SlideShare a Scribd company logo
Lecture 10: Sampling Discrete-Time Systems
4 Sampling & Discrete-time systems (2 lectures):
Sampling theorem, discrete Fourier transform
Specific objectives for today:
• Sampling of a continuous-time signal
• Reconstruction of the signals from its samples
• Sampling theorem & Nyquist rate
• Reconstruction of a signal, using zero-order holds
Lecture 10: Resources
Core reading
SaS, O&W, C7
Background reading
MIT Lectures 9 & 13
In these two lectures, we’re going to develop the DT
Fourier transform as a sampled version of the CT
Fourier transform.
Note that this is opposite to time-domain convolution
where we developed CT convolution as the limiting
case of DT convolution
Sampling is the transformation of a continuous signal
into a discrete signal
Widely applied in digital analysis systems
1. Sample the continuous time signal
2. Design and process discrete time signal
3. Convert back to continuous time
What is Discrete Time Sampling?
x(t),
x[n]
t=nT
Discrete
Time sampler
Discrete
time system
Signal
reconstruction
x(t) x[n] y[n] y(t)
T is the sampling
period
Why is Sampling Important?
For many systems (e.g. Matlab, …) designing and
processing discrete-time systems is more efficient and
more general compared to performing continuous-time
system design.
How does Simulink perform continuous-time system
simulation?
The signals are sampled and the systems are approximately
integrated in discrete time
Mainly due to the dramatic development of digital technology
resulting in inexpensive, lightweight, programmable and
reproducible discrete-time systems. Widely used for
communication
Sampling a Continuous-Time Signal
Clearly for a finite sample period T, it is not possible to represent
every uncountable, infinite-dimensional continuous-time signal
with a countable, infinite-dimensional discrete-time signal.
In general, an infinite number of CT signals can generate a DT
signal.
However, if the signal is band (frequency) limited, and the
samples are sufficiently close, it is possible to uniquely
reconstruct the original CT signal from the sampled signal
x1(t),
x2(t),
x3(t),
x[n]
t=nT
Definition of Impulse Train Sampling
We need to have a convenient way in
which to represent the sampling of a
CT signal at regular intervals
A common/useful way to do this is
through the use of a periodic impulse
train signal, p(t), multiplied by the CT
signal
T is the sampling period
ωs=2π/T is the sampling frequency
This is known as impulse train
sampling. Note xp(t) is still a
continuous time signal
∑
∞
−∞=
−=
=
n
p
nTttp
tptxtx
)()(
)()()(
δ T
Analysing Impulse Train Sampling (i)
What effect does this sampling have on the frequency decomposition
(Fourier transform) of the CT impulse train signal xp(t)?
By definition:
The signal p(t) is periodic and the coefficients of the Fourier
Series are given by:
Therefore, the Fourier transform is given by
One property of the Fourier transform we did not consider is the
multiplicative property which says if xp(t) = x(t)p(t), then
∑∑
∞
−∞=
∞
−∞=
−=−=
nn
p nTtnTxnTttxtx )()()()()( δδ
∫
∞
∞−
−= θθωθω π djPjXjX p ))(()()( 2
1
∑
∞
−∞=
−=
k
sT kjP )()( 2
ωωδω π
kdteta T
T
T
tjk
Tk ∀== ∫−
−
,)( 1
2/
2/
1 0ω
δ
Analysing Impulse Train Sampling (ii)
Substituting for P(jω)
Therefore Xp(jω) is a periodic function of ω, consisting of a
superposition of shifted replicas of X(jω), scaled by 1/T.
∑
∑ ∫
∫ ∑
∞
−∞=
∞
−∞=
∞
∞−
∞
∞−
∞
−∞=
−=
−−=
−−=
k sT
k sT
k sTp
kjX
dkjX
dkjXjX
))((
))(()(
))(()()(
1
1
1
ωω
θθωωδθ
θθωωδθω
|X(jω)|=0: |ω|>1 ωs=3
Reconstruction of the CT Signal
When the sampling frequency
ωs is less than twice the
band-limited frequency ωM,
there is no overlaps the
spectrum X(jω)
If this is true, the original
signal x(t) can be
recovered from the impulse
sampled xp(t), by passing it
through a low pass filter
H(jω) with gain T and cutoff
frequency between ωM and
ωs-ωM.
1
1/T
T
1
ωM=1
ωs=3
Sampling Theorem
Let x(t) be a band (frequency)-limited signal
X(jω) = 0 for |ω|>ωM.
Then x(t) is uniquely determined by its samples {x(nT)}
when the sampling frequency satisfies:
where ωs=2π/T.
2ωM is known as the Nyquist rate, as it represents the
largest frequency that can be reproduced with the sample
time
The result makes sense because a frequency-limited signal
has a limited amount of information that can be fully
captured with the sampled sequence {x(nT)}
Ms ωω 2>
X(jω)
ωM ω
ωs
-ωM
Zero Order Hold Sampling
A zero order hold is a common method
for bridging CT-DT signals
A zero order hold samples the current
signal and holds that value until the
next sample
In most systems, it is difficult to
generate and transmit narrow, large-
amplitude pulses (impulse train
sampling) xp(t)
We can often use a variety of
filtering/interpolation techniques to
reconstruct the original time-domain
signal, however often the zero-order
hold signal x0(t) is sufficiently
accurate
xp(t)
x0(t)
x(t)
t
t
t
Lecture 10: Summary
The sample time for converting a continuous time signal into
a sampled, discrete time signal is determined by the
Nyquist rate, amongst other things.
The signal must satisfy the relationship:
If the signal is to be preserved exactly. Information in
frequencies higher than this will be lost when the signal is
sampled.
A continuous time signal is often sampled and communicated
using a zero order hold
Often this is enough to be considered as the re-constructed
continuous time signal, but sometimes approximate
methods for re-constructing the signal are used
Ms ωω 2>
Lecture 10: Exercises
Theory
SaS, O&W, 7.1-7.4, 7.7

More Related Content

What's hot

Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systems
Amr E. Mohamed
 
Chapter 9 computation of the dft
Chapter 9 computation of the dftChapter 9 computation of the dft
Chapter 9 computation of the dftmikeproud
 
Sampling theorem
Sampling theoremSampling theorem
Sampling theorem
Shanu Bhuvana
 
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-Transform
Amr E. Mohamed
 
Demodulation of AM wave
Demodulation of AM waveDemodulation of AM wave
Demodulation of AM wave
Lokesh Parihar
 
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignDSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
Amr E. Mohamed
 
Polar Plot
Polar PlotPolar Plot
Polar Plot
Hussain K
 
Digital control systems
Digital control systemsDigital control systems
Digital control systems
avenkatram
 
PID Controller Tuning
PID Controller TuningPID Controller Tuning
PID Controller TuningAhmad Taan
 
RH CRITERIA
RH CRITERIARH CRITERIA
RH CRITERIA
ramola007
 
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
Amr E. Mohamed
 
Bode Plot Notes Step by Step
Bode Plot Notes Step by StepBode Plot Notes Step by Step
Bode Plot Notes Step by Step
Mohammad Umar Rehman
 
Decimation and Interpolation
Decimation and InterpolationDecimation and Interpolation
Decimation and Interpolation
Fernando Ojeda
 
Ch1
Ch1Ch1
Chapter 7 1
Chapter 7 1Chapter 7 1
Chapter 7 1
Kiya Alemayehu
 
Fourier transforms
Fourier transforms Fourier transforms
Fourier transforms
Fahad B. Mostafa
 
Nyquist plot
Nyquist plotNyquist plot
Nyquist plot
Mrunal Deshkar
 
Ppt on sawtooth wave form generator
Ppt on sawtooth wave form generatorPpt on sawtooth wave form generator
Ppt on sawtooth wave form generator
Amit kumar
 
Digital Signal Processing
Digital Signal ProcessingDigital Signal Processing
Digital Signal Processing
Sandip Ladi
 
Stability of Control System
Stability of Control SystemStability of Control System
Stability of Control System
vaibhav jindal
 

What's hot (20)

Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systems
 
Chapter 9 computation of the dft
Chapter 9 computation of the dftChapter 9 computation of the dft
Chapter 9 computation of the dft
 
Sampling theorem
Sampling theoremSampling theorem
Sampling theorem
 
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-Transform
 
Demodulation of AM wave
Demodulation of AM waveDemodulation of AM wave
Demodulation of AM wave
 
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignDSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
 
Polar Plot
Polar PlotPolar Plot
Polar Plot
 
Digital control systems
Digital control systemsDigital control systems
Digital control systems
 
PID Controller Tuning
PID Controller TuningPID Controller Tuning
PID Controller Tuning
 
RH CRITERIA
RH CRITERIARH CRITERIA
RH CRITERIA
 
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
 
Bode Plot Notes Step by Step
Bode Plot Notes Step by StepBode Plot Notes Step by Step
Bode Plot Notes Step by Step
 
Decimation and Interpolation
Decimation and InterpolationDecimation and Interpolation
Decimation and Interpolation
 
Ch1
Ch1Ch1
Ch1
 
Chapter 7 1
Chapter 7 1Chapter 7 1
Chapter 7 1
 
Fourier transforms
Fourier transforms Fourier transforms
Fourier transforms
 
Nyquist plot
Nyquist plotNyquist plot
Nyquist plot
 
Ppt on sawtooth wave form generator
Ppt on sawtooth wave form generatorPpt on sawtooth wave form generator
Ppt on sawtooth wave form generator
 
Digital Signal Processing
Digital Signal ProcessingDigital Signal Processing
Digital Signal Processing
 
Stability of Control System
Stability of Control SystemStability of Control System
Stability of Control System
 

Viewers also liked

Dft,fft,windowing
Dft,fft,windowingDft,fft,windowing
Dft,fft,windowing
Abhishek Verma
 
Chapter 6m
Chapter 6mChapter 6m
Chapter 6mwafaa_A7
 
Sampling and Reconstruction of Signal using Aliasing
Sampling and Reconstruction of Signal using AliasingSampling and Reconstruction of Signal using Aliasing
Sampling and Reconstruction of Signal using Aliasing
j naga sai
 
Discrete time control systems
Discrete time control systemsDiscrete time control systems
Discrete time control systemsphannahty
 
Switched capacitor
Switched capacitorSwitched capacitor
Switched capacitor
Gur Kan
 
Sampling
SamplingSampling
Signal & systems
Signal & systemsSignal & systems
Signal & systems
AJAL A J
 
Ppt of analog communication
Ppt of analog communicationPpt of analog communication
Ppt of analog communication
Arun Kumar
 
Amplitude modulation
Amplitude modulationAmplitude modulation
Amplitude modulation
sagarjaiswal0407
 
Sampling
SamplingSampling
Sampling
srkrishna341
 

Viewers also liked (15)

Dft,fft,windowing
Dft,fft,windowingDft,fft,windowing
Dft,fft,windowing
 
Chapter 6m
Chapter 6mChapter 6m
Chapter 6m
 
Signals and systems
Signals  and systemsSignals  and systems
Signals and systems
 
Sampling and Reconstruction of Signal using Aliasing
Sampling and Reconstruction of Signal using AliasingSampling and Reconstruction of Signal using Aliasing
Sampling and Reconstruction of Signal using Aliasing
 
Discrete time control systems
Discrete time control systemsDiscrete time control systems
Discrete time control systems
 
Switched capacitor
Switched capacitorSwitched capacitor
Switched capacitor
 
Sampling
SamplingSampling
Sampling
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
Amplitude modulation
Amplitude modulationAmplitude modulation
Amplitude modulation
 
Signal & systems
Signal & systemsSignal & systems
Signal & systems
 
Amplitude modulation
Amplitude modulationAmplitude modulation
Amplitude modulation
 
Ppt of analog communication
Ppt of analog communicationPpt of analog communication
Ppt of analog communication
 
Amplitude modulation
Amplitude modulationAmplitude modulation
Amplitude modulation
 
Sampling
SamplingSampling
Sampling
 
Chap 5
Chap 5Chap 5
Chap 5
 

Similar to Lecture9

4.Sampling and Hilbert Transform
4.Sampling and Hilbert Transform4.Sampling and Hilbert Transform
4.Sampling and Hilbert Transform
INDIAN NAVY
 
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsDSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
Amr E. Mohamed
 
Basic concepts
Basic conceptsBasic concepts
Basic concepts
Syed Zaid Irshad
 
unit4 sampling.pptx
unit4 sampling.pptxunit4 sampling.pptx
unit4 sampling.pptx
Dr.SHANTHI K.G
 
Digital Signal Processing[ECEG-3171]-Ch1_L05
Digital Signal Processing[ECEG-3171]-Ch1_L05Digital Signal Processing[ECEG-3171]-Ch1_L05
Digital Signal Processing[ECEG-3171]-Ch1_L05
Rediet Moges
 
Pulse Modulation ppt
Pulse Modulation pptPulse Modulation ppt
Pulse Modulation ppt
sanjeev2419
 
Overview of sampling
Overview of samplingOverview of sampling
Overview of sampling
Sagar Kumar
 
communication concepts on sampling process
communication concepts on sampling processcommunication concepts on sampling process
communication concepts on sampling process
NatarajVijapur
 
sampling.ppt
sampling.pptsampling.ppt
sampling.ppt
AkasGkamal2
 
UPDATED Sampling Lecture (2).pptx
UPDATED Sampling Lecture (2).pptxUPDATED Sampling Lecture (2).pptx
UPDATED Sampling Lecture (2).pptx
HarisMasood20
 
pulse modulation technique (Pulse code modulation).pptx
pulse modulation technique (Pulse code modulation).pptxpulse modulation technique (Pulse code modulation).pptx
pulse modulation technique (Pulse code modulation).pptx
Nishanth Asmi
 
Ch6 digital transmission of analog signal pg 99
Ch6 digital transmission of analog signal pg 99Ch6 digital transmission of analog signal pg 99
Ch6 digital transmission of analog signal pg 99
Prateek Omer
 
DSP Lab 1-6.pdf
DSP Lab 1-6.pdfDSP Lab 1-6.pdf
DSP Lab 1-6.pdf
SaiSumanthK1
 
Signal and System, CT Signal DT Signal, Signal Processing(amplitude and time ...
Signal and System, CT Signal DT Signal, Signal Processing(amplitude and time ...Signal and System, CT Signal DT Signal, Signal Processing(amplitude and time ...
Signal and System, CT Signal DT Signal, Signal Processing(amplitude and time ...
Waqas Afzal
 
dmct-otfs lab.pptx
dmct-otfs lab.pptxdmct-otfs lab.pptx
dmct-otfs lab.pptx
Madhumitha Jayaram
 
Multrate dsp
Multrate dspMultrate dsp
Speech signal time frequency representation
Speech signal time frequency representationSpeech signal time frequency representation
Speech signal time frequency representationNikolay Karpov
 
Pulse modulation
Pulse modulationPulse modulation
Pulse modulationavocado1111
 

Similar to Lecture9 (20)

4.Sampling and Hilbert Transform
4.Sampling and Hilbert Transform4.Sampling and Hilbert Transform
4.Sampling and Hilbert Transform
 
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsDSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
 
Basic concepts
Basic conceptsBasic concepts
Basic concepts
 
unit4 sampling.pptx
unit4 sampling.pptxunit4 sampling.pptx
unit4 sampling.pptx
 
Digital Signal Processing[ECEG-3171]-Ch1_L05
Digital Signal Processing[ECEG-3171]-Ch1_L05Digital Signal Processing[ECEG-3171]-Ch1_L05
Digital Signal Processing[ECEG-3171]-Ch1_L05
 
Pulse Modulation ppt
Pulse Modulation pptPulse Modulation ppt
Pulse Modulation ppt
 
Overview of sampling
Overview of samplingOverview of sampling
Overview of sampling
 
communication concepts on sampling process
communication concepts on sampling processcommunication concepts on sampling process
communication concepts on sampling process
 
sampling.ppt
sampling.pptsampling.ppt
sampling.ppt
 
UPDATED Sampling Lecture (2).pptx
UPDATED Sampling Lecture (2).pptxUPDATED Sampling Lecture (2).pptx
UPDATED Sampling Lecture (2).pptx
 
pulse modulation technique (Pulse code modulation).pptx
pulse modulation technique (Pulse code modulation).pptxpulse modulation technique (Pulse code modulation).pptx
pulse modulation technique (Pulse code modulation).pptx
 
Ch6 digital transmission of analog signal pg 99
Ch6 digital transmission of analog signal pg 99Ch6 digital transmission of analog signal pg 99
Ch6 digital transmission of analog signal pg 99
 
DSP Lab 1-6.pdf
DSP Lab 1-6.pdfDSP Lab 1-6.pdf
DSP Lab 1-6.pdf
 
Signal and System, CT Signal DT Signal, Signal Processing(amplitude and time ...
Signal and System, CT Signal DT Signal, Signal Processing(amplitude and time ...Signal and System, CT Signal DT Signal, Signal Processing(amplitude and time ...
Signal and System, CT Signal DT Signal, Signal Processing(amplitude and time ...
 
dmct-otfs lab.pptx
dmct-otfs lab.pptxdmct-otfs lab.pptx
dmct-otfs lab.pptx
 
Sns slide 1 2011
Sns slide 1 2011Sns slide 1 2011
Sns slide 1 2011
 
Multrate dsp
Multrate dspMultrate dsp
Multrate dsp
 
Speech signal time frequency representation
Speech signal time frequency representationSpeech signal time frequency representation
Speech signal time frequency representation
 
Tdm fdm
Tdm fdmTdm fdm
Tdm fdm
 
Pulse modulation
Pulse modulationPulse modulation
Pulse modulation
 

More from babak danyal

Easy Steps to implement UDP Server and Client Sockets
Easy Steps to implement UDP Server and Client SocketsEasy Steps to implement UDP Server and Client Sockets
Easy Steps to implement UDP Server and Client Sockets
babak danyal
 
Java IO Package and Streams
Java IO Package and StreamsJava IO Package and Streams
Java IO Package and Streams
babak danyal
 
Swing and Graphical User Interface in Java
Swing and Graphical User Interface in JavaSwing and Graphical User Interface in Java
Swing and Graphical User Interface in Java
babak danyal
 
Tcp sockets
Tcp socketsTcp sockets
Tcp sockets
babak danyal
 
block ciphers and the des
block ciphers and the desblock ciphers and the des
block ciphers and the des
babak danyal
 
key distribution in network security
key distribution in network securitykey distribution in network security
key distribution in network security
babak danyal
 
Lecture10 Signal and Systems
Lecture10 Signal and SystemsLecture10 Signal and Systems
Lecture10 Signal and Systems
babak danyal
 
Lecture8 Signal and Systems
Lecture8 Signal and SystemsLecture8 Signal and Systems
Lecture8 Signal and Systems
babak danyal
 
Lecture7 Signal and Systems
Lecture7 Signal and SystemsLecture7 Signal and Systems
Lecture7 Signal and Systems
babak danyal
 
Lecture6 Signal and Systems
Lecture6 Signal and SystemsLecture6 Signal and Systems
Lecture6 Signal and Systems
babak danyal
 
Lecture5 Signal and Systems
Lecture5 Signal and SystemsLecture5 Signal and Systems
Lecture5 Signal and Systems
babak danyal
 
Lecture4 Signal and Systems
Lecture4  Signal and SystemsLecture4  Signal and Systems
Lecture4 Signal and Systems
babak danyal
 
Lecture3 Signal and Systems
Lecture3 Signal and SystemsLecture3 Signal and Systems
Lecture3 Signal and Systems
babak danyal
 
Lecture2 Signal and Systems
Lecture2 Signal and SystemsLecture2 Signal and Systems
Lecture2 Signal and Systems
babak danyal
 
Lecture1 Intro To Signa
Lecture1 Intro To SignaLecture1 Intro To Signa
Lecture1 Intro To Signababak danyal
 
Lecture9 Signal and Systems
Lecture9 Signal and SystemsLecture9 Signal and Systems
Lecture9 Signal and Systems
babak danyal
 
Cns 13f-lec03- Classical Encryption Techniques
Cns 13f-lec03- Classical Encryption TechniquesCns 13f-lec03- Classical Encryption Techniques
Cns 13f-lec03- Classical Encryption Techniques
babak danyal
 
Classical Encryption Techniques in Network Security
Classical Encryption Techniques in Network SecurityClassical Encryption Techniques in Network Security
Classical Encryption Techniques in Network Security
babak danyal
 
Problems at independence
Problems at independenceProblems at independence
Problems at independencebabak danyal
 

More from babak danyal (20)

applist
applistapplist
applist
 
Easy Steps to implement UDP Server and Client Sockets
Easy Steps to implement UDP Server and Client SocketsEasy Steps to implement UDP Server and Client Sockets
Easy Steps to implement UDP Server and Client Sockets
 
Java IO Package and Streams
Java IO Package and StreamsJava IO Package and Streams
Java IO Package and Streams
 
Swing and Graphical User Interface in Java
Swing and Graphical User Interface in JavaSwing and Graphical User Interface in Java
Swing and Graphical User Interface in Java
 
Tcp sockets
Tcp socketsTcp sockets
Tcp sockets
 
block ciphers and the des
block ciphers and the desblock ciphers and the des
block ciphers and the des
 
key distribution in network security
key distribution in network securitykey distribution in network security
key distribution in network security
 
Lecture10 Signal and Systems
Lecture10 Signal and SystemsLecture10 Signal and Systems
Lecture10 Signal and Systems
 
Lecture8 Signal and Systems
Lecture8 Signal and SystemsLecture8 Signal and Systems
Lecture8 Signal and Systems
 
Lecture7 Signal and Systems
Lecture7 Signal and SystemsLecture7 Signal and Systems
Lecture7 Signal and Systems
 
Lecture6 Signal and Systems
Lecture6 Signal and SystemsLecture6 Signal and Systems
Lecture6 Signal and Systems
 
Lecture5 Signal and Systems
Lecture5 Signal and SystemsLecture5 Signal and Systems
Lecture5 Signal and Systems
 
Lecture4 Signal and Systems
Lecture4  Signal and SystemsLecture4  Signal and Systems
Lecture4 Signal and Systems
 
Lecture3 Signal and Systems
Lecture3 Signal and SystemsLecture3 Signal and Systems
Lecture3 Signal and Systems
 
Lecture2 Signal and Systems
Lecture2 Signal and SystemsLecture2 Signal and Systems
Lecture2 Signal and Systems
 
Lecture1 Intro To Signa
Lecture1 Intro To SignaLecture1 Intro To Signa
Lecture1 Intro To Signa
 
Lecture9 Signal and Systems
Lecture9 Signal and SystemsLecture9 Signal and Systems
Lecture9 Signal and Systems
 
Cns 13f-lec03- Classical Encryption Techniques
Cns 13f-lec03- Classical Encryption TechniquesCns 13f-lec03- Classical Encryption Techniques
Cns 13f-lec03- Classical Encryption Techniques
 
Classical Encryption Techniques in Network Security
Classical Encryption Techniques in Network SecurityClassical Encryption Techniques in Network Security
Classical Encryption Techniques in Network Security
 
Problems at independence
Problems at independenceProblems at independence
Problems at independence
 

Recently uploaded

Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Product School
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
DianaGray10
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
DianaGray10
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
Alan Dix
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
Kari Kakkonen
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Jeffrey Haguewood
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
RTTS
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 

Recently uploaded (20)

Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 

Lecture9

  • 1. Lecture 10: Sampling Discrete-Time Systems 4 Sampling & Discrete-time systems (2 lectures): Sampling theorem, discrete Fourier transform Specific objectives for today: • Sampling of a continuous-time signal • Reconstruction of the signals from its samples • Sampling theorem & Nyquist rate • Reconstruction of a signal, using zero-order holds
  • 2. Lecture 10: Resources Core reading SaS, O&W, C7 Background reading MIT Lectures 9 & 13 In these two lectures, we’re going to develop the DT Fourier transform as a sampled version of the CT Fourier transform. Note that this is opposite to time-domain convolution where we developed CT convolution as the limiting case of DT convolution
  • 3. Sampling is the transformation of a continuous signal into a discrete signal Widely applied in digital analysis systems 1. Sample the continuous time signal 2. Design and process discrete time signal 3. Convert back to continuous time What is Discrete Time Sampling? x(t), x[n] t=nT Discrete Time sampler Discrete time system Signal reconstruction x(t) x[n] y[n] y(t) T is the sampling period
  • 4. Why is Sampling Important? For many systems (e.g. Matlab, …) designing and processing discrete-time systems is more efficient and more general compared to performing continuous-time system design. How does Simulink perform continuous-time system simulation? The signals are sampled and the systems are approximately integrated in discrete time Mainly due to the dramatic development of digital technology resulting in inexpensive, lightweight, programmable and reproducible discrete-time systems. Widely used for communication
  • 5. Sampling a Continuous-Time Signal Clearly for a finite sample period T, it is not possible to represent every uncountable, infinite-dimensional continuous-time signal with a countable, infinite-dimensional discrete-time signal. In general, an infinite number of CT signals can generate a DT signal. However, if the signal is band (frequency) limited, and the samples are sufficiently close, it is possible to uniquely reconstruct the original CT signal from the sampled signal x1(t), x2(t), x3(t), x[n] t=nT
  • 6. Definition of Impulse Train Sampling We need to have a convenient way in which to represent the sampling of a CT signal at regular intervals A common/useful way to do this is through the use of a periodic impulse train signal, p(t), multiplied by the CT signal T is the sampling period ωs=2π/T is the sampling frequency This is known as impulse train sampling. Note xp(t) is still a continuous time signal ∑ ∞ −∞= −= = n p nTttp tptxtx )()( )()()( δ T
  • 7. Analysing Impulse Train Sampling (i) What effect does this sampling have on the frequency decomposition (Fourier transform) of the CT impulse train signal xp(t)? By definition: The signal p(t) is periodic and the coefficients of the Fourier Series are given by: Therefore, the Fourier transform is given by One property of the Fourier transform we did not consider is the multiplicative property which says if xp(t) = x(t)p(t), then ∑∑ ∞ −∞= ∞ −∞= −=−= nn p nTtnTxnTttxtx )()()()()( δδ ∫ ∞ ∞− −= θθωθω π djPjXjX p ))(()()( 2 1 ∑ ∞ −∞= −= k sT kjP )()( 2 ωωδω π kdteta T T T tjk Tk ∀== ∫− − ,)( 1 2/ 2/ 1 0ω δ
  • 8. Analysing Impulse Train Sampling (ii) Substituting for P(jω) Therefore Xp(jω) is a periodic function of ω, consisting of a superposition of shifted replicas of X(jω), scaled by 1/T. ∑ ∑ ∫ ∫ ∑ ∞ −∞= ∞ −∞= ∞ ∞− ∞ ∞− ∞ −∞= −= −−= −−= k sT k sT k sTp kjX dkjX dkjXjX ))(( ))(()( ))(()()( 1 1 1 ωω θθωωδθ θθωωδθω |X(jω)|=0: |ω|>1 ωs=3
  • 9. Reconstruction of the CT Signal When the sampling frequency ωs is less than twice the band-limited frequency ωM, there is no overlaps the spectrum X(jω) If this is true, the original signal x(t) can be recovered from the impulse sampled xp(t), by passing it through a low pass filter H(jω) with gain T and cutoff frequency between ωM and ωs-ωM. 1 1/T T 1 ωM=1 ωs=3
  • 10. Sampling Theorem Let x(t) be a band (frequency)-limited signal X(jω) = 0 for |ω|>ωM. Then x(t) is uniquely determined by its samples {x(nT)} when the sampling frequency satisfies: where ωs=2π/T. 2ωM is known as the Nyquist rate, as it represents the largest frequency that can be reproduced with the sample time The result makes sense because a frequency-limited signal has a limited amount of information that can be fully captured with the sampled sequence {x(nT)} Ms ωω 2> X(jω) ωM ω ωs -ωM
  • 11. Zero Order Hold Sampling A zero order hold is a common method for bridging CT-DT signals A zero order hold samples the current signal and holds that value until the next sample In most systems, it is difficult to generate and transmit narrow, large- amplitude pulses (impulse train sampling) xp(t) We can often use a variety of filtering/interpolation techniques to reconstruct the original time-domain signal, however often the zero-order hold signal x0(t) is sufficiently accurate xp(t) x0(t) x(t) t t t
  • 12. Lecture 10: Summary The sample time for converting a continuous time signal into a sampled, discrete time signal is determined by the Nyquist rate, amongst other things. The signal must satisfy the relationship: If the signal is to be preserved exactly. Information in frequencies higher than this will be lost when the signal is sampled. A continuous time signal is often sampled and communicated using a zero order hold Often this is enough to be considered as the re-constructed continuous time signal, but sometimes approximate methods for re-constructing the signal are used Ms ωω 2>