Download free for 30 days
Sign in
Upload
Language (EN)
Support
Business
Mobile
Social Media
Marketing
Technology
Art & Photos
Career
Design
Education
Presentations & Public Speaking
Government & Nonprofit
Healthcare
Internet
Law
Leadership & Management
Automotive
Engineering
Software
Recruiting & HR
Retail
Sales
Services
Science
Small Business & Entrepreneurship
Food
Environment
Economy & Finance
Data & Analytics
Investor Relations
Sports
Spiritual
News & Politics
Travel
Self Improvement
Real Estate
Entertainment & Humor
Health & Medicine
Devices & Hardware
Lifestyle
Change Language
Language
English
Español
Português
Français
Deutsche
Cancel
Save
EN
Uploaded by
Deep Learning JP
PDF, PPTX
1,259 views
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
2023/7/14 Deep Learning JP http://deeplearning.jp/seminar-2/
Technology
◦
Related topics:
Deep Learning
•
Read more
0
Save
Share
Embed
Embed presentation
Download
Download as PDF, PPTX
1
/ 12
2
/ 12
3
/ 12
4
/ 12
Most read
5
/ 12
6
/ 12
Most read
7
/ 12
8
/ 12
9
/ 12
Most read
10
/ 12
11
/ 12
12
/ 12
More Related Content
PPTX
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
by
Deep Learning JP
PPTX
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
by
Deep Learning JP
PDF
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
by
SSII
PDF
PRML学習者から入る深層生成モデル入門
by
tmtm otm
PDF
画像生成・生成モデル メタサーベイ
by
cvpaper. challenge
PDF
Transformer メタサーベイ
by
cvpaper. challenge
PDF
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
by
Deep Learning JP
PPTX
近年のHierarchical Vision Transformer
by
Yusuke Uchida
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
by
Deep Learning JP
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
by
Deep Learning JP
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
by
SSII
PRML学習者から入る深層生成モデル入門
by
tmtm otm
画像生成・生成モデル メタサーベイ
by
cvpaper. challenge
Transformer メタサーベイ
by
cvpaper. challenge
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
by
Deep Learning JP
近年のHierarchical Vision Transformer
by
Yusuke Uchida
What's hot
PPTX
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
by
Deep Learning JP
PPTX
backbone としての timm 入門
by
Takuji Tahara
PDF
【DL輪読会】Perceiver io a general architecture for structured inputs & outputs
by
Deep Learning JP
PPTX
深層学習の数理
by
Taiji Suzuki
PDF
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
by
SSII
PDF
[DL輪読会]data2vec: A General Framework for Self-supervised Learning in Speech,...
by
Deep Learning JP
PPTX
モデル高速化百選
by
Yusuke Uchida
PDF
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
by
SSII
PPTX
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
by
Yusuke Uchida
PDF
実装レベルで学ぶVQVAE
by
ぱんいち すみもと
PPTX
[DL輪読会]Object-Centric Learning with Slot Attention
by
Deep Learning JP
PDF
強化学習と逆強化学習を組み合わせた模倣学習
by
Eiji Uchibe
PPTX
Curriculum Learning (関東CV勉強会)
by
Yoshitaka Ushiku
PPTX
PILCO - 第一回高橋研究室モデルベース強化学習勉強会
by
Shunichi Sekiguchi
PDF
Active Learning 入門
by
Shuyo Nakatani
PDF
【DL輪読会】Foundation Models for Decision Making: Problems, Methods, and Opportun...
by
Deep Learning JP
PDF
【メタサーベイ】Transformerから基盤モデルまでの流れ / From Transformer to Foundation Models
by
cvpaper. challenge
PPTX
[DL輪読会]World Models
by
Deep Learning JP
PPTX
【DL輪読会】"Instant Neural Graphics Primitives with a Multiresolution Hash Encoding"
by
Deep Learning JP
PPTX
[DL輪読会] マルチエージェント強化学習と心の理論
by
Deep Learning JP
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
by
Deep Learning JP
backbone としての timm 入門
by
Takuji Tahara
【DL輪読会】Perceiver io a general architecture for structured inputs & outputs
by
Deep Learning JP
深層学習の数理
by
Taiji Suzuki
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
by
SSII
[DL輪読会]data2vec: A General Framework for Self-supervised Learning in Speech,...
by
Deep Learning JP
モデル高速化百選
by
Yusuke Uchida
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
by
SSII
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
by
Yusuke Uchida
実装レベルで学ぶVQVAE
by
ぱんいち すみもと
[DL輪読会]Object-Centric Learning with Slot Attention
by
Deep Learning JP
強化学習と逆強化学習を組み合わせた模倣学習
by
Eiji Uchibe
Curriculum Learning (関東CV勉強会)
by
Yoshitaka Ushiku
PILCO - 第一回高橋研究室モデルベース強化学習勉強会
by
Shunichi Sekiguchi
Active Learning 入門
by
Shuyo Nakatani
【DL輪読会】Foundation Models for Decision Making: Problems, Methods, and Opportun...
by
Deep Learning JP
【メタサーベイ】Transformerから基盤モデルまでの流れ / From Transformer to Foundation Models
by
cvpaper. challenge
[DL輪読会]World Models
by
Deep Learning JP
【DL輪読会】"Instant Neural Graphics Primitives with a Multiresolution Hash Encoding"
by
Deep Learning JP
[DL輪読会] マルチエージェント強化学習と心の理論
by
Deep Learning JP
Similar to 【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
PDF
[DL輪読会]STORM: An Integrated Framework for Fast Joint-Space Model-Predictive C...
by
Deep Learning JP
PDF
ヒューマノイドロボット頂上決戦と人工知能:実践と理論のギャップを探る
by
Akihiko Yamaguchi
PDF
[DL輪読会]Making Sense of Vision and Touch: Self-Supervised Learning of Multimod...
by
Deep Learning JP
PDF
【DeepLearning研修】Transfomerの基礎と応用 --第4回 マルチモーダルへの展開
by
Sony - Neural Network Libraries
PDF
論文 Solo Advent Calendar
by
諒介 荒木
PDF
実社会・実環境におけるロボットの機械学習
by
Kuniyuki Takahashi
PPTX
「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
by
Takumi Ohkuma
PPTX
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
by
Deep Learning JP
PDF
Robotpaper.Challenge 2019-08
by
robotpaperchallenge
PDF
【DL輪読会】Learning Instance-Specific Adaptation for Cross-Domain Segmentation (E...
by
Deep Learning JP
PDF
IROS2020 survey
by
robotpaperchallenge
PDF
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
by
SSII
PDF
Pre-Survey 2020 05-04:2020-05-10
by
robotpaperchallenge
PPTX
DLゼミ: Ego-Body Pose Estimation via Ego-Head Pose Estimation
by
harmonylab
PDF
[DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learnin...
by
Deep Learning JP
PPTX
[DL輪読会]Learning to Adapt: Meta-Learning for Model-Based Control
by
Deep Learning JP
PDF
Taking a Deeper Look at the Inverse Compositional Algorithm
by
Mai Nishimura
PDF
Robotpaper.Challenge 2019-10
by
robotpaperchallenge
PPTX
「実ロボットの運動生成」
by
Yurika Doi
PPTX
[DL輪読会]High-Fidelity Image Generation with Fewer Labels
by
Deep Learning JP
[DL輪読会]STORM: An Integrated Framework for Fast Joint-Space Model-Predictive C...
by
Deep Learning JP
ヒューマノイドロボット頂上決戦と人工知能:実践と理論のギャップを探る
by
Akihiko Yamaguchi
[DL輪読会]Making Sense of Vision and Touch: Self-Supervised Learning of Multimod...
by
Deep Learning JP
【DeepLearning研修】Transfomerの基礎と応用 --第4回 マルチモーダルへの展開
by
Sony - Neural Network Libraries
論文 Solo Advent Calendar
by
諒介 荒木
実社会・実環境におけるロボットの機械学習
by
Kuniyuki Takahashi
「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
by
Takumi Ohkuma
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
by
Deep Learning JP
Robotpaper.Challenge 2019-08
by
robotpaperchallenge
【DL輪読会】Learning Instance-Specific Adaptation for Cross-Domain Segmentation (E...
by
Deep Learning JP
IROS2020 survey
by
robotpaperchallenge
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
by
SSII
Pre-Survey 2020 05-04:2020-05-10
by
robotpaperchallenge
DLゼミ: Ego-Body Pose Estimation via Ego-Head Pose Estimation
by
harmonylab
[DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learnin...
by
Deep Learning JP
[DL輪読会]Learning to Adapt: Meta-Learning for Model-Based Control
by
Deep Learning JP
Taking a Deeper Look at the Inverse Compositional Algorithm
by
Mai Nishimura
Robotpaper.Challenge 2019-10
by
robotpaperchallenge
「実ロボットの運動生成」
by
Yurika Doi
[DL輪読会]High-Fidelity Image Generation with Fewer Labels
by
Deep Learning JP
More from Deep Learning JP
PPTX
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
by
Deep Learning JP
PPTX
【DL輪読会】事前学習用データセットについて
by
Deep Learning JP
PPTX
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
by
Deep Learning JP
PPTX
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
by
Deep Learning JP
PPTX
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
by
Deep Learning JP
PPTX
【DL輪読会】マルチモーダル LLM
by
Deep Learning JP
PDF
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
by
Deep Learning JP
PPTX
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
by
Deep Learning JP
PDF
【DL輪読会】Can Neural Network Memorization Be Localized?
by
Deep Learning JP
PPTX
【DL輪読会】Hopfield network 関連研究について
by
Deep Learning JP
PPTX
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
by
Deep Learning JP
PDF
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
by
Deep Learning JP
PDF
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
by
Deep Learning JP
PPTX
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
by
Deep Learning JP
PPTX
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
by
Deep Learning JP
PPTX
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
by
Deep Learning JP
PDF
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
by
Deep Learning JP
PDF
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
by
Deep Learning JP
PPTX
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
by
Deep Learning JP
PPTX
【DL輪読会】VIP: Towards Universal Visual Reward and Representation via Value-Impl...
by
Deep Learning JP
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
by
Deep Learning JP
【DL輪読会】事前学習用データセットについて
by
Deep Learning JP
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
by
Deep Learning JP
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
by
Deep Learning JP
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
by
Deep Learning JP
【DL輪読会】マルチモーダル LLM
by
Deep Learning JP
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
by
Deep Learning JP
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
by
Deep Learning JP
【DL輪読会】Can Neural Network Memorization Be Localized?
by
Deep Learning JP
【DL輪読会】Hopfield network 関連研究について
by
Deep Learning JP
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
by
Deep Learning JP
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
by
Deep Learning JP
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
by
Deep Learning JP
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
by
Deep Learning JP
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
by
Deep Learning JP
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
by
Deep Learning JP
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
by
Deep Learning JP
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
by
Deep Learning JP
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
by
Deep Learning JP
【DL輪読会】VIP: Towards Universal Visual Reward and Representation via Value-Impl...
by
Deep Learning JP
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
1.
1 Learning Fine-Grained Bimanual
Manipulation with Low-Cost Hardware Koki Yamane, University of Tsukuba
2.
書誌情報 2023/7/14 2 題名 Learning
Fine-Grained Bimanual Manipulation with Low-Cost Hardware 著者 Tony Z. Zhao (1) Vikash Kumar (3) Sergey Levine (2) Chelsea Finn (1) 所属 (1) Stanford University (2) UC Berkeley (3) Meta 会議 RSS 2023 概要 ロボット模倣学習で高精度動作を行うには教示データのばらつきが課題 Transformerを用いたCVAEによる行動シーケンス生成モデル「ACT」を提案
3.
概要 模倣学習により低コストのロボットで高精度のタスクを実現 2023/7/14 3
4.
ALOHA:A Low-cost Open-source
Hardware System for Bimanual Teleoperation 低コストの双腕遠隔操作ハードウェアを提案 2023/7/14 4
5.
Action Chunking with
Transformers (ACT) Transformerを用いたCVAEで現在の状態から次の数ステップの行動を予測 2023/7/14 5 動作のスタイルを表す潜在変数 (操作者による癖などを表現) 4つのカメラの画像と各関節の角度を入力 次の1ステップではなく 次の数ステップの行動を同時に予測 自律動作時の潜在変数は0
6.
Action Chunking with
Transformers (ACT) Action Chunking 次の数ステップをまとめて予測 一連の動作をまとめて扱う 非マルコフ性に対応 1ステップごとの生成では,一時停止と 終了時の停止を見分けるのが難しい Temporal Ensembling チャンクを毎ステップ出力し加重平 均を取ることで滑らかにつなぐ チャンクの境目で急な動作になるの を防ぐ 2023/7/14 6 Transformerを用いたCVAEで現在の状態から次の数ステップの行動を予測
7.
実験 2023/7/14 7 8つのタスクで検証
シミュレーション2,実機6 教示データ 各50回 1エピソード8~14秒 所要時間30分~60分 50Hz
8.
実験結果 全てのタスクでベースラインを上回る成功率を達成 2023/7/14 8
9.
Ablations シミュレーションタスクで検証 全ての手法でチャンクで性能向上
100ステップで最高性能 長く予測しすぎると性能が落ちる 適応的な動作がしにくくなる? 2023/7/14 9 予測するチャンクのステップ数を比較
10.
Ablations 提案手法では3.3%の成功率上昇 BC-ConvMLPでも成功率上昇
VINNでは20%の成功率減少 VINNは画像特徴量をNearest neighbor法で動作に対応付ける ノンパラメトリックな手法ではむし ろ悪影響 2023/7/14 10 Temporal Ensemblingの効果を検証
11.
Ablations シミュレーションタスクで検証 プログラムで生成したデータから の学習ではほとんど変化なし
人間が操作した教示データからの 学習では33.3%の成功率上昇 2023/7/14 11 CVAEの効果を検証
12.
まとめ 2023/7/14 12 模倣学習では教示データに一貫性がない場合にうまく学習できない
CVAEの潜在変数で動作の特徴を表現し,ばらつきのある動作から学習 数ステップまとめて予測することにより非マルコフ性を伴う動作に対応 実機を含む8つのタスクでベースラインを超える成功率を達成 感想 データのばらつきに対して入力に潜在変数を加えて対応している点が興味深い Transformerで連続信号の生成をする場合,値の急激な変化は問題にならないのか Temporal Ensemblingなしでもある程度成功している
Download