) = isinh(ix) ⇒ sin(−x) = isinh(ix) ⇒ −sinx = isinh(ix) ⇒ i2 sinx = isinh(ix) ∴ sinh(ix) = isinx N. B. Vyas Complex Numbers - 2
  • 105.
    Relation between Circular& Hyperbolic functions Similarly, we can prove N. B. Vyas Complex Numbers - 2
  • 106.
    Relation between Circular& Hyperbolic functions Similarly, we can prove cosh(ix) = cos(x) N. B. Vyas Complex Numbers - 2
  • 107.
    Relation between Circular& Hyperbolic functions Similarly, we can prove cosh(ix) = cos(x) tanh(ix) = i tan(x) N. B. Vyas Complex Numbers - 2
  • 108.
    Relation between Circular& Hyperbolic functions Similarly, we can prove cosh(ix) = cos(x) tanh(ix) = i tan(x) cosech(ix) = −i cosec(x) N. B. Vyas Complex Numbers - 2
  • 109.
    Relation between Circular& Hyperbolic functions Similarly, we can prove cosh(ix) = cos(x) tanh(ix) = i tan(x) cosech(ix) = −i cosec(x) sech(ix) = sec(x) N. B. Vyas Complex Numbers - 2
  • 110.
    Relation between Circular& Hyperbolic functions Similarly, we can prove cosh(ix) = cos(x) tanh(ix) = i tan(x) cosech(ix) = −i cosec(x) sech(ix) = sec(x) coth(ix) = −i cot(x) N. B. Vyas Complex Numbers - 2
  • 111.
    Hyperbolic Identities Identities of Hyperbolic functions can be derived from the identities of circular functions by replacing x by ix N. B. Vyas Complex Numbers - 2
  • 112.
    Hyperbolic Identities Identities of Hyperbolic functions can be derived from the identities of circular functions by replacing x by ix Now sin2 x + cos2 x = 1 N. B. Vyas Complex Numbers - 2
  • 113.
    Hyperbolic Identities Identities of Hyperbolic functions can be derived from the identities of circular functions by replacing x by ix Now sin2 x + cos2 x = 1 sin2 (ix) + cos2 (ix) = 1 ⇒ [i sinh(x)]2 + [cosh(x)]2 = 1 N. B. Vyas Complex Numbers - 2
  • 114.
    Hyperbolic Identities Identities of Hyperbolic functions can be derived from the identities of circular functions by replacing x by ix Now sin2 x + cos2 x = 1 sin2 (ix) + cos2 (ix) = 1 ⇒ [i sinh(x)]2 + [cosh(x)]2 = 1 ⇒ cosh2 (x) − sinh2 (x) = 1 N. B. Vyas Complex Numbers - 2
  • 115.
    Hyperbolic Identities Identities of Hyperbolic functions can be derived from the identities of circular functions by replacing x by ix Now sin2 x + cos2 x = 1 sin2 (ix) + cos2 (ix) = 1 ⇒ [i sinh(x)]2 + [cosh(x)]2 = 1 ⇒ cosh2 (x) − sinh2 (x) = 1 Similarly we can obtain N. B. Vyas Complex Numbers - 2
  • 116.
    Hyperbolic Identities Identities of Hyperbolic functions can be derived from the identities of circular functions by replacing x by ix Now sin2 x + cos2 x = 1 sin2 (ix) + cos2 (ix) = 1 ⇒ [i sinh(x)]2 + [cosh(x)]2 = 1 ⇒ cosh2 (x) − sinh2 (x) = 1 Similarly we can obtain sech2 (x) = 1 − tanh2 (x) N. B. Vyas Complex Numbers - 2
  • 117.
    Hyperbolic Identities Identities of Hyperbolic functions can be derived from the identities of circular functions by replacing x by ix Now sin2 x + cos2 x = 1 sin2 (ix) + cos2 (ix) = 1 ⇒ [i sinh(x)]2 + [cosh(x)]2 = 1 ⇒ cosh2 (x) − sinh2 (x) = 1 Similarly we can obtain sech2 (x) = 1 − tanh2 (x) cosech2 (x) = coth2 (x) − 1 N. B. Vyas Complex Numbers - 2
  • 118.
    Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix N. B. Vyas Complex Numbers - 2
  • 119.
    Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = N. B. Vyas Complex Numbers - 2
  • 120.
    Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) N. B. Vyas Complex Numbers - 2
  • 121.
    Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = N. B. Vyas Complex Numbers - 2
  • 122.
    Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = N. B. Vyas Complex Numbers - 2
  • 123.
    Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) N. B. Vyas Complex Numbers - 2
  • 124.
    Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = N. B. Vyas Complex Numbers - 2
  • 125.
    Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) N. B. Vyas Complex Numbers - 2
  • 126.
    Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = N. B. Vyas Complex Numbers - 2
  • 127.
    Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) N. B. Vyas Complex Numbers - 2
  • 128.
    Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) tanh(3x) = N. B. Vyas Complex Numbers - 2
  • 129.
    Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) 3tanh(x) + tanh3 (x) tanh(3x) = 1 + 3tanh2 (x) N. B. Vyas Complex Numbers - 2
  • 130.
    Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) 3tanh(x) + tanh3 (x) tanh(3x) = 1 + 3tanh2 (x) sinh(x) = N. B. Vyas Complex Numbers - 2
  • 131.
    Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) 3tanh(x) + tanh3 (x) tanh(3x) = 1 + 3tanh2 (x) x 2 tanh sinh(x) = 2 2 x 1 − tanh 2 N. B. Vyas Complex Numbers - 2
  • 132.
    Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) 3tanh(x) + tanh3 (x) tanh(3x) = 1 + 3tanh2 (x) x 2 tanh sinh(x) = 2 2 x , cosh(x) = 1 − tanh 2 N. B. Vyas Complex Numbers - 2
  • 133.
    Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) 3tanh(x) + tanh3 (x) tanh(3x) = 1 + 3tanh2 (x) x x 2 tanh 1 + tanh2 sinh(x) = 2 2 2 x , cosh(x) = 2 x 1 − tanh 1 − tanh 2 2 N. B. Vyas Complex Numbers - 2
  • 134.
    Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) 3tanh(x) + tanh3 (x) tanh(3x) = 1 + 3tanh2 (x) x x 2 tanh 1 + tanh2 sinh(x) = 2 2 2 x , cosh(x) = 2 x 1 − tanh 1 − tanh 2 2 tanh(x) = N. B. Vyas Complex Numbers - 2
  • 135.
    Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) 3tanh(x) + tanh3 (x) tanh(3x) = 1 + 3tanh2 (x) x x 2 tanh 1 + tanh2 sinh(x) = 2 2 2 x , cosh(x) = 2 x 1 − tanh 1 − tanh 2 2 x 2tanh tanh(x) = 2 x 1 + tanh2 2 N. B. Vyas Complex Numbers - 2
  • 136.
    Logarithm of aComplex Number If z = ew , then we write w = lnz, called the natural logarithm of z. Thus the natural logarithmic function is the inverse of the exponential function and can be defined by w = lnz = ln(rei(θ+2kπ) ) = lnr + i(θ + 2kπ) ∀z , logz = ln|z| + iarg(z) N. B. Vyas Complex Numbers - 2