SlideShare a Scribd company logo
1 of 136
Download to read offline
Complex Numbers - 2

          N. B. Vyas
    Department of Mathematics,
Atmiya Institute of Tech. and Science,
            Rajkot (Guj.)




      N. B. Vyas     Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ




               N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer




               N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n




               N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ




               N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ)




               N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 +




               N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)




                N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)
  = ( n C0 cosn θ




                N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)
  = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .)




                N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)
  = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .)
     + i ( n C1 cosn−1 θ sinθ




                N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)
  = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .)
     + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .)




                    N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)
  = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .)
     + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .)
  By comparing real and imaginary parts on both
  sides, we get


                    N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)
  = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .)
     + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .)
  By comparing real and imaginary parts on both
  sides, we get
  cos nθ = n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .
                    N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)
  = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .)
     + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .)
  By comparing real and imaginary parts on both
  sides, we get
  cos nθ = n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .
  sin nθ = n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .
                    N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ




                   N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then




                     N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1
  Also = cosθ − isinθ
       z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n =
       z                     z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z
        1
  ∴z+ =
        z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z
        1
  ∴ z + = 2cosθ ⇒ cosθ =
        z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z
        1                    1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
        z                    2       z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
            1
  and z n + n =
           z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
            1
  and z n + n = 2cos nθ ⇒ cos nθ =
           z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
            1                         1         1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
           z                          2        z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
            1                         1         1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
           z                          2        z

  cosn θ =




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
        1                     1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
        z                    z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
             1                        1         1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
            z                         2        z
            1      1 n
  cosn θ = n z +
           2       z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
        1                     1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
        z                    z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
             1                        1         1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
            z                         2        z
            1      1 n
  cosn θ = n z +
           2       z

  similarly sinθ =




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
        1                     1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
        z                    z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
             1                        1         1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
            z                         2        z
            1       1 n
  cosn θ = n z +
           2        z
                   1       1
  similarly sinθ =     z−       and sin nθ =
                   2i      z



                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
        1                     1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
        z                    z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
             1                        1          1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
            z                         2         z
            1       1 n
  cosn θ = n z +
           2        z
                   1       1                   1        1
  similarly sinθ =     z−       and sin nθ =       zn − n
                   2i      z                  2i       z



                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
        1                     1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
        z                    z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
             1                        1          1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
            z                         2         z
            1       1 n
  cosn θ = n z +
           2        z
                   1       1                   1        1
  similarly sinθ =     z−       and sin nθ =       zn − n
                   2i      z                  2i       z

  sinn θ =

                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
        1                     1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
        z                    z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
              1                       1          1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
             z                        2         z
            1       1 n
  cosn θ = n z +
           2        z
                    1      1                   1        1
  similarly sinθ =     z−       and sin nθ =       zn − n
                   2i      z                  2i       z
               1      1 n
  sinn θ =         z−
            (2i)n     z
                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
        1                     1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
        z                    z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
              1                       1          1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
             z                        2         z
            1       1 n
  cosn θ = n z +
           2        z
                    1      1                   1        1
  similarly sinθ =     z−       and sin nθ =       zn − n
                   2i      z                  2i       z
               1      1 n
  sinn θ =         z−
            (2i)n     z
                      N. B. Vyas   Complex Numbers - 2
Examples




Ex. Prove that cos4θ = cos4 θ − 6cos2 θsin2 θ + sin4 θ




                        N. B. Vyas   Complex Numbers - 2
Examples




Ex. Using De Moivre’s theorem prove the following:




                       N. B. Vyas   Complex Numbers - 2
Examples




Ex. Using De Moivre’s theorem prove the following:
    (i) cos6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1




                          N. B. Vyas   Complex Numbers - 2
Examples




Ex. Using De Moivre’s theorem prove the following:
    (i) cos6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1
    (ii) sin6θ = 3 sin2θ − 4 sin3 2θ




                          N. B. Vyas   Complex Numbers - 2
Examples




Ex. Using De Moivre’s theorem prove the following:
    (i) cos6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1
    (ii) sin6θ = 3 sin2θ − 4 sin3 2θ
                     6 tanθ − 20 tan3 θ + 6 tan5 θ
    (iii) tan6θ =
                  1 − 15 tan2 θ + 15 tan4 θ − tan6 θ




                          N. B. Vyas   Complex Numbers - 2
Examples




Ex. Prove that
             1
    cos8 θ = 7 (cos8θ +8cos6θ +28cos4θ +56cos2θ +35)
            2




                  N. B. Vyas   Complex Numbers - 2
Examples

Sol.: We know that,




                      N. B. Vyas   Complex Numbers - 2
Examples

Sol.: We know that,
                            8
           8        1
    (2cosθ) =    z+
                    z




                      N. B. Vyas   Complex Numbers - 2
Examples

Sol.: We know that,
                            8
           8          1
    (2cosθ) =      z+
                      z

    = 8 C0 z 8 +




                      N. B. Vyas   Complex Numbers - 2
Examples

Sol.: We know that,
                             8
            8          1
    (2cosθ) =       z+
                       z
                             1
    = 8 C 0 z 8 + 8 C1 z 7          +
                             z




                       N. B. Vyas   Complex Numbers - 2
Examples

Sol.: We know that,
                            8
           8           1
    (2cosθ) =       z+
                       z
                                                          2
       8    8   8      7    1         8        6     1
    = C 0 z + C1 z                 + C2 z                     +
                            z                        z




                      N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                        2
          8         8       8        7    1         8        6     1
    = C 0 z + C1 z                               + C2 z                     +
                                          z                        z
                            3
     8          5       1
         C3 z                   +
                        z




                                    N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                      2
          8         8       8         7   1        8       6     1
    = C 0 z + C1 z                             + C2 z                     +
                                          z                      z
                            3                      4
     8          5       1         8       4    1
         C3 z                   + C4 z                 +
                        z                      z




                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                          2
          8         8       8         7   1        8       6     1
    = C 0 z + C1 z                             + C2 z                         +
                                          z                      z
                            3                      4                              5
     8          5       1         8       4    1          8           3       1
         C3 z                   + C4 z                 + C5 z                         +
                        z                      z                              z




                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                             2
          8         8       8         7   1         8            6   1
    = C 0 z + C1 z                             + C2 z                            +
                                          z                          z
                            3                           4                            5
     8          5       1         8       4     1                8       3       1
         C3 z                   + C4 z                      + C5 z                       +
                        z                       z                                z
                            6                       7                            8
     8          2       1         8            1             8           1
         C6 z                   + C7 z                  + C8
                        z                      z                         z



                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                             2
          8         8       8         7   1         8            6   1
    = C 0 z + C1 z                             + C2 z                            +
                                          z                          z
                            3                           4                            5
     8          5       1         8       4     1                8       3       1
         C3 z                   + C4 z                      + C5 z                       +
                        z                       z                                z
                            6                       7                            8
     8          2       1         8            1             8           1
         C6 z                   + C7 z                  + C8
                        z                      z                         z
    = z8 +

                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                             2
          8         8       8         7   1         8            6   1
    = C 0 z + C1 z                             + C2 z                            +
                                          z                          z
                            3                           4                            5
     8          5       1         8       4     1                8       3       1
         C3 z                   + C4 z                      + C5 z                       +
                        z                       z                                z
                            6                       7                            8
     8          2       1         8            1             8           1
         C6 z                   + C7 z                  + C8
                        z                      z                         z
    = z 8 + 8z 6 +

                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                             2
          8         8       8         7   1         8            6   1
    = C 0 z + C1 z                             + C2 z                            +
                                          z                          z
                            3                           4                            5
     8          5       1         8       4     1                8       3       1
         C3 z                   + C4 z                      + C5 z                       +
                        z                       z                                z
                            6                       7                            8
     8          2       1         8            1             8           1
         C6 z                   + C7 z                  + C8
                        z                      z                         z
    = z 8 + 8z 6 + 28z 4 +

                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                             2
          8         8       8         7   1         8            6   1
    = C 0 z + C1 z                             + C2 z                            +
                                          z                          z
                            3                           4                            5
     8          5       1         8       4     1                8       3       1
         C3 z                   + C4 z                      + C5 z                       +
                        z                       z                                z
                            6                       7                            8
     8          2       1         8            1             8           1
         C6 z                   + C7 z                  + C8
                        z                      z                         z
    = z 8 + 8z 6 + 28z 4 + 56z 2 +

                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                              2
          8         8       8         7   1         8            6    1
    = C 0 z + C1 z                             + C2 z                             +
                                          z                           z
                            3                           4                             5
     8          5       1         8       4     1                8        3       1
         C3 z                   + C4 z                      + C5 z                        +
                        z                       z                                 z
                            6                       7                             8
     8          2       1         8            1             8            1
         C6 z                   + C7 z                  + C8
                        z                      z                          z
                                                                     56
    = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 +                                 +
                                                                     z2
                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                              2
          8         8       8         7   1         8            6    1
    = C 0 z + C1 z                             + C2 z                             +
                                          z                           z
                            3                           4                             5
     8          5       1         8       4     1                8        3       1
         C3 z                   + C4 z                      + C5 z                        +
                        z                       z                                 z
                            6                       7                             8
     8          2       1         8            1             8            1
         C6 z                   + C7 z                  + C8
                        z                      z                          z
                                                                     56 28
    = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 +                                +   +
                                                                     z2 z4
                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                              2
          8         8       8         7   1         8            6    1
    = C 0 z + C1 z                             + C2 z                             +
                                          z                           z
                            3                           4                             5
     8          5       1         8       4     1                8        3       1
         C3 z                   + C4 z                      + C5 z                        +
                        z                       z                                 z
                            6                       7                             8
     8          2       1         8            1             8            1
         C6 z                   + C7 z                  + C8
                        z                      z                          z
                                                                     56 28  8  1
    = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 +                                + 4+ 6+ 8
                                                                     z2 z  z  z
                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                              2
          8         8       8         7   1         8            6    1
    = C 0 z + C1 z                             + C2 z                             +
                                          z                           z
                            3                           4                             5
     8          5       1         8       4     1                8        3       1
         C3 z                   + C4 z                      + C5 z                        +
                        z                       z                                 z
                            6                       7                             8
     8          2       1         8            1             8            1
         C6 z                   + C7 z                  + C8
                        z                      z                          z
                                                                     56 28  8  1
    = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 +                                + 4+ 6+ 8
                                                                     z2 z  z  z
                                  N. B. Vyas    Complex Numbers - 2
Examples



             1
  =   z8 +        +
             z8




                      N. B. Vyas   Complex Numbers - 2
Examples



             1                  1
  =   z8 +        + 8 z6 +            +
             z8                 z6




                   N. B. Vyas   Complex Numbers - 2
Examples



             1                  1                     1
  =   z8 +        + 8 z6 +            + 28 z 4 +           +
             z8                 z6                    z4




                   N. B. Vyas   Complex Numbers - 2
Examples



          1           1                          1
  =   z8 +   + 8 z6 + 6          + 28 z 4 +           +
          z8         z                           z4
           1
  56 z 2 + 2 + 70
          z




              N. B. Vyas   Complex Numbers - 2
Examples



           1          1                          1
  =   z8 +   + 8 z6 + 6          + 28 z 4 +           +
          z8         z                           z4
           1
  56 z 2 + 2 + 70
           z
  = 2cos8θ +




              N. B. Vyas   Complex Numbers - 2
Examples



           1            1                         1
  =   z8 +     + 8 z6 + 6         + 28 z 4 +           +
          z8           z                          z4
           1
  56 z 2 + 2 + 70
           z
  = 2cos8θ + 16cos6θ +




               N. B. Vyas   Complex Numbers - 2
Examples



           1             1              1
  =   z8 +     + 8 z 6 + 6 + 28 z 4 + 4 +
          z8             z              z
           1
  56 z 2 + 2 + 70
           z
  = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ +




               N. B. Vyas   Complex Numbers - 2
Examples



           1             1              1
  =   z8 +     + 8 z 6 + 6 + 28 z 4 + 4 +
          z8             z              z
           1
  56 z 2 + 2 + 70
           z
  = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ + 70




                N. B. Vyas   Complex Numbers - 2
Examples



            1            1              1
  =   z8 +     + 8 z 6 + 6 + 28 z 4 + 4 +
           z8            z              z
            1
  56 z 2 + 2 + 70
           z
  = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ + 70
           1
∴ cos8 θ = 7
          2




                N. B. Vyas   Complex Numbers - 2
Examples



            1             1              1
  =   z8 +      + 8 z 6 + 6 + 28 z 4 + 4 +
           z8             z             z
            1
  56 z 2 + 2 + 70
           z
  = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ + 70
           1
∴ cos8 θ = 7 (cos8θ +8cos6θ +28cos4θ +56cos2θ +35)
          2




                 N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx




                 N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx and e−ix = cosx − isinx




                 N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx and e−ix = cosx − isinx
  are known as Euler’s formula.




                 N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx and e−ix = cosx − isinx
  are known as Euler’s formula.
  By adding, we get them, we get




                 N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx and e−ix = cosx − isinx
  are known as Euler’s formula.
  By adding, we get them, we get
          eix + e−ix
  cosx =
               2




                 N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx and e−ix = cosx − isinx
  are known as Euler’s formula.
  By adding, we get them, we get
          eix + e−ix            eix − e−ix
  cosx =             and sinx =
               2                    2i




                 N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx and e−ix = cosx − isinx
  are known as Euler’s formula.
  By adding, we get them, we get
           eix + e−ix            eix − e−ix
  cosx =              and sinx =
                2                    2i
  are known as circular functions and are true for
  all real values of x.




                N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx and e−ix = cosx − isinx
  are known as Euler’s formula.
  By adding, we get them, we get
           eix + e−ix            eix − e−ix
  cosx =              and sinx =
                2                    2i
  are known as circular functions and are true for
  all real values of x.
  They are also known as Euler’s exponential
  form of cosines and sines.


                N. B. Vyas   Complex Numbers - 2
Hyperbolic functions


  The hyperbolic sine of x is denoted by sinh(x),




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions


  The hyperbolic sine of x is denoted by sinh(x),
  the hyperbolic cosine of x is defined by cosh(x)




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions


  The hyperbolic sine of x is denoted by sinh(x),
  the hyperbolic cosine of x is defined by cosh(x)
  and hyperbolic tangent of x is defined by tanh(x)




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions


  The hyperbolic sine of x is denoted by sinh(x),
  the hyperbolic cosine of x is defined by cosh(x)
  and hyperbolic tangent of x is defined by tanh(x)
  and are defined respectively as




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions


  The hyperbolic sine of x is denoted by sinh(x),
  the hyperbolic cosine of x is defined by cosh(x)
  and hyperbolic tangent of x is defined by tanh(x)
  and are defined respectively as
            ex − e−x
  sinh(x) =
                2




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions


  The hyperbolic sine of x is denoted by sinh(x),
  the hyperbolic cosine of x is defined by cosh(x)
  and hyperbolic tangent of x is defined by tanh(x)
  and are defined respectively as
            ex − e−x
  sinh(x) =
                2
            ex + e−x
  cosh(x) =
                2




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions


  The hyperbolic sine of x is denoted by sinh(x),
  the hyperbolic cosine of x is defined by cosh(x)
  and hyperbolic tangent of x is defined by tanh(x)
  and are defined respectively as
            ex − e−x
  sinh(x) =
                2
            ex + e−x
  cosh(x) =
                2
                 ex − e−x
  and tanh(x) = x         ;x R
                  e + e−x


                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions



  The reciprocals of these functions are defined as
  below




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions



  The reciprocals of these functions are defined as
  below
                  2
  cosech(x) = x
              e − e−x




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions



  The reciprocals of these functions are defined as
  below
                  2
  cosech(x) = x
              e − e−x
                2
  sech(x) = x
            e − e−x




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions



  The reciprocals of these functions are defined as
  below
                  2
  cosech(x) = x
              e − e−x
                2
  sech(x) = x
            e − e−x
                 ex + e−x
  and coth(x) = x
                 e − e−x



                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


                      eix − e−ix
  We know that sinx =
                          2i




                N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


                      eix − e−ix
  We know that sinx =
                          2i
  replacing x by ix




                N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


                           eix − e−ix
  We know that sinx =
                               2i
  replacing x by ix
            ei(ix) − e−i(ix)    e−x − ex
  sin(ix) =                  =
                   2i              2i




                   N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


                            eix − e−ix
  We know that sinx =
                                2i
  replacing x by ix
             ei(ix) − e−i(ix)    e−x − ex
  sin(ix) =                   =
                    2i              2i
        x    −x         x      −x
       e −e            e −e
  =−             =i
          2i                2




                   N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


                            eix − e−ix
  We know that sinx =
                                2i
  replacing x by ix
             ei(ix) − e−i(ix)    e−x − ex
  sin(ix) =                   =
                    2i              2i
        x    −x         x      −x
       e −e            e −e
  =−             =i
          2i                2
  ∴ sin(ix) = isinh(x)



                   N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cos(ix) = cosh(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cos(ix) = cosh(x)
  tan(ix) = i tanh(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cos(ix) = cosh(x)
  tan(ix) = i tanh(x)
  cosec(ix) = −i cosech(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cos(ix) = cosh(x)
  tan(ix) = i tanh(x)
  cosec(ix) = −i cosech(x)
  sec(ix) = sech(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cos(ix) = cosh(x)
  tan(ix) = i tanh(x)
  cosec(ix) = −i cosech(x)
  sec(ix) = sech(x)
  cot(ix) = −i coth(x)



                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


  Also we can replace x by ix in




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


  Also we can replace x by ix in
  sin(ix) = isinh(x), we get




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


  Also we can replace x by ix in
  sin(ix) = isinh(x), we get
  sin i(ix) = isinh(ix)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


  Also we can replace x by ix in
  sin(ix) = isinh(x), we get
  sin i(ix) = isinh(ix)
  ⇒ sin(−x) = isinh(ix)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


  Also we can replace x by ix in
  sin(ix) = isinh(x), we get
  sin i(ix) = isinh(ix)
  ⇒ sin(−x) = isinh(ix)
  ⇒ −sinx = isinh(ix)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


  Also we can replace x by ix in
  sin(ix) = isinh(x), we get
  sin i(ix) = isinh(ix)
  ⇒ sin(−x) = isinh(ix)
  ⇒ −sinx = isinh(ix)
  ⇒ i2 sinx = isinh(ix)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


  Also we can replace x by ix in
  sin(ix) = isinh(x), we get
  sin i(ix) = isinh(ix)
  ⇒ sin(−x) = isinh(ix)
  ⇒ −sinx = isinh(ix)
  ⇒ i2 sinx = isinh(ix)
∴ sinh(ix) = isinx


                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cosh(ix) = cos(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cosh(ix) = cos(x)
  tanh(ix) = i tan(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cosh(ix) = cos(x)
  tanh(ix) = i tan(x)
  cosech(ix) = −i cosec(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cosh(ix) = cos(x)
  tanh(ix) = i tan(x)
  cosech(ix) = −i cosec(x)
  sech(ix) = sec(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cosh(ix) = cos(x)
  tanh(ix) = i tan(x)
  cosech(ix) = −i cosec(x)
  sech(ix) = sec(x)
  coth(ix) = −i cot(x)



                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Identities of Hyperbolic functions can be derived
  from the identities of circular functions by
  replacing x by ix




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Identities of Hyperbolic functions can be derived
  from the identities of circular functions by
  replacing x by ix
  Now sin2 x + cos2 x = 1




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Identities of Hyperbolic functions can be derived
  from the identities of circular functions by
  replacing x by ix
  Now sin2 x + cos2 x = 1
  sin2 (ix) + cos2 (ix) = 1 ⇒
  [i sinh(x)]2 + [cosh(x)]2 = 1




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Identities of Hyperbolic functions can be derived
  from the identities of circular functions by
  replacing x by ix
  Now sin2 x + cos2 x = 1
  sin2 (ix) + cos2 (ix) = 1 ⇒
  [i sinh(x)]2 + [cosh(x)]2 = 1
  ⇒ cosh2 (x) − sinh2 (x) = 1




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Identities of Hyperbolic functions can be derived
  from the identities of circular functions by
  replacing x by ix
  Now sin2 x + cos2 x = 1
  sin2 (ix) + cos2 (ix) = 1 ⇒
  [i sinh(x)]2 + [cosh(x)]2 = 1
  ⇒ cosh2 (x) − sinh2 (x) = 1
  Similarly we can obtain




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Identities of Hyperbolic functions can be derived
  from the identities of circular functions by
  replacing x by ix
  Now sin2 x + cos2 x = 1
  sin2 (ix) + cos2 (ix) = 1 ⇒
  [i sinh(x)]2 + [cosh(x)]2 = 1
  ⇒ cosh2 (x) − sinh2 (x) = 1
  Similarly we can obtain
  sech2 (x) = 1 − tanh2 (x)


                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Identities of Hyperbolic functions can be derived
  from the identities of circular functions by
  replacing x by ix
  Now sin2 x + cos2 x = 1
  sin2 (ix) + cos2 (ix) = 1 ⇒
  [i sinh(x)]2 + [cosh(x)]2 = 1
  ⇒ cosh2 (x) − sinh2 (x) = 1
  Similarly we can obtain
  sech2 (x) = 1 − tanh2 (x)
  cosech2 (x) = coth2 (x) − 1

                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix




                     N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) =




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)




                     N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) =




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 =




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) =




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x)




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) =




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)

  tanh(3x) =




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)
             3tanh(x) + tanh3 (x)
  tanh(3x) =
                 1 + 3tanh2 (x)




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)
             3tanh(x) + tanh3 (x)
  tanh(3x) =
                 1 + 3tanh2 (x)

  sinh(x) =




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)
             3tanh(x) + tanh3 (x)
  tanh(3x) =
                 1 + 3tanh2 (x)
                       x
              2 tanh
  sinh(x) =            2
                     2
                         x
            1 − tanh
                         2




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)
             3tanh(x) + tanh3 (x)
  tanh(3x) =
                 1 + 3tanh2 (x)
                       x
              2 tanh
  sinh(x) =            2
                     2
                         x , cosh(x) =
            1 − tanh
                         2




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)
             3tanh(x) + tanh3 (x)
  tanh(3x) =
                 1 + 3tanh2 (x)
                       x                           x
              2 tanh                    1 + tanh2
  sinh(x) =            2                           2
                     2
                         x , cosh(x) =          2
                                                   x
            1 − tanh                    1 − tanh
                         2                         2




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)
             3tanh(x) + tanh3 (x)
  tanh(3x) =
                 1 + 3tanh2 (x)
                       x                           x
              2 tanh                    1 + tanh2
  sinh(x) =            2                           2
                     2
                         x , cosh(x) =          2
                                                   x
            1 − tanh                    1 − tanh
                         2                         2

  tanh(x) =


                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)
             3tanh(x) + tanh3 (x)
  tanh(3x) =
                 1 + 3tanh2 (x)
                       x                           x
              2 tanh                    1 + tanh2
  sinh(x) =            2                           2
                     2
                         x , cosh(x) =          2
                                                   x
            1 − tanh                    1 − tanh
                         2                         2
                       x
              2tanh
  tanh(x) =            2
                         x
            1 + tanh2
                         2
                      N. B. Vyas   Complex Numbers - 2
Logarithm of a Complex Number




  If z = ew , then we write w = lnz, called the natural logarithm of
  z. Thus the natural logarithmic function is the inverse of the
  exponential function and can be defined by
  w = lnz = ln(rei(θ+2kπ) ) = lnr + i(θ + 2kπ)
  ∀z , logz = ln|z| + iarg(z)




                      N. B. Vyas   Complex Numbers - 2

More Related Content

What's hot

Inverse trigonometric functions
Inverse trigonometric functionsInverse trigonometric functions
Inverse trigonometric functions
Leo Crisologo
 
L5 infinite limits squeeze theorem
L5 infinite limits squeeze theoremL5 infinite limits squeeze theorem
L5 infinite limits squeeze theorem
James Tagara
 
Complex numbers and quadratic equations
Complex numbers and quadratic equationsComplex numbers and quadratic equations
Complex numbers and quadratic equations
riyadutta1996
 

What's hot (20)

Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
 
Limits and its theorem In Calculus
Limits and its theorem  In CalculusLimits and its theorem  In Calculus
Limits and its theorem In Calculus
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)
 
Introduction to Partial Fractions
Introduction to Partial FractionsIntroduction to Partial Fractions
Introduction to Partial Fractions
 
Higher Differential Equation
Higher Differential Equation Higher Differential Equation
Higher Differential Equation
 
Presentation on Solution to non linear equations
Presentation on Solution to non linear equationsPresentation on Solution to non linear equations
Presentation on Solution to non linear equations
 
Limits and continuity
Limits and continuityLimits and continuity
Limits and continuity
 
5.5 Injective and surjective functions. Dynamic slides.
5.5 Injective and surjective functions. Dynamic slides.5.5 Injective and surjective functions. Dynamic slides.
5.5 Injective and surjective functions. Dynamic slides.
 
Taylor’s series
Taylor’s   seriesTaylor’s   series
Taylor’s series
 
Lesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleLesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient Rule
 
Inverse trigonometric functions
Inverse trigonometric functionsInverse trigonometric functions
Inverse trigonometric functions
 
L5 infinite limits squeeze theorem
L5 infinite limits squeeze theoremL5 infinite limits squeeze theorem
L5 infinite limits squeeze theorem
 
Complex numbers and quadratic equations
Complex numbers and quadratic equationsComplex numbers and quadratic equations
Complex numbers and quadratic equations
 
trapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 ruletrapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 rule
 
Integration by parts
Integration by partsIntegration by parts
Integration by parts
 
Application of partial derivatives
Application of partial derivativesApplication of partial derivatives
Application of partial derivatives
 
Binomial theorem
Binomial theoremBinomial theorem
Binomial theorem
 
ORDINARY DIFFERENTIAL EQUATION
ORDINARY DIFFERENTIAL EQUATION ORDINARY DIFFERENTIAL EQUATION
ORDINARY DIFFERENTIAL EQUATION
 
The binomial expansion
The binomial expansionThe binomial expansion
The binomial expansion
 
Gauss elimination & Gauss Jordan method
Gauss elimination & Gauss Jordan methodGauss elimination & Gauss Jordan method
Gauss elimination & Gauss Jordan method
 

Similar to Complex numbers 2 (9)

02 taylor.key
02 taylor.key02 taylor.key
02 taylor.key
 
AM11 Trigonometry
AM11 TrigonometryAM11 Trigonometry
AM11 Trigonometry
 
0701 ch 7 day 1
0701 ch 7 day 10701 ch 7 day 1
0701 ch 7 day 1
 
0711 ch 7 day 11
0711 ch 7 day 110711 ch 7 day 11
0711 ch 7 day 11
 
Binomial
BinomialBinomial
Binomial
 
Xi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeXi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulae
 
Vivek
VivekVivek
Vivek
 
Week 13 - Trigonometry
Week 13 - TrigonometryWeek 13 - Trigonometry
Week 13 - Trigonometry
 
Lesson 10: Derivatives of Trigonometric Functions
Lesson 10: Derivatives of Trigonometric FunctionsLesson 10: Derivatives of Trigonometric Functions
Lesson 10: Derivatives of Trigonometric Functions
 

More from Dr. Nirav Vyas

More from Dr. Nirav Vyas (20)

Reduction forumla
Reduction forumlaReduction forumla
Reduction forumla
 
Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic Mean
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressions
 
Arithmetic progressions
Arithmetic progressionsArithmetic progressions
Arithmetic progressions
 
Combinations
CombinationsCombinations
Combinations
 
Permutation
PermutationPermutation
Permutation
 
Curve fitting - Lecture Notes
Curve fitting - Lecture NotesCurve fitting - Lecture Notes
Curve fitting - Lecture Notes
 
Trend analysis - Lecture Notes
Trend analysis - Lecture NotesTrend analysis - Lecture Notes
Trend analysis - Lecture Notes
 
Basic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesBasic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture Notes
 
Numerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesNumerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen values
 
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3
 
Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
Special functions
Special functionsSpecial functions
Special functions
 
Legendre Function
Legendre FunctionLegendre Function
Legendre Function
 
Laplace Transforms
Laplace TransformsLaplace Transforms
Laplace Transforms
 
Fourier series 3
Fourier series 3Fourier series 3
Fourier series 3
 
Fourier series 2
Fourier series 2Fourier series 2
Fourier series 2
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 

Recently uploaded

Recently uploaded (20)

Introduction to TechSoup’s Digital Marketing Services and Use Cases
Introduction to TechSoup’s Digital Marketing  Services and Use CasesIntroduction to TechSoup’s Digital Marketing  Services and Use Cases
Introduction to TechSoup’s Digital Marketing Services and Use Cases
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
PANDITA RAMABAI- Indian political thought GENDER.pptx
PANDITA RAMABAI- Indian political thought GENDER.pptxPANDITA RAMABAI- Indian political thought GENDER.pptx
PANDITA RAMABAI- Indian political thought GENDER.pptx
 
Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
 
dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learning
 
Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17
 
OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 

Complex numbers 2

  • 1. Complex Numbers - 2 N. B. Vyas Department of Mathematics, Atmiya Institute of Tech. and Science, Rajkot (Guj.) N. B. Vyas Complex Numbers - 2
  • 2. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ N. B. Vyas Complex Numbers - 2
  • 3. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer N. B. Vyas Complex Numbers - 2
  • 4. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n N. B. Vyas Complex Numbers - 2
  • 5. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ N. B. Vyas Complex Numbers - 2
  • 6. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) N. B. Vyas Complex Numbers - 2
  • 7. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + N. B. Vyas Complex Numbers - 2
  • 8. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) N. B. Vyas Complex Numbers - 2
  • 9. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) = ( n C0 cosn θ N. B. Vyas Complex Numbers - 2
  • 10. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .) N. B. Vyas Complex Numbers - 2
  • 11. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .) + i ( n C1 cosn−1 θ sinθ N. B. Vyas Complex Numbers - 2
  • 12. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .) + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .) N. B. Vyas Complex Numbers - 2
  • 13. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .) + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .) By comparing real and imaginary parts on both sides, we get N. B. Vyas Complex Numbers - 2
  • 14. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .) + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .) By comparing real and imaginary parts on both sides, we get cos nθ = n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . . N. B. Vyas Complex Numbers - 2
  • 15. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .) + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .) By comparing real and imaginary parts on both sides, we get cos nθ = n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . . sin nθ = n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . . N. B. Vyas Complex Numbers - 2
  • 16. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ N. B. Vyas Complex Numbers - 2
  • 17. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then N. B. Vyas Complex Numbers - 2
  • 18. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 Also = cosθ − isinθ z N. B. Vyas Complex Numbers - 2
  • 19. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = z z N. B. Vyas Complex Numbers - 2
  • 20. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z N. B. Vyas Complex Numbers - 2
  • 21. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 ∴z+ = z N. B. Vyas Complex Numbers - 2
  • 22. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 ∴ z + = 2cosθ ⇒ cosθ = z N. B. Vyas Complex Numbers - 2
  • 23. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z N. B. Vyas Complex Numbers - 2
  • 24. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 and z n + n = z N. B. Vyas Complex Numbers - 2
  • 25. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 and z n + n = 2cos nθ ⇒ cos nθ = z N. B. Vyas Complex Numbers - 2
  • 26. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z N. B. Vyas Complex Numbers - 2
  • 27. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z cosn θ = N. B. Vyas Complex Numbers - 2
  • 28. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z 1 1 n cosn θ = n z + 2 z N. B. Vyas Complex Numbers - 2
  • 29. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z 1 1 n cosn θ = n z + 2 z similarly sinθ = N. B. Vyas Complex Numbers - 2
  • 30. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z 1 1 n cosn θ = n z + 2 z 1 1 similarly sinθ = z− and sin nθ = 2i z N. B. Vyas Complex Numbers - 2
  • 31. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z 1 1 n cosn θ = n z + 2 z 1 1 1 1 similarly sinθ = z− and sin nθ = zn − n 2i z 2i z N. B. Vyas Complex Numbers - 2
  • 32. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z 1 1 n cosn θ = n z + 2 z 1 1 1 1 similarly sinθ = z− and sin nθ = zn − n 2i z 2i z sinn θ = N. B. Vyas Complex Numbers - 2
  • 33. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z 1 1 n cosn θ = n z + 2 z 1 1 1 1 similarly sinθ = z− and sin nθ = zn − n 2i z 2i z 1 1 n sinn θ = z− (2i)n z N. B. Vyas Complex Numbers - 2
  • 34. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z 1 1 n cosn θ = n z + 2 z 1 1 1 1 similarly sinθ = z− and sin nθ = zn − n 2i z 2i z 1 1 n sinn θ = z− (2i)n z N. B. Vyas Complex Numbers - 2
  • 35. Examples Ex. Prove that cos4θ = cos4 θ − 6cos2 θsin2 θ + sin4 θ N. B. Vyas Complex Numbers - 2
  • 36. Examples Ex. Using De Moivre’s theorem prove the following: N. B. Vyas Complex Numbers - 2
  • 37. Examples Ex. Using De Moivre’s theorem prove the following: (i) cos6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1 N. B. Vyas Complex Numbers - 2
  • 38. Examples Ex. Using De Moivre’s theorem prove the following: (i) cos6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1 (ii) sin6θ = 3 sin2θ − 4 sin3 2θ N. B. Vyas Complex Numbers - 2
  • 39. Examples Ex. Using De Moivre’s theorem prove the following: (i) cos6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1 (ii) sin6θ = 3 sin2θ − 4 sin3 2θ 6 tanθ − 20 tan3 θ + 6 tan5 θ (iii) tan6θ = 1 − 15 tan2 θ + 15 tan4 θ − tan6 θ N. B. Vyas Complex Numbers - 2
  • 40. Examples Ex. Prove that 1 cos8 θ = 7 (cos8θ +8cos6θ +28cos4θ +56cos2θ +35) 2 N. B. Vyas Complex Numbers - 2
  • 41. Examples Sol.: We know that, N. B. Vyas Complex Numbers - 2
  • 42. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z N. B. Vyas Complex Numbers - 2
  • 43. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z = 8 C0 z 8 + N. B. Vyas Complex Numbers - 2
  • 44. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 1 = 8 C 0 z 8 + 8 C1 z 7 + z N. B. Vyas Complex Numbers - 2
  • 45. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z N. B. Vyas Complex Numbers - 2
  • 46. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 8 5 1 C3 z + z N. B. Vyas Complex Numbers - 2
  • 47. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 8 5 1 8 4 1 C3 z + C4 z + z z N. B. Vyas Complex Numbers - 2
  • 48. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z N. B. Vyas Complex Numbers - 2
  • 49. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z N. B. Vyas Complex Numbers - 2
  • 50. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z = z8 + N. B. Vyas Complex Numbers - 2
  • 51. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z = z 8 + 8z 6 + N. B. Vyas Complex Numbers - 2
  • 52. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z = z 8 + 8z 6 + 28z 4 + N. B. Vyas Complex Numbers - 2
  • 53. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z = z 8 + 8z 6 + 28z 4 + 56z 2 + N. B. Vyas Complex Numbers - 2
  • 54. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z 56 = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 + + z2 N. B. Vyas Complex Numbers - 2
  • 55. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z 56 28 = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 + + + z2 z4 N. B. Vyas Complex Numbers - 2
  • 56. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z 56 28 8 1 = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 + + 4+ 6+ 8 z2 z z z N. B. Vyas Complex Numbers - 2
  • 57. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z 56 28 8 1 = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 + + 4+ 6+ 8 z2 z z z N. B. Vyas Complex Numbers - 2
  • 58. Examples 1 = z8 + + z8 N. B. Vyas Complex Numbers - 2
  • 59. Examples 1 1 = z8 + + 8 z6 + + z8 z6 N. B. Vyas Complex Numbers - 2
  • 60. Examples 1 1 1 = z8 + + 8 z6 + + 28 z 4 + + z8 z6 z4 N. B. Vyas Complex Numbers - 2
  • 61. Examples 1 1 1 = z8 + + 8 z6 + 6 + 28 z 4 + + z8 z z4 1 56 z 2 + 2 + 70 z N. B. Vyas Complex Numbers - 2
  • 62. Examples 1 1 1 = z8 + + 8 z6 + 6 + 28 z 4 + + z8 z z4 1 56 z 2 + 2 + 70 z = 2cos8θ + N. B. Vyas Complex Numbers - 2
  • 63. Examples 1 1 1 = z8 + + 8 z6 + 6 + 28 z 4 + + z8 z z4 1 56 z 2 + 2 + 70 z = 2cos8θ + 16cos6θ + N. B. Vyas Complex Numbers - 2
  • 64. Examples 1 1 1 = z8 + + 8 z 6 + 6 + 28 z 4 + 4 + z8 z z 1 56 z 2 + 2 + 70 z = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ + N. B. Vyas Complex Numbers - 2
  • 65. Examples 1 1 1 = z8 + + 8 z 6 + 6 + 28 z 4 + 4 + z8 z z 1 56 z 2 + 2 + 70 z = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ + 70 N. B. Vyas Complex Numbers - 2
  • 66. Examples 1 1 1 = z8 + + 8 z 6 + 6 + 28 z 4 + 4 + z8 z z 1 56 z 2 + 2 + 70 z = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ + 70 1 ∴ cos8 θ = 7 2 N. B. Vyas Complex Numbers - 2
  • 67. Examples 1 1 1 = z8 + + 8 z 6 + 6 + 28 z 4 + 4 + z8 z z 1 56 z 2 + 2 + 70 z = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ + 70 1 ∴ cos8 θ = 7 (cos8θ +8cos6θ +28cos4θ +56cos2θ +35) 2 N. B. Vyas Complex Numbers - 2
  • 68. Circular Functions of a Complex Numbers eix = cosx + isinx N. B. Vyas Complex Numbers - 2
  • 69. Circular Functions of a Complex Numbers eix = cosx + isinx and e−ix = cosx − isinx N. B. Vyas Complex Numbers - 2
  • 70. Circular Functions of a Complex Numbers eix = cosx + isinx and e−ix = cosx − isinx are known as Euler’s formula. N. B. Vyas Complex Numbers - 2
  • 71. Circular Functions of a Complex Numbers eix = cosx + isinx and e−ix = cosx − isinx are known as Euler’s formula. By adding, we get them, we get N. B. Vyas Complex Numbers - 2
  • 72. Circular Functions of a Complex Numbers eix = cosx + isinx and e−ix = cosx − isinx are known as Euler’s formula. By adding, we get them, we get eix + e−ix cosx = 2 N. B. Vyas Complex Numbers - 2
  • 73. Circular Functions of a Complex Numbers eix = cosx + isinx and e−ix = cosx − isinx are known as Euler’s formula. By adding, we get them, we get eix + e−ix eix − e−ix cosx = and sinx = 2 2i N. B. Vyas Complex Numbers - 2
  • 74. Circular Functions of a Complex Numbers eix = cosx + isinx and e−ix = cosx − isinx are known as Euler’s formula. By adding, we get them, we get eix + e−ix eix − e−ix cosx = and sinx = 2 2i are known as circular functions and are true for all real values of x. N. B. Vyas Complex Numbers - 2
  • 75. Circular Functions of a Complex Numbers eix = cosx + isinx and e−ix = cosx − isinx are known as Euler’s formula. By adding, we get them, we get eix + e−ix eix − e−ix cosx = and sinx = 2 2i are known as circular functions and are true for all real values of x. They are also known as Euler’s exponential form of cosines and sines. N. B. Vyas Complex Numbers - 2
  • 76. Hyperbolic functions The hyperbolic sine of x is denoted by sinh(x), N. B. Vyas Complex Numbers - 2
  • 77. Hyperbolic functions The hyperbolic sine of x is denoted by sinh(x), the hyperbolic cosine of x is defined by cosh(x) N. B. Vyas Complex Numbers - 2
  • 78. Hyperbolic functions The hyperbolic sine of x is denoted by sinh(x), the hyperbolic cosine of x is defined by cosh(x) and hyperbolic tangent of x is defined by tanh(x) N. B. Vyas Complex Numbers - 2
  • 79. Hyperbolic functions The hyperbolic sine of x is denoted by sinh(x), the hyperbolic cosine of x is defined by cosh(x) and hyperbolic tangent of x is defined by tanh(x) and are defined respectively as N. B. Vyas Complex Numbers - 2
  • 80. Hyperbolic functions The hyperbolic sine of x is denoted by sinh(x), the hyperbolic cosine of x is defined by cosh(x) and hyperbolic tangent of x is defined by tanh(x) and are defined respectively as ex − e−x sinh(x) = 2 N. B. Vyas Complex Numbers - 2
  • 81. Hyperbolic functions The hyperbolic sine of x is denoted by sinh(x), the hyperbolic cosine of x is defined by cosh(x) and hyperbolic tangent of x is defined by tanh(x) and are defined respectively as ex − e−x sinh(x) = 2 ex + e−x cosh(x) = 2 N. B. Vyas Complex Numbers - 2
  • 82. Hyperbolic functions The hyperbolic sine of x is denoted by sinh(x), the hyperbolic cosine of x is defined by cosh(x) and hyperbolic tangent of x is defined by tanh(x) and are defined respectively as ex − e−x sinh(x) = 2 ex + e−x cosh(x) = 2 ex − e−x and tanh(x) = x ;x R e + e−x N. B. Vyas Complex Numbers - 2
  • 83. Hyperbolic functions The reciprocals of these functions are defined as below N. B. Vyas Complex Numbers - 2
  • 84. Hyperbolic functions The reciprocals of these functions are defined as below 2 cosech(x) = x e − e−x N. B. Vyas Complex Numbers - 2
  • 85. Hyperbolic functions The reciprocals of these functions are defined as below 2 cosech(x) = x e − e−x 2 sech(x) = x e − e−x N. B. Vyas Complex Numbers - 2
  • 86. Hyperbolic functions The reciprocals of these functions are defined as below 2 cosech(x) = x e − e−x 2 sech(x) = x e − e−x ex + e−x and coth(x) = x e − e−x N. B. Vyas Complex Numbers - 2
  • 87. Relation between Circular & Hyperbolic functions eix − e−ix We know that sinx = 2i N. B. Vyas Complex Numbers - 2
  • 88. Relation between Circular & Hyperbolic functions eix − e−ix We know that sinx = 2i replacing x by ix N. B. Vyas Complex Numbers - 2
  • 89. Relation between Circular & Hyperbolic functions eix − e−ix We know that sinx = 2i replacing x by ix ei(ix) − e−i(ix) e−x − ex sin(ix) = = 2i 2i N. B. Vyas Complex Numbers - 2
  • 90. Relation between Circular & Hyperbolic functions eix − e−ix We know that sinx = 2i replacing x by ix ei(ix) − e−i(ix) e−x − ex sin(ix) = = 2i 2i x −x x −x e −e e −e =− =i 2i 2 N. B. Vyas Complex Numbers - 2
  • 91. Relation between Circular & Hyperbolic functions eix − e−ix We know that sinx = 2i replacing x by ix ei(ix) − e−i(ix) e−x − ex sin(ix) = = 2i 2i x −x x −x e −e e −e =− =i 2i 2 ∴ sin(ix) = isinh(x) N. B. Vyas Complex Numbers - 2
  • 92. Relation between Circular & Hyperbolic functions Similarly, we can prove N. B. Vyas Complex Numbers - 2
  • 93. Relation between Circular & Hyperbolic functions Similarly, we can prove cos(ix) = cosh(x) N. B. Vyas Complex Numbers - 2
  • 94. Relation between Circular & Hyperbolic functions Similarly, we can prove cos(ix) = cosh(x) tan(ix) = i tanh(x) N. B. Vyas Complex Numbers - 2
  • 95. Relation between Circular & Hyperbolic functions Similarly, we can prove cos(ix) = cosh(x) tan(ix) = i tanh(x) cosec(ix) = −i cosech(x) N. B. Vyas Complex Numbers - 2
  • 96. Relation between Circular & Hyperbolic functions Similarly, we can prove cos(ix) = cosh(x) tan(ix) = i tanh(x) cosec(ix) = −i cosech(x) sec(ix) = sech(x) N. B. Vyas Complex Numbers - 2
  • 97. Relation between Circular & Hyperbolic functions Similarly, we can prove cos(ix) = cosh(x) tan(ix) = i tanh(x) cosec(ix) = −i cosech(x) sec(ix) = sech(x) cot(ix) = −i coth(x) N. B. Vyas Complex Numbers - 2
  • 98. Relation between Circular & Hyperbolic functions Also we can replace x by ix in N. B. Vyas Complex Numbers - 2
  • 99. Relation between Circular & Hyperbolic functions Also we can replace x by ix in sin(ix) = isinh(x), we get N. B. Vyas Complex Numbers - 2
  • 100. Relation between Circular & Hyperbolic functions Also we can replace x by ix in sin(ix) = isinh(x), we get sin i(ix) = isinh(ix) N. B. Vyas Complex Numbers - 2
  • 101. Relation between Circular & Hyperbolic functions Also we can replace x by ix in sin(ix) = isinh(x), we get sin i(ix) = isinh(ix) ⇒ sin(−x) = isinh(ix) N. B. Vyas Complex Numbers - 2
  • 102. Relation between Circular & Hyperbolic functions Also we can replace x by ix in sin(ix) = isinh(x), we get sin i(ix) = isinh(ix) ⇒ sin(−x) = isinh(ix) ⇒ −sinx = isinh(ix) N. B. Vyas Complex Numbers - 2
  • 103. Relation between Circular & Hyperbolic functions Also we can replace x by ix in sin(ix) = isinh(x), we get sin i(ix) = isinh(ix) ⇒ sin(−x) = isinh(ix) ⇒ −sinx = isinh(ix) ⇒ i2 sinx = isinh(ix) N. B. Vyas Complex Numbers - 2
  • 104. Relation between Circular & Hyperbolic functions Also we can replace x by ix in sin(ix) = isinh(x), we get sin i(ix) = isinh(ix) ⇒ sin(−x) = isinh(ix) ⇒ −sinx = isinh(ix) ⇒ i2 sinx = isinh(ix) ∴ sinh(ix) = isinx N. B. Vyas Complex Numbers - 2
  • 105. Relation between Circular & Hyperbolic functions Similarly, we can prove N. B. Vyas Complex Numbers - 2
  • 106. Relation between Circular & Hyperbolic functions Similarly, we can prove cosh(ix) = cos(x) N. B. Vyas Complex Numbers - 2
  • 107. Relation between Circular & Hyperbolic functions Similarly, we can prove cosh(ix) = cos(x) tanh(ix) = i tan(x) N. B. Vyas Complex Numbers - 2
  • 108. Relation between Circular & Hyperbolic functions Similarly, we can prove cosh(ix) = cos(x) tanh(ix) = i tan(x) cosech(ix) = −i cosec(x) N. B. Vyas Complex Numbers - 2
  • 109. Relation between Circular & Hyperbolic functions Similarly, we can prove cosh(ix) = cos(x) tanh(ix) = i tan(x) cosech(ix) = −i cosec(x) sech(ix) = sec(x) N. B. Vyas Complex Numbers - 2
  • 110. Relation between Circular & Hyperbolic functions Similarly, we can prove cosh(ix) = cos(x) tanh(ix) = i tan(x) cosech(ix) = −i cosec(x) sech(ix) = sec(x) coth(ix) = −i cot(x) N. B. Vyas Complex Numbers - 2
  • 111. Hyperbolic Identities Identities of Hyperbolic functions can be derived from the identities of circular functions by replacing x by ix N. B. Vyas Complex Numbers - 2
  • 112. Hyperbolic Identities Identities of Hyperbolic functions can be derived from the identities of circular functions by replacing x by ix Now sin2 x + cos2 x = 1 N. B. Vyas Complex Numbers - 2
  • 113. Hyperbolic Identities Identities of Hyperbolic functions can be derived from the identities of circular functions by replacing x by ix Now sin2 x + cos2 x = 1 sin2 (ix) + cos2 (ix) = 1 ⇒ [i sinh(x)]2 + [cosh(x)]2 = 1 N. B. Vyas Complex Numbers - 2
  • 114. Hyperbolic Identities Identities of Hyperbolic functions can be derived from the identities of circular functions by replacing x by ix Now sin2 x + cos2 x = 1 sin2 (ix) + cos2 (ix) = 1 ⇒ [i sinh(x)]2 + [cosh(x)]2 = 1 ⇒ cosh2 (x) − sinh2 (x) = 1 N. B. Vyas Complex Numbers - 2
  • 115. Hyperbolic Identities Identities of Hyperbolic functions can be derived from the identities of circular functions by replacing x by ix Now sin2 x + cos2 x = 1 sin2 (ix) + cos2 (ix) = 1 ⇒ [i sinh(x)]2 + [cosh(x)]2 = 1 ⇒ cosh2 (x) − sinh2 (x) = 1 Similarly we can obtain N. B. Vyas Complex Numbers - 2
  • 116. Hyperbolic Identities Identities of Hyperbolic functions can be derived from the identities of circular functions by replacing x by ix Now sin2 x + cos2 x = 1 sin2 (ix) + cos2 (ix) = 1 ⇒ [i sinh(x)]2 + [cosh(x)]2 = 1 ⇒ cosh2 (x) − sinh2 (x) = 1 Similarly we can obtain sech2 (x) = 1 − tanh2 (x) N. B. Vyas Complex Numbers - 2
  • 117. Hyperbolic Identities Identities of Hyperbolic functions can be derived from the identities of circular functions by replacing x by ix Now sin2 x + cos2 x = 1 sin2 (ix) + cos2 (ix) = 1 ⇒ [i sinh(x)]2 + [cosh(x)]2 = 1 ⇒ cosh2 (x) − sinh2 (x) = 1 Similarly we can obtain sech2 (x) = 1 − tanh2 (x) cosech2 (x) = coth2 (x) − 1 N. B. Vyas Complex Numbers - 2
  • 118. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix N. B. Vyas Complex Numbers - 2
  • 119. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = N. B. Vyas Complex Numbers - 2
  • 120. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) N. B. Vyas Complex Numbers - 2
  • 121. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = N. B. Vyas Complex Numbers - 2
  • 122. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = N. B. Vyas Complex Numbers - 2
  • 123. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) N. B. Vyas Complex Numbers - 2
  • 124. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = N. B. Vyas Complex Numbers - 2
  • 125. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) N. B. Vyas Complex Numbers - 2
  • 126. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = N. B. Vyas Complex Numbers - 2
  • 127. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) N. B. Vyas Complex Numbers - 2
  • 128. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) tanh(3x) = N. B. Vyas Complex Numbers - 2
  • 129. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) 3tanh(x) + tanh3 (x) tanh(3x) = 1 + 3tanh2 (x) N. B. Vyas Complex Numbers - 2
  • 130. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) 3tanh(x) + tanh3 (x) tanh(3x) = 1 + 3tanh2 (x) sinh(x) = N. B. Vyas Complex Numbers - 2
  • 131. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) 3tanh(x) + tanh3 (x) tanh(3x) = 1 + 3tanh2 (x) x 2 tanh sinh(x) = 2 2 x 1 − tanh 2 N. B. Vyas Complex Numbers - 2
  • 132. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) 3tanh(x) + tanh3 (x) tanh(3x) = 1 + 3tanh2 (x) x 2 tanh sinh(x) = 2 2 x , cosh(x) = 1 − tanh 2 N. B. Vyas Complex Numbers - 2
  • 133. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) 3tanh(x) + tanh3 (x) tanh(3x) = 1 + 3tanh2 (x) x x 2 tanh 1 + tanh2 sinh(x) = 2 2 2 x , cosh(x) = 2 x 1 − tanh 1 − tanh 2 2 N. B. Vyas Complex Numbers - 2
  • 134. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) 3tanh(x) + tanh3 (x) tanh(3x) = 1 + 3tanh2 (x) x x 2 tanh 1 + tanh2 sinh(x) = 2 2 2 x , cosh(x) = 2 x 1 − tanh 1 − tanh 2 2 tanh(x) = N. B. Vyas Complex Numbers - 2
  • 135. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) 3tanh(x) + tanh3 (x) tanh(3x) = 1 + 3tanh2 (x) x x 2 tanh 1 + tanh2 sinh(x) = 2 2 2 x , cosh(x) = 2 x 1 − tanh 1 − tanh 2 2 x 2tanh tanh(x) = 2 x 1 + tanh2 2 N. B. Vyas Complex Numbers - 2
  • 136. Logarithm of a Complex Number If z = ew , then we write w = lnz, called the natural logarithm of z. Thus the natural logarithmic function is the inverse of the exponential function and can be defined by w = lnz = ln(rei(θ+2kπ) ) = lnr + i(θ + 2kπ) ∀z , logz = ln|z| + iarg(z) N. B. Vyas Complex Numbers - 2