SlideShare a Scribd company logo
David M. Bressoud
Macalester College, St. Paul, MN
Talk given at University of Florida
October 29, 2004
1. The Vandermonde determinant
2. Weyl’s character formulae
3. Alternating sign matrices
4. The six-vertex model of statistical mechanics
5. Okada’s work connecting ASM’s and character
formulae
x1
n−1
x2
n−1
L xn
n−1
M M O M
x1 x2 L xn
1 1 L 1
= −1( )I σ( )
xi
n−σ i( )
i=1
n
∏σ ∈Sn
∑
Cauchy 1815
“Memoir on functions whose
values are equal but of opposite
sign when two of their variables
are interchanged”
(alternating functions)
Augustin-Louis Cauchy
(1789–1857)
Cauchy 1815
“Memoir on functions whose
values are equal but of opposite
sign when two of their variables
are interchanged”
(alternating functions)
This function is 0 when so it is divisible byxi = xj
xi − xj( )i< j
∏
x1
n−1
x2
n−1
L xn
n−1
M M O M
x1 x2 L xn
1 1 L 1
= −1( )I σ( )
xi
n−σ i( )
i=1
n
∏σ ∈Sn
∑
Cauchy 1815
“Memoir on functions whose
values are equal but of opposite
sign when two of their variables
are interchanged”
(alternating functions)
This function is 0 when so it is divisible byxi = xj
xi − xj( )i< j
∏
But both polynomials have same degree, so ratio is constant, = 1.
= xi − xj( )i< j
∏
x1
n−1
x2
n−1
L xn
n−1
M M O M
x1 x2 L xn
1 1 L 1
= −1( )I σ( )
xi
n−σ i( )
i=1
n
∏σ ∈Sn
∑
Cauchy 1815
Any alternating function in divided by the
Vandermonde determinant yields a symmetric function:
x1,x2,K ,xn
x1
λ1 +n−1
x2
λ1 +n−1
L xn
λ1 +n−1
M M O M
x1
λn−1 +1
x2
λn−1 +1
L xn
λn−1 +1
x1
λn
x2
λn
L xn
λn
x1
n−1
x2
n−1
L xn
n−1
M M O M
x1
1
x2
1
L xn
1
x1
0
x2
0
L xn
0
= sλ x1,x2,K ,xn( )
Cauchy 1815
Any alternating function in divided by the
Vandermonde determinant yields a symmetric function:
x1,x2,K ,xn
Called the Schur function.
I.J. Schur (1917) recognized
it as the character of the
irreducible representation of
GLn indexed by λ.
x1
λ1 +n−1
x2
λ1 +n−1
L xn
λ1 +n−1
M M O M
x1
λn−1 +1
x2
λn−1 +1
L xn
λn−1 +1
x1
λn
x2
λn
L xn
λn
x1
n−1
x2
n−1
L xn
n−1
M M O M
x1
1
x2
1
L xn
1
x1
0
x2
0
L xn
0
= sλ x1,x2,K ,xn( )
Issai
Schur
(1875–
1941)
sλ 1,1,K ,1( ) is the dimension of the representation
sλ 1,1,K ,1( )=
ρ + λ( )⋅r
ρ ⋅rr∈An−1
+
∏
where ρ =
n −1
2
,
n − 3
2
,K ,
1− n
2



 =
1
2
r
r∈An−1
+
∑ ,
λ = λ1,λ2,K ,λn( ),
An−1
+
= ei − ej 1 ≤ i < j ≤ n{ },
ei is the unit vector with 1 in the ith coordinate
Note that the symmetric group on n letters is the group of
transformations of An−1 = ei − ej 1 ≤ i ≠ j ≤ n{ }
Weyl 1939 The Classical Groups: their invariants and
representations
Sp2n λ;
r
x( )=
x1
λ1 +n
− x1
−λ1 −n
L xn
λ1 +n
− xn
−λ1 −n
M O M
x1
λn +1
− x1
−λn −1
L xn
λn +1
− xn
−λn −1
x1
n
− x1
−n
L xn
n
− xn
−n
M O M
x1
1
− x1
−1
L xn
1
− xn
−1
Sp2n λ;
r
x( ) is the character of the irreducible representation,
indexed by the partition λ, of the symplectic group
(the subgoup of GL2n of isometries).
Hermann Weyl (1885–1955)
Sp2n λ;1
r
( )=
ρ + λ( )⋅r
ρ ⋅rr∈Cn
+
∏
where ρ = n,n −1,K ,1( )=
1
2
r
r∈Cn
+
∑ ,
λ = λ1,λ2,K ,λn( ),
Cn
+
= ei ± ej 1 ≤ i < j ≤ n{ }U 2ei 1 ≤ i ≤ n{ },
ei is the unit vector with 1 in the ith coordinate
The dimension of the representation is
Weyl 1939 The Classical Groups: their invariants and
representations
x1
n
− x1
−n
L xn
n
− xn
−n
M O M
x1
1
− x1
−1
L xn
1
− xn
−1
x1x2 L xn( )n
xi − xj( )i< j
∏
is a symmetric polynomial. As a polynomial in x1 it
has degree n + 1 and roots at ±1, xj
−1
for 2 ≤ j ≤ n
Weyl 1939 The Classical Groups: their invariants and
representations
x1
n
− x1
−n
L xn
n
− xn
−n
M O M
x1
1
− x1
−1
L xn
1
− xn
−1
x1x2 L xn( )n
xi − xj( )i< j
∏
= xi
2
−1( )
i
∏ xi xj −1( )i< j
∏
is a symmetric polynomial. As a polynomial in x1 it
has degree n + 1 and roots at ±1, xj
−1
for 2 ≤ j ≤ n
Weyl 1939 The Classical Groups: their invariants and
representations: The Denominator Formulas
x1
n− 1
2
− x1
−n+ 1
2
L xn
n− 1
2
− xn
−n+ 1
2
M O M
x1
1
2
− x1
− 1
2
L xn
1
2
− xn
− 1
2
x1x2 L xn( )n− 1
2
xi − xj( )i< j
∏
= xi −1( )
i
∏ xi xj −1( )i< j
∏
x1
n−1
+ x1
−n+1
L xn
n−1
+ xn
−n+1
M O M
x1
0
+ x1
−0
L xn
0
+ xn
−0
x1x2 L xn( )n−1
xi − xj( )i< j
∏
= 2 xi xj −1( )i< j
∏
Desnanot-Jacobi adjoint matrix thereom (Desnanot for
n 6 in 1819, Jacobi for general case in 1833≤
M j
i
is matrix M with row i and column j removed.
det M =
det M1
1
⋅det Mn
n
− det Mn
1
⋅det M1
n
det M1,n
1,n
Given that the determinant of the
empty matrix is 1 and the
determinant of a 1×1 is the entry
in that matrix, this uniquely
defines the determinant for all
square matrices.
Carl Jacobi (1804–1851)
det M =
det M1
1
⋅det Mn
n
− det Mn
1
⋅det M1
n
det M1,n
1,n
detλ M =
det M1
1
⋅det Mn
n
+ λ det Mn
1
⋅det M1
n
det M1,n
1,n
det−1 M = det M( )
detλ aj
i−1
( )i, j=1
n
= ai + λ aj( )1≤i< j≤n
∏
David Robbins (1942–2003)
det M =
det M1
1
⋅det Mn
n
− det Mn
1
⋅det M1
n
det M1,n
1,n
detλ M =
det M1
1
⋅det Mn
n
+ λ det Mn
1
⋅det M1
n
det M1,n
1,n
detλ
a b
c d



 = ad + λbc
detλ
a b c
d e f
g h j








= aej + λ bdj + afh( )+ λ2
bfg + cdh( )+ λ3
ceg
+ λ 1+ λ( )bde−1
fh
detλ
a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4












= a1,1a2,2a3,3a4,4
+ λ a1,2a2,1a3,3a4,4 + a1,1a2,3a3,2a4,4 + a1,1a2,2a3,4a4,3( )
+L sums over other permutations × λinversion number
+ λ3
1+ λ−1
( )a1,2a2,1a2,2
−1
a2,3a3,4a4,2 +L
+ λ3
1+ λ−1
( )
2
a1,2a2,1a2,2
−1
a2,3a3,2a3,3
−1
a3,4a4,3 +L
detλ
a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4












= a1,1a2,2a3,3a4,4
+ λ a1,2a2,1a3,3a4,4 + a1,1a2,3a3,2a4,4 + a1,1a2,2a3,4a4,3( )
+L sums over other permutations × λinversion number
+ λ3
1+ λ−1
( )a1,2a2,1a2,2
−1
a2,3a3,4a4,2 +L
+ λ3
1+ λ−1
( )
2
a1,2a2,1a2,2
−1
a2,3a3,2a3,3
−1
a3,4a4,3 +L
0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0












0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0












detλ
a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4












= a1,1a2,2a3,3a4,4
+ λ a1,2a2,1a3,3a4,4 + a1,1a2,3a3,2a4,4 + a1,1a2,2a3,4a4,3( )
+L sums over other permutations × λinversion number
+ λ3
1+ λ−1
( )a1,2a2,1a2,2
−1
a2,3a3,4a4,2 +L
+ λ3
1+ λ−1
( )
2
a1,2a2,1a2,2
−1
a2,3a3,2a3,3
−1
a3,4a4,3 +L
0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0












0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0












detλ
a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4












= a1,1a2,2a3,3a4,4
+ λ a1,2a2,1a3,3a4,4 + a1,1a2,3a3,2a4,4 + a1,1a2,2a3,4a4,3( )
+L sums over other permutations × λinversion number
+ λ3
1+ λ−1
( )a1,2a2,1a2,2
−1
a2,3a3,4a4,2 +L
+ λ3
1+ λ−1
( )
2
a1,2a2,1a2,2
−1
a2,3a3,2a3,3
−1
a3,4a4,3 +L
detλ xi, j( )= λInv A( )
A= ai, j( )
∑ 1+ λ−1
( )
N A( )
xi, j
ai, j
i, j
∏
Sum is over all alternating sign matrices, N(A) = # of –1’s
detλ
a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4












= a1,1a2,2a3,3a4,4
+ λ a1,2a2,1a3,3a4,4 + a1,1a2,3a3,2a4,4 + a1,1a2,2a3,4a4,3( )
+L sums over other permutations × λinversion number
+ λ3
1+ λ−1
( )a1,2a2,1a2,2
−1
a2,3a3,4a4,2 +L
+ λ3
1+ λ−1
( )
2
a1,2a2,1a2,2
−1
a2,3a3,2a3,3
−1
a3,4a4,3 +L
detλ xi, j( )= λInv A( )
A= ai, j( )
∑ 1+ λ−1
( )
N A( )
xi, j
ai, j
i, j
∏
xi + λxj( )= λInv A( )
1+ λ−1
( )
N A( )
xj
n−i( )ai, j
i, j
∏
A∈An
∑
1≤i< j≤n
∏
n
1
2
3
4
5
6
7
8
9
An
1
2
7
42
429
7436
218348
10850216
911835460
= 2 × 3 × 7
= 3 × 11 × 13
= 22
× 11 × 132
= 22
× 132
× 17 × 19
= 23
× 13 × 172
× 192
= 22
× 5 × 172
× 193
× 23
How many n × n alternating sign
matrices?
n
1
2
3
4
5
6
7
8
9
An
1
2
7
42
429
7436
218348
10850216
911835460
= 2 × 3 × 7
= 3 × 11 × 13
= 22
× 11 × 132
= 22
× 132
× 17 × 19
= 23
× 13 × 172
× 192
= 22
× 5 × 172
× 193
× 23
n
1
2
3
4
5
6
7
8
9
An
1
2
7
42
429
7436
218348
10850216
911835460
There is exactly one 1
in the first row
n
1
2
3
4
5
6
7
8
9
An
1
1+1
2+3+2
7+14+14+7
42+105+…
There is exactly one 1
in the first row
1
1 1
2 3 2
7 14 14 7
42 105 135 105 42
429 1287 2002 2002 1287 429
1
1 1
2 3 2
7 14 14 7
42 105 135 105 42
429 1287 2002 2002 1287 429
+ + +
1
1 1
2 3 2
7 14 14 7
42 105 135 105 42
429 1287 2002 2002 1287 429
+ + +
1 0 0 0 0
0 ? ? ? ?
0 ? ? ? ?
0 ? ? ? ?
0 ? ? ? ?
















1
1 2/2 1
2 2/3 3 3/2 2
7 2/4 14 14 4/2 7
42 2/5 105 135 105 5/2 42
429 2/6 1287 2002 2002 1287 6/2 429
1
1 2/2 1
2 2/3 3 3/2 2
7 2/4 14 5/5 14 4/2 7
42 2/5 105 7/9 135 9/7 105 5/2 42
429 2/6 1287 9/14 2002 16/16 2002 14/9 1287 6/2 429
2/2
2/3 3/2
2/4 5/5 4/2
2/5 7/9 9/7 5/2
2/6 9/14 16/16 14/9 6/2
2
2 3
2 5 4
2 7 9 5
2 9 16 14 6
1+1
1+1 1+2
1+1 2+3 1+3
1+1 3+4 3+6 1+4
1+1 4+5 6+10 4+10 1+5
Numerators:
1+1
1+1 1+2
1+1 2+3 1+3
1+1 3+4 3+6 1+4
1+1 4+5 6+10 4+10 1+5
Conjecture 1:
Numerators:
An,k
An,k+1
=
n − 2
k −1



 +
n −1
k −1




n − 2
n − k −1



 +
n −1
n − k −1




Conjecture 1:
Conjecture 2 (corollary of Conjecture 1):
An,k
An,k+1
=
n − 2
k −1



 +
n −1
k −1




n − 2
n − k −1



 +
n −1
n − k −1




An =
3j +1( )!
n + j( )!j=0
n−1
∏ =
1!⋅4!⋅7!L 3n − 2( )!
n!⋅ n +1( )!L 2n −1( )!
Conjecture 2 (corollary of Conjecture 1):
An =
3j +1( )!
n + j( )!j=0
n−1
∏ =
1!⋅4!⋅7!L 3n − 2( )!
n!⋅ n +1( )!L 2n −1( )!
Exactly the formula found
by George Andrews for
counting descending plane
partitions.
George Andrews
Penn State
Conjecture 2 (corollary of Conjecture 1):
An =
3j +1( )!
n + j( )!j=0
n−1
∏ =
1!⋅4!⋅7!L 3n − 2( )!
n!⋅ n +1( )!L 2n −1( )!
Exactly the formula found
by George Andrews for
counting descending plane
partitions. In succeeding
years, the connection would
lead to many important
results on plane partitions.
George Andrews
Penn State
A n;x( )= xN A( )
A∈An
∑
A 1;x( )= 1,
A 2;x( )= 2,
A 3;x( )= 6 + x,
A 4;x( )= 24 +16x + 2x2
,
A 5;x( )= 120 + 200x + 94x2
+14x3
+ x4
,
A 6;x( )= 720 + 2400x + 2684x2
+1284x3
+ 310x4
+ 36x5
+ 2x6
A 7;x( )= 5040 + 24900x + 63308x2
+ 66158x3
+ 38390x4
+13037x5
+ 2660x6
+ 328x7
+ 26x8
+ x9
A n;x( )= xN A( )
A∈An
∑
A 1;x( )= 1,
A 2;x( )= 2,
A 3;x( )= 6 + x,
A 4;x( )= 24 +16x + 2x2
,
A 5;x( )= 120 + 200x + 94x2
+14x3
+ x4
,
A 6;x( )= 720 + 2400x + 2684x2
+1284x3
+ 310x4
+ 36x5
+ 2x6
A 7;x( )= 5040 + 24900x + 63308x2
+ 66158x3
+ 38390x4
+13037x5
+ 2660x6
+ 328x7
+ 26x8
+ x9
xi + λxj( )= λInv A( )
1+ λ−1
( )
N A( )
xj
n−i( )ai, j
i, j
∏
A∈An
∑
1≤i< j≤n
∏
A n;0( )= n!
A n;1( )= An =
3i +1( )!
n + i( )!i=0
n−1
∏




A n;2( )= 2n(n−1)/2
A n;x( )= xN A( )
A∈An
∑
A 1;x( )= 1,
A 2;x( )= 2,
A 3;x( )= 6 + x,
A 4;x( )= 24 +16x + 2x2
,
A 5;x( )= 120 + 200x + 94x2
+14x3
+ x4
,
A 6;x( )= 720 + 2400x + 2684x2
+1284x3
+ 310x4
+ 36x5
+ 2x6
A 7;x( )= 5040 + 24900x + 63308x2
+ 66158x3
+ 38390x4
+13037x5
+ 2660x6
+ 328x7
+ 26x8
+ x9
A n;3( )=
3n n−1( )
2n n−1( )
3 j − i( )+1
3 j − i( )1≤i, j≤n
j−i odd
∏Conjecture:
(MRR, 1983)
A n;0( )= n!
A n;1( )= An =
3i +1( )!
n + i( )!i=0
n−1
∏




A n;2( )= 2n(n−1)/2
Mills & Robbins (suggested by Richard Stanley) (1991)
Symmetries of ASM’s
A n( )=
3j +1( )!
n + j( )!j=0
n−1
∏
AV 2n +1( )= −3( )n2 3 j − i( )+1
j − i + 2n +11≤i, j≤2n+1
2 j
∏










A n( )
AHT 2n( )= −3( )n n−1( )/2 3 j − i( )+ 2
j − i + ni, j
∏



 A n( )
AQT 4n( )= AHT 2n( )⋅ A n( )2
Vertically symmetric
ASM’s
Half-turn symmetric
ASM’s
Quarter-turn
symmetric ASM’s
December, 1992
Zeilberger announces a
proof that # of ASM’s
equals
3j +1( )!
n + j( )!j=0
n−1
∏
Doron Zeilberger
Rutgers University
December, 1992
Zeilberger announces a
proof that # of ASM’s
equals
3j +1( )!
n + j( )!j=0
n−1
∏
1995 all gaps removed, published as “Proof of
the Alternating Sign Matrix Conjecture,” Elect.
J. of Combinatorics, 1996.
Zeilberger’s proof is an 84-page
tour de force, but it still left open
the original conjecture:
An,k
An,k+1
=
n − 2
k −1



 +
n −1
k −1




n − 2
n − k −1



 +
n −1
n − k −1




1996 Kuperberg
announces a simple proof
“Another proof of the alternating
sign matrix conjecture,”
International Mathematics
Research Notices
Greg Kuperberg
UC Davis
“Another proof of the alternating
sign matrix conjecture,”
International Mathematics
Research Notices
Physicists have been studying ASM’s for
decades, only they call them square ice
(aka the six-vertex model ).
1996 Kuperberg
announces a simple proof
H O H O H O H O H O H
H H H H H
H O H O H O H O H O H
H H H H H
H O H O H O H O H O H
H H H H H
H O H O H O H O H O H
H H H H H
H O H O H O H O H O H
Horizontal → 1
Vertical → –1
southwest
northeast
northwest
southeast
N = # of vertical
I = inversion
number
= N + # of SW
x2, y3
Anatoli Izergin
Vladimir Korepin
SUNY Stony Brook
1980’s
det
1
xi − yj( )axi − yj( )






xi − yj( )axi − yj( )i, j=1
n
∏
xi − xj( )yi − yj( )1≤i< j≤n∏
= 1− a( )2N A( )
an(n−1)/2− Inv A( )
A∈An
∑
× xi
vert
∏ yj axi − yj( )SW, NE
∏ xi − yj( )NW, SE
∏
Proof:
LHS is symmetric polynomial in x’s and in y’s
Degree n – 1 in x1
By induction, LHS = RHS when x1 = y1
Sufficient to show that RHS is symmetric polynomial in x’s and
in y’s
LHS is symmetric polynomial in x’s and in y’s
Degree n – 1 in x1
By induction, LHS = RHS when x1 = –y1
Sufficient to show that RHS is symmetric polynomial in x’s and
in y’s — follows from Baxter’s triangle-to-triangle relation
Proof:
Rodney J. Baxter
Australian
National
University
a = z−4
, xi = z2
, yi = 1
RHS = z − z−1
( )
n n−1( )
z + z−1
( )
2N A( )
A∈An
∑
det
1
xi − yj( )axi − yj( )






xi − yj( )axi − yj( )i, j=1
n
∏
xi − xj( )yi − yj( )1≤i< j≤n∏
= 1− a( )2N A( )
an(n−1)/2−Inv A( )
A∈An
∑
× xi
vert
∏ yj axi − yj( )SW, NE
∏ xi − yj( )NW, SE
∏
det
1
xi − yj( )axi − yj( )






xi − yj( )axi + yj( )i, j=1
n
∏
xi − xj( )yi − yj( )1≤i< j≤n∏
= 1− a( )2N A( )
an(n−1)/2−Inv A( )
A∈An
∑
× xi
vert
∏ yj axi − yj( )SW, NE
∏ xi − yj( )NW, SE
∏
z = eπi/3
: RHS = −3( )n n−1( )/2
An ,
z = eπi/4
: RHS = −2( )n n−1( )/2
2N A( )
A∈An
∑ ,
z = eπi/6
: RHS = −1( )n n−1( )/2
3N A( )
A∈An
∑ .
a = z−4
, xi = z2
, yi = 1
RHS = z − z−1
( )
n n−1( )
z + z−1
( )
2N A( )
A∈An
∑
1996
Doron Zeilberger
uses this
determinant to
prove the original
conjecture
“Proof of the refined alternating sign matrix
conjecture,” New York Journal of Mathematics
2001, Kuperberg uses the power of the triangle-to-triangle
relation to prove some of the conjectured formulas:
AV 2n +1( )= −3( )n2 3 j − i( )+1
j − i + 2n +1i, j≤2n+1
2 j
∏










A n( )
AHT 2n( )= −3( )n n−1( )/2 3 j − i( )+ 2
j − i + ni, j
∏





 A n( )
AQT 4n( )= AHT 2n( )⋅ A n( )2
Kuperberg, 2001: proved formulas for counting
some new six-vertex models:
AUU 2n( )= −3( )n2
22n 3 j − i( )+ 2
j − i + 2n +11≤i, j≤2n+1
2 j
∏
1 −1 0 1
0 1 −1 0
0 0 0 0
0 0 1 0












Kuperberg, 2001: proved formulas for many
symmetry classes of ASM’s and some new ones
1 −1 0 1
0 1 −1 0
0 0 0 0
0 0 1 0












AUU 2n( )= −3( )n2
22n 3 j − i( )+ 2
j − i + 2n +11≤i, j≤2n+1
2 j
∏
Soichi Okada,
Nagoya University
1993, Okada finds the equivalent of the
λ-determinant for the other Weyl
Denominator Formulas.
2004, Okada shows that the formulas for
counting ASM’s, including those subject
to symmetry conditions, are simply the
dimensions of certain irreducible
representations, i.e. specializations of
Weyl Character formulas.
sλ 1,1,K ,1( )=
ρ + λ( )⋅r
ρ ⋅rr∈A2 n−1
+
∏ =
3j +1( )
2



 −
3i +1( )
2




j − i1≤i< j≤2n
∏
3−n(n−1)/2
sλ 1,1,K ,1( )=
3i +1( )!
n + i( )!i=0
n−1
∏
Number of n × n ASM’s is 3–n(n–1)/2
times the
dimension of the irreducible representation of
GL2n indexed by
λ = n −1,n −1,n − 2,n − 2,K ,1,1,0,0( )
A2n−1
+
= ei − ej 1 ≤ i < j ≤ 2n{ }
ρ = n − 1
2,n − 3
2,K ,−n + 1
2( )
dim Sp4n λ( )=
ρC + λ( )⋅r
ρC ⋅rr∈C2n
+
∏
=
6n + 2 −
3i +1
2



 −
3j +1
2




4n + 2 − i − j









1≤i< j≤2n
∏
3j +1
2



 −
3i +1
2




j − i










3n +1−
3i +1
2




2n +1− ii=1
2n
∏
Number of (2n+1) × (2n+1) vertically symmetric
ASM’s is 3–n(n–1)
times the dimension of the
irreducible representation of Sp4n indexed by
λ = n −1,n −1,n − 2,n − 2,K ,1,1,0,0( )
C2n
+
= ei ± ej 1 ≤ i < j ≤ 2n{ }U 2ei 1 ≤ i ≤ 2n{ }
ρC =
1
2
r =
r∈C2n
+
∑ 2n,2n −1,K ,1( )
NEW for 2004:
Number of (4n+1) × (4n+1) vertically and
horizontally symmetric ASM’s is 2–2n
3–n(2n–1)
times
λ = n −1,n −1,n − 2,n − 2,K ,1,1,0,0( )
µ = n − 1
2,n − 3
2,n − 3
2,K , 3
2, 3
2, 1
2( )
dim Sp4n λ( )× dim %O4n µ( )=
ρC + λ( )⋅r
ρC ⋅rr∈C2n
+
∏






ρD + µ( )⋅r
ρD ⋅rr∈D2n
+
∏






C2n
+
= ei ± ej 1 ≤ i < j ≤ 2n{ }U 2ei 1 ≤ i ≤ 2n{ }
ρC = 2n,2n −1,K ,1( )
D2n
+
= ei ± ej 1 ≤ i < j ≤ 2n{ }
ρD = 2n −1,2n − 2,K ,1,0( )
Proofs and Confirmations: The Story
of the Alternating Sign Matrix
Conjecture
Cambridge University Press & MAA, 1999
OKADA, Enumeration of Symmetry Classes of
Alternating Sign Matrices and Characters of Classical
Groups, arXiv:math.CO/0408234 v1 18 Aug 2004

More Related Content

What's hot

Numerical solution of system of linear equations
Numerical solution of system of linear equationsNumerical solution of system of linear equations
Numerical solution of system of linear equations
reach2arkaELECTRICAL
 
Solution of Differential Equations in Power Series by Employing Frobenius Method
Solution of Differential Equations in Power Series by Employing Frobenius MethodSolution of Differential Equations in Power Series by Employing Frobenius Method
Solution of Differential Equations in Power Series by Employing Frobenius Method
Dr. Mehar Chand
 
Power Series - Legendre Polynomial - Bessel's Equation
Power Series - Legendre Polynomial - Bessel's EquationPower Series - Legendre Polynomial - Bessel's Equation
Power Series - Legendre Polynomial - Bessel's Equation
ArijitDhali
 
Algebra
AlgebraAlgebra
Algebra
Mang Oha
 
Interpolation
InterpolationInterpolation
Interpolation
Santhanam Krishnan
 
Chapter 3 solving systems of linear equations
Chapter 3 solving systems of linear equationsChapter 3 solving systems of linear equations
Chapter 3 solving systems of linear equations
ssuser53ee01
 
Higher Order Differential Equation
Higher Order Differential EquationHigher Order Differential Equation
Higher Order Differential Equation
Shrey Patel
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Rai University
 
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Vladimir Godovalov
 
Higher order differential equation
Higher order differential equationHigher order differential equation
Higher order differential equation
Sooraj Maurya
 
On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...
On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...
On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...
BRNSS Publication Hub
 
Methods of variation of parameters- advance engineering mathe mathematics
Methods of variation of parameters- advance engineering mathe mathematicsMethods of variation of parameters- advance engineering mathe mathematics
Methods of variation of parameters- advance engineering mathe mathematics
Kaushal Patel
 
2.c1.3 algebra and functions 3
2.c1.3 algebra and functions 32.c1.3 algebra and functions 3
2.c1.3 algebra and functions 3
Dreams4school
 
Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...
Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...
Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...
Lossian Barbosa Bacelar Miranda
 
Systems Non Linear Equations
Systems Non Linear EquationsSystems Non Linear Equations
Systems Non Linear EquationsBitsy Griffin
 
January18
January18January18
January18khyps13
 
Algebra 2 Section 1-8
Algebra 2 Section 1-8Algebra 2 Section 1-8
Algebra 2 Section 1-8
Jimbo Lamb
 
exponen dan logaritma
exponen dan logaritmaexponen dan logaritma
exponen dan logaritma
Hanifa Zulfitri
 

What's hot (20)

Numerical solution of system of linear equations
Numerical solution of system of linear equationsNumerical solution of system of linear equations
Numerical solution of system of linear equations
 
Solution of Differential Equations in Power Series by Employing Frobenius Method
Solution of Differential Equations in Power Series by Employing Frobenius MethodSolution of Differential Equations in Power Series by Employing Frobenius Method
Solution of Differential Equations in Power Series by Employing Frobenius Method
 
Power Series - Legendre Polynomial - Bessel's Equation
Power Series - Legendre Polynomial - Bessel's EquationPower Series - Legendre Polynomial - Bessel's Equation
Power Series - Legendre Polynomial - Bessel's Equation
 
Algebra
AlgebraAlgebra
Algebra
 
Interpolation
InterpolationInterpolation
Interpolation
 
Chapter 3 solving systems of linear equations
Chapter 3 solving systems of linear equationsChapter 3 solving systems of linear equations
Chapter 3 solving systems of linear equations
 
Higher Order Differential Equation
Higher Order Differential EquationHigher Order Differential Equation
Higher Order Differential Equation
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
 
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
 
Higher order differential equation
Higher order differential equationHigher order differential equation
Higher order differential equation
 
Mech MA6351 tpde_notes
Mech MA6351 tpde_notes Mech MA6351 tpde_notes
Mech MA6351 tpde_notes
 
On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...
On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...
On the Seidel’s Method, a Stronger Contraction Fixed Point Iterative Method o...
 
Methods of variation of parameters- advance engineering mathe mathematics
Methods of variation of parameters- advance engineering mathe mathematicsMethods of variation of parameters- advance engineering mathe mathematics
Methods of variation of parameters- advance engineering mathe mathematics
 
2.c1.3 algebra and functions 3
2.c1.3 algebra and functions 32.c1.3 algebra and functions 3
2.c1.3 algebra and functions 3
 
Systems of equations
Systems of equationsSystems of equations
Systems of equations
 
Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...
Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...
Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...
 
Systems Non Linear Equations
Systems Non Linear EquationsSystems Non Linear Equations
Systems Non Linear Equations
 
January18
January18January18
January18
 
Algebra 2 Section 1-8
Algebra 2 Section 1-8Algebra 2 Section 1-8
Algebra 2 Section 1-8
 
exponen dan logaritma
exponen dan logaritmaexponen dan logaritma
exponen dan logaritma
 

Similar to 1526 exploiting symmetries

Aieee maths-quick review
Aieee maths-quick reviewAieee maths-quick review
Aieee maths-quick reviewSharath Kumar
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
nihaiqbal1
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
nihaiqbal1
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tablesGaurav Vasani
 
1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdf1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdf
d00a7ece
 
Mathematical formula tables
Mathematical formula tablesMathematical formula tables
Mathematical formula tables
Saravana Selvan
 
Imc2016 day2-solutions
Imc2016 day2-solutionsImc2016 day2-solutions
Imc2016 day2-solutions
Christos Loizos
 
Maieee04
Maieee04Maieee04
Maieee04
Ashish Yadav
 
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
polanesgumiran
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
HebaEng
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
AnuBajpai5
 
Krishna
KrishnaKrishna
last lecture in infinite series
last lecture in infinite serieslast lecture in infinite series
last lecture in infinite seriesAlaa Mohammed
 
Mathematics
MathematicsMathematics
Mathematics
MathematicsMathematics
Mathematics
jiteshtuteja
 
Higher order derivatives for N -body simulations
Higher order derivatives for N -body simulationsHigher order derivatives for N -body simulations
Higher order derivatives for N -body simulations
Keigo Nitadori
 
maths_formula_sheet.pdf
maths_formula_sheet.pdfmaths_formula_sheet.pdf
maths_formula_sheet.pdf
VanhoaTran2
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
Asad Bukhari
 

Similar to 1526 exploiting symmetries (20)

Aieee maths-quick review
Aieee maths-quick reviewAieee maths-quick review
Aieee maths-quick review
 
Maths05
Maths05Maths05
Maths05
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tables
 
1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdf1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdf
 
Mathematical formula tables
Mathematical formula tablesMathematical formula tables
Mathematical formula tables
 
Imc2016 day2-solutions
Imc2016 day2-solutionsImc2016 day2-solutions
Imc2016 day2-solutions
 
Maieee04
Maieee04Maieee04
Maieee04
 
Core 2 revision notes
Core 2 revision notesCore 2 revision notes
Core 2 revision notes
 
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
 
Krishna
KrishnaKrishna
Krishna
 
last lecture in infinite series
last lecture in infinite serieslast lecture in infinite series
last lecture in infinite series
 
Mathematics
MathematicsMathematics
Mathematics
 
Mathematics
MathematicsMathematics
Mathematics
 
Higher order derivatives for N -body simulations
Higher order derivatives for N -body simulationsHigher order derivatives for N -body simulations
Higher order derivatives for N -body simulations
 
maths_formula_sheet.pdf
maths_formula_sheet.pdfmaths_formula_sheet.pdf
maths_formula_sheet.pdf
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 

More from Dr Fereidoun Dejahang

27 j20 my news punch -dr f dejahang 27-01-2020
27 j20 my news punch -dr f dejahang  27-01-202027 j20 my news punch -dr f dejahang  27-01-2020
27 j20 my news punch -dr f dejahang 27-01-2020
Dr Fereidoun Dejahang
 
28 dej my news punch rev 28-12-2019
28 dej my news punch rev 28-12-201928 dej my news punch rev 28-12-2019
28 dej my news punch rev 28-12-2019
Dr Fereidoun Dejahang
 
16 fd my news punch rev 16-12-2019
16 fd my news punch rev 16-12-201916 fd my news punch rev 16-12-2019
16 fd my news punch rev 16-12-2019
Dr Fereidoun Dejahang
 
029 fast-tracking projects
029 fast-tracking projects029 fast-tracking projects
029 fast-tracking projects
Dr Fereidoun Dejahang
 
028 fast-tracking projects &amp; cost overrun
028 fast-tracking projects &amp; cost overrun028 fast-tracking projects &amp; cost overrun
028 fast-tracking projects &amp; cost overrun
Dr Fereidoun Dejahang
 
027 fast-tracked projects-materials
027 fast-tracked projects-materials027 fast-tracked projects-materials
027 fast-tracked projects-materials
Dr Fereidoun Dejahang
 
026 fast react-productivity improvement
026 fast react-productivity improvement026 fast react-productivity improvement
026 fast react-productivity improvement
Dr Fereidoun Dejahang
 
025 enterprise resources management
025 enterprise resources management025 enterprise resources management
025 enterprise resources management
Dr Fereidoun Dejahang
 
022 b construction productivity-write
022 b construction productivity-write022 b construction productivity-write
022 b construction productivity-write
Dr Fereidoun Dejahang
 
022 a construction productivity (2)
022 a construction productivity (2)022 a construction productivity (2)
022 a construction productivity (2)
Dr Fereidoun Dejahang
 
021 construction productivity (1)
021 construction productivity (1)021 construction productivity (1)
021 construction productivity (1)
Dr Fereidoun Dejahang
 
019 competencies-managers
019 competencies-managers019 competencies-managers
019 competencies-managers
Dr Fereidoun Dejahang
 
018 company productivity
018 company productivity018 company productivity
018 company productivity
Dr Fereidoun Dejahang
 
017 communication
017 communication017 communication
017 communication
Dr Fereidoun Dejahang
 
016 communication in construction sector
016 communication in construction sector016 communication in construction sector
016 communication in construction sector
Dr Fereidoun Dejahang
 
015 changes-process model
015 changes-process model015 changes-process model
015 changes-process model
Dr Fereidoun Dejahang
 
014 changes-cost overrun measurement
014 changes-cost overrun measurement014 changes-cost overrun measurement
014 changes-cost overrun measurement
Dr Fereidoun Dejahang
 
013 changes in construction projects
013 changes in construction projects013 changes in construction projects
013 changes in construction projects
Dr Fereidoun Dejahang
 
012 bussiness planning process
012 bussiness planning process012 bussiness planning process
012 bussiness planning process
Dr Fereidoun Dejahang
 
011 business performance management
011 business performance management011 business performance management
011 business performance management
Dr Fereidoun Dejahang
 

More from Dr Fereidoun Dejahang (20)

27 j20 my news punch -dr f dejahang 27-01-2020
27 j20 my news punch -dr f dejahang  27-01-202027 j20 my news punch -dr f dejahang  27-01-2020
27 j20 my news punch -dr f dejahang 27-01-2020
 
28 dej my news punch rev 28-12-2019
28 dej my news punch rev 28-12-201928 dej my news punch rev 28-12-2019
28 dej my news punch rev 28-12-2019
 
16 fd my news punch rev 16-12-2019
16 fd my news punch rev 16-12-201916 fd my news punch rev 16-12-2019
16 fd my news punch rev 16-12-2019
 
029 fast-tracking projects
029 fast-tracking projects029 fast-tracking projects
029 fast-tracking projects
 
028 fast-tracking projects &amp; cost overrun
028 fast-tracking projects &amp; cost overrun028 fast-tracking projects &amp; cost overrun
028 fast-tracking projects &amp; cost overrun
 
027 fast-tracked projects-materials
027 fast-tracked projects-materials027 fast-tracked projects-materials
027 fast-tracked projects-materials
 
026 fast react-productivity improvement
026 fast react-productivity improvement026 fast react-productivity improvement
026 fast react-productivity improvement
 
025 enterprise resources management
025 enterprise resources management025 enterprise resources management
025 enterprise resources management
 
022 b construction productivity-write
022 b construction productivity-write022 b construction productivity-write
022 b construction productivity-write
 
022 a construction productivity (2)
022 a construction productivity (2)022 a construction productivity (2)
022 a construction productivity (2)
 
021 construction productivity (1)
021 construction productivity (1)021 construction productivity (1)
021 construction productivity (1)
 
019 competencies-managers
019 competencies-managers019 competencies-managers
019 competencies-managers
 
018 company productivity
018 company productivity018 company productivity
018 company productivity
 
017 communication
017 communication017 communication
017 communication
 
016 communication in construction sector
016 communication in construction sector016 communication in construction sector
016 communication in construction sector
 
015 changes-process model
015 changes-process model015 changes-process model
015 changes-process model
 
014 changes-cost overrun measurement
014 changes-cost overrun measurement014 changes-cost overrun measurement
014 changes-cost overrun measurement
 
013 changes in construction projects
013 changes in construction projects013 changes in construction projects
013 changes in construction projects
 
012 bussiness planning process
012 bussiness planning process012 bussiness planning process
012 bussiness planning process
 
011 business performance management
011 business performance management011 business performance management
011 business performance management
 

Recently uploaded

MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
bennyroshan06
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
GeoBlogs
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
GeoBlogs
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
Introduction to Quality Improvement Essentials
Introduction to Quality Improvement EssentialsIntroduction to Quality Improvement Essentials
Introduction to Quality Improvement Essentials
Excellence Foundation for South Sudan
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
TechSoup
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
EduSkills OECD
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
beazzy04
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
How to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERPHow to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERP
Celine George
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 
Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
kaushalkr1407
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 

Recently uploaded (20)

MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
Introduction to Quality Improvement Essentials
Introduction to Quality Improvement EssentialsIntroduction to Quality Improvement Essentials
Introduction to Quality Improvement Essentials
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
How to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERPHow to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERP
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 
Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 

1526 exploiting symmetries

  • 1. David M. Bressoud Macalester College, St. Paul, MN Talk given at University of Florida October 29, 2004
  • 2. 1. The Vandermonde determinant 2. Weyl’s character formulae 3. Alternating sign matrices 4. The six-vertex model of statistical mechanics 5. Okada’s work connecting ASM’s and character formulae
  • 3. x1 n−1 x2 n−1 L xn n−1 M M O M x1 x2 L xn 1 1 L 1 = −1( )I σ( ) xi n−σ i( ) i=1 n ∏σ ∈Sn ∑ Cauchy 1815 “Memoir on functions whose values are equal but of opposite sign when two of their variables are interchanged” (alternating functions) Augustin-Louis Cauchy (1789–1857)
  • 4. Cauchy 1815 “Memoir on functions whose values are equal but of opposite sign when two of their variables are interchanged” (alternating functions) This function is 0 when so it is divisible byxi = xj xi − xj( )i< j ∏ x1 n−1 x2 n−1 L xn n−1 M M O M x1 x2 L xn 1 1 L 1 = −1( )I σ( ) xi n−σ i( ) i=1 n ∏σ ∈Sn ∑
  • 5. Cauchy 1815 “Memoir on functions whose values are equal but of opposite sign when two of their variables are interchanged” (alternating functions) This function is 0 when so it is divisible byxi = xj xi − xj( )i< j ∏ But both polynomials have same degree, so ratio is constant, = 1. = xi − xj( )i< j ∏ x1 n−1 x2 n−1 L xn n−1 M M O M x1 x2 L xn 1 1 L 1 = −1( )I σ( ) xi n−σ i( ) i=1 n ∏σ ∈Sn ∑
  • 6. Cauchy 1815 Any alternating function in divided by the Vandermonde determinant yields a symmetric function: x1,x2,K ,xn x1 λ1 +n−1 x2 λ1 +n−1 L xn λ1 +n−1 M M O M x1 λn−1 +1 x2 λn−1 +1 L xn λn−1 +1 x1 λn x2 λn L xn λn x1 n−1 x2 n−1 L xn n−1 M M O M x1 1 x2 1 L xn 1 x1 0 x2 0 L xn 0 = sλ x1,x2,K ,xn( )
  • 7. Cauchy 1815 Any alternating function in divided by the Vandermonde determinant yields a symmetric function: x1,x2,K ,xn Called the Schur function. I.J. Schur (1917) recognized it as the character of the irreducible representation of GLn indexed by λ. x1 λ1 +n−1 x2 λ1 +n−1 L xn λ1 +n−1 M M O M x1 λn−1 +1 x2 λn−1 +1 L xn λn−1 +1 x1 λn x2 λn L xn λn x1 n−1 x2 n−1 L xn n−1 M M O M x1 1 x2 1 L xn 1 x1 0 x2 0 L xn 0 = sλ x1,x2,K ,xn( ) Issai Schur (1875– 1941)
  • 8. sλ 1,1,K ,1( ) is the dimension of the representation sλ 1,1,K ,1( )= ρ + λ( )⋅r ρ ⋅rr∈An−1 + ∏ where ρ = n −1 2 , n − 3 2 ,K , 1− n 2     = 1 2 r r∈An−1 + ∑ , λ = λ1,λ2,K ,λn( ), An−1 + = ei − ej 1 ≤ i < j ≤ n{ }, ei is the unit vector with 1 in the ith coordinate Note that the symmetric group on n letters is the group of transformations of An−1 = ei − ej 1 ≤ i ≠ j ≤ n{ }
  • 9. Weyl 1939 The Classical Groups: their invariants and representations Sp2n λ; r x( )= x1 λ1 +n − x1 −λ1 −n L xn λ1 +n − xn −λ1 −n M O M x1 λn +1 − x1 −λn −1 L xn λn +1 − xn −λn −1 x1 n − x1 −n L xn n − xn −n M O M x1 1 − x1 −1 L xn 1 − xn −1 Sp2n λ; r x( ) is the character of the irreducible representation, indexed by the partition λ, of the symplectic group (the subgoup of GL2n of isometries). Hermann Weyl (1885–1955)
  • 10. Sp2n λ;1 r ( )= ρ + λ( )⋅r ρ ⋅rr∈Cn + ∏ where ρ = n,n −1,K ,1( )= 1 2 r r∈Cn + ∑ , λ = λ1,λ2,K ,λn( ), Cn + = ei ± ej 1 ≤ i < j ≤ n{ }U 2ei 1 ≤ i ≤ n{ }, ei is the unit vector with 1 in the ith coordinate The dimension of the representation is
  • 11. Weyl 1939 The Classical Groups: their invariants and representations x1 n − x1 −n L xn n − xn −n M O M x1 1 − x1 −1 L xn 1 − xn −1 x1x2 L xn( )n xi − xj( )i< j ∏ is a symmetric polynomial. As a polynomial in x1 it has degree n + 1 and roots at ±1, xj −1 for 2 ≤ j ≤ n
  • 12. Weyl 1939 The Classical Groups: their invariants and representations x1 n − x1 −n L xn n − xn −n M O M x1 1 − x1 −1 L xn 1 − xn −1 x1x2 L xn( )n xi − xj( )i< j ∏ = xi 2 −1( ) i ∏ xi xj −1( )i< j ∏ is a symmetric polynomial. As a polynomial in x1 it has degree n + 1 and roots at ±1, xj −1 for 2 ≤ j ≤ n
  • 13. Weyl 1939 The Classical Groups: their invariants and representations: The Denominator Formulas x1 n− 1 2 − x1 −n+ 1 2 L xn n− 1 2 − xn −n+ 1 2 M O M x1 1 2 − x1 − 1 2 L xn 1 2 − xn − 1 2 x1x2 L xn( )n− 1 2 xi − xj( )i< j ∏ = xi −1( ) i ∏ xi xj −1( )i< j ∏ x1 n−1 + x1 −n+1 L xn n−1 + xn −n+1 M O M x1 0 + x1 −0 L xn 0 + xn −0 x1x2 L xn( )n−1 xi − xj( )i< j ∏ = 2 xi xj −1( )i< j ∏
  • 14.
  • 15. Desnanot-Jacobi adjoint matrix thereom (Desnanot for n 6 in 1819, Jacobi for general case in 1833≤ M j i is matrix M with row i and column j removed. det M = det M1 1 ⋅det Mn n − det Mn 1 ⋅det M1 n det M1,n 1,n Given that the determinant of the empty matrix is 1 and the determinant of a 1×1 is the entry in that matrix, this uniquely defines the determinant for all square matrices. Carl Jacobi (1804–1851)
  • 16. det M = det M1 1 ⋅det Mn n − det Mn 1 ⋅det M1 n det M1,n 1,n detλ M = det M1 1 ⋅det Mn n + λ det Mn 1 ⋅det M1 n det M1,n 1,n det−1 M = det M( ) detλ aj i−1 ( )i, j=1 n = ai + λ aj( )1≤i< j≤n ∏ David Robbins (1942–2003)
  • 17. det M = det M1 1 ⋅det Mn n − det Mn 1 ⋅det M1 n det M1,n 1,n detλ M = det M1 1 ⋅det Mn n + λ det Mn 1 ⋅det M1 n det M1,n 1,n detλ a b c d     = ad + λbc detλ a b c d e f g h j         = aej + λ bdj + afh( )+ λ2 bfg + cdh( )+ λ3 ceg + λ 1+ λ( )bde−1 fh
  • 18. detλ a1,1 a1,2 a1,3 a1,4 a2,1 a2,2 a2,3 a2,4 a3,1 a3,2 a3,3 a3,4 a4,1 a4,2 a4,3 a4,4             = a1,1a2,2a3,3a4,4 + λ a1,2a2,1a3,3a4,4 + a1,1a2,3a3,2a4,4 + a1,1a2,2a3,4a4,3( ) +L sums over other permutations × λinversion number + λ3 1+ λ−1 ( )a1,2a2,1a2,2 −1 a2,3a3,4a4,2 +L + λ3 1+ λ−1 ( ) 2 a1,2a2,1a2,2 −1 a2,3a3,2a3,3 −1 a3,4a4,3 +L
  • 19. detλ a1,1 a1,2 a1,3 a1,4 a2,1 a2,2 a2,3 a2,4 a3,1 a3,2 a3,3 a3,4 a4,1 a4,2 a4,3 a4,4             = a1,1a2,2a3,3a4,4 + λ a1,2a2,1a3,3a4,4 + a1,1a2,3a3,2a4,4 + a1,1a2,2a3,4a4,3( ) +L sums over other permutations × λinversion number + λ3 1+ λ−1 ( )a1,2a2,1a2,2 −1 a2,3a3,4a4,2 +L + λ3 1+ λ−1 ( ) 2 a1,2a2,1a2,2 −1 a2,3a3,2a3,3 −1 a3,4a4,3 +L 0 1 0 0 1 −1 1 0 0 1 −1 1 0 0 1 0             0 1 0 0 1 −1 1 0 0 0 0 1 0 1 0 0            
  • 20. detλ a1,1 a1,2 a1,3 a1,4 a2,1 a2,2 a2,3 a2,4 a3,1 a3,2 a3,3 a3,4 a4,1 a4,2 a4,3 a4,4             = a1,1a2,2a3,3a4,4 + λ a1,2a2,1a3,3a4,4 + a1,1a2,3a3,2a4,4 + a1,1a2,2a3,4a4,3( ) +L sums over other permutations × λinversion number + λ3 1+ λ−1 ( )a1,2a2,1a2,2 −1 a2,3a3,4a4,2 +L + λ3 1+ λ−1 ( ) 2 a1,2a2,1a2,2 −1 a2,3a3,2a3,3 −1 a3,4a4,3 +L 0 1 0 0 1 −1 1 0 0 1 −1 1 0 0 1 0             0 1 0 0 1 −1 1 0 0 0 0 1 0 1 0 0            
  • 21. detλ a1,1 a1,2 a1,3 a1,4 a2,1 a2,2 a2,3 a2,4 a3,1 a3,2 a3,3 a3,4 a4,1 a4,2 a4,3 a4,4             = a1,1a2,2a3,3a4,4 + λ a1,2a2,1a3,3a4,4 + a1,1a2,3a3,2a4,4 + a1,1a2,2a3,4a4,3( ) +L sums over other permutations × λinversion number + λ3 1+ λ−1 ( )a1,2a2,1a2,2 −1 a2,3a3,4a4,2 +L + λ3 1+ λ−1 ( ) 2 a1,2a2,1a2,2 −1 a2,3a3,2a3,3 −1 a3,4a4,3 +L detλ xi, j( )= λInv A( ) A= ai, j( ) ∑ 1+ λ−1 ( ) N A( ) xi, j ai, j i, j ∏ Sum is over all alternating sign matrices, N(A) = # of –1’s
  • 22. detλ a1,1 a1,2 a1,3 a1,4 a2,1 a2,2 a2,3 a2,4 a3,1 a3,2 a3,3 a3,4 a4,1 a4,2 a4,3 a4,4             = a1,1a2,2a3,3a4,4 + λ a1,2a2,1a3,3a4,4 + a1,1a2,3a3,2a4,4 + a1,1a2,2a3,4a4,3( ) +L sums over other permutations × λinversion number + λ3 1+ λ−1 ( )a1,2a2,1a2,2 −1 a2,3a3,4a4,2 +L + λ3 1+ λ−1 ( ) 2 a1,2a2,1a2,2 −1 a2,3a3,2a3,3 −1 a3,4a4,3 +L detλ xi, j( )= λInv A( ) A= ai, j( ) ∑ 1+ λ−1 ( ) N A( ) xi, j ai, j i, j ∏ xi + λxj( )= λInv A( ) 1+ λ−1 ( ) N A( ) xj n−i( )ai, j i, j ∏ A∈An ∑ 1≤i< j≤n ∏
  • 23. n 1 2 3 4 5 6 7 8 9 An 1 2 7 42 429 7436 218348 10850216 911835460 = 2 × 3 × 7 = 3 × 11 × 13 = 22 × 11 × 132 = 22 × 132 × 17 × 19 = 23 × 13 × 172 × 192 = 22 × 5 × 172 × 193 × 23 How many n × n alternating sign matrices?
  • 24. n 1 2 3 4 5 6 7 8 9 An 1 2 7 42 429 7436 218348 10850216 911835460 = 2 × 3 × 7 = 3 × 11 × 13 = 22 × 11 × 132 = 22 × 132 × 17 × 19 = 23 × 13 × 172 × 192 = 22 × 5 × 172 × 193 × 23
  • 27. 1 1 1 2 3 2 7 14 14 7 42 105 135 105 42 429 1287 2002 2002 1287 429
  • 28. 1 1 1 2 3 2 7 14 14 7 42 105 135 105 42 429 1287 2002 2002 1287 429 + + +
  • 29. 1 1 1 2 3 2 7 14 14 7 42 105 135 105 42 429 1287 2002 2002 1287 429 + + + 1 0 0 0 0 0 ? ? ? ? 0 ? ? ? ? 0 ? ? ? ? 0 ? ? ? ?                
  • 30. 1 1 2/2 1 2 2/3 3 3/2 2 7 2/4 14 14 4/2 7 42 2/5 105 135 105 5/2 42 429 2/6 1287 2002 2002 1287 6/2 429
  • 31. 1 1 2/2 1 2 2/3 3 3/2 2 7 2/4 14 5/5 14 4/2 7 42 2/5 105 7/9 135 9/7 105 5/2 42 429 2/6 1287 9/14 2002 16/16 2002 14/9 1287 6/2 429
  • 32. 2/2 2/3 3/2 2/4 5/5 4/2 2/5 7/9 9/7 5/2 2/6 9/14 16/16 14/9 6/2
  • 33. 2 2 3 2 5 4 2 7 9 5 2 9 16 14 6
  • 34. 1+1 1+1 1+2 1+1 2+3 1+3 1+1 3+4 3+6 1+4 1+1 4+5 6+10 4+10 1+5 Numerators:
  • 35. 1+1 1+1 1+2 1+1 2+3 1+3 1+1 3+4 3+6 1+4 1+1 4+5 6+10 4+10 1+5 Conjecture 1: Numerators: An,k An,k+1 = n − 2 k −1     + n −1 k −1     n − 2 n − k −1     + n −1 n − k −1    
  • 36. Conjecture 1: Conjecture 2 (corollary of Conjecture 1): An,k An,k+1 = n − 2 k −1     + n −1 k −1     n − 2 n − k −1     + n −1 n − k −1     An = 3j +1( )! n + j( )!j=0 n−1 ∏ = 1!⋅4!⋅7!L 3n − 2( )! n!⋅ n +1( )!L 2n −1( )!
  • 37. Conjecture 2 (corollary of Conjecture 1): An = 3j +1( )! n + j( )!j=0 n−1 ∏ = 1!⋅4!⋅7!L 3n − 2( )! n!⋅ n +1( )!L 2n −1( )! Exactly the formula found by George Andrews for counting descending plane partitions. George Andrews Penn State
  • 38. Conjecture 2 (corollary of Conjecture 1): An = 3j +1( )! n + j( )!j=0 n−1 ∏ = 1!⋅4!⋅7!L 3n − 2( )! n!⋅ n +1( )!L 2n −1( )! Exactly the formula found by George Andrews for counting descending plane partitions. In succeeding years, the connection would lead to many important results on plane partitions. George Andrews Penn State
  • 39. A n;x( )= xN A( ) A∈An ∑ A 1;x( )= 1, A 2;x( )= 2, A 3;x( )= 6 + x, A 4;x( )= 24 +16x + 2x2 , A 5;x( )= 120 + 200x + 94x2 +14x3 + x4 , A 6;x( )= 720 + 2400x + 2684x2 +1284x3 + 310x4 + 36x5 + 2x6 A 7;x( )= 5040 + 24900x + 63308x2 + 66158x3 + 38390x4 +13037x5 + 2660x6 + 328x7 + 26x8 + x9
  • 40. A n;x( )= xN A( ) A∈An ∑ A 1;x( )= 1, A 2;x( )= 2, A 3;x( )= 6 + x, A 4;x( )= 24 +16x + 2x2 , A 5;x( )= 120 + 200x + 94x2 +14x3 + x4 , A 6;x( )= 720 + 2400x + 2684x2 +1284x3 + 310x4 + 36x5 + 2x6 A 7;x( )= 5040 + 24900x + 63308x2 + 66158x3 + 38390x4 +13037x5 + 2660x6 + 328x7 + 26x8 + x9 xi + λxj( )= λInv A( ) 1+ λ−1 ( ) N A( ) xj n−i( )ai, j i, j ∏ A∈An ∑ 1≤i< j≤n ∏ A n;0( )= n! A n;1( )= An = 3i +1( )! n + i( )!i=0 n−1 ∏     A n;2( )= 2n(n−1)/2
  • 41. A n;x( )= xN A( ) A∈An ∑ A 1;x( )= 1, A 2;x( )= 2, A 3;x( )= 6 + x, A 4;x( )= 24 +16x + 2x2 , A 5;x( )= 120 + 200x + 94x2 +14x3 + x4 , A 6;x( )= 720 + 2400x + 2684x2 +1284x3 + 310x4 + 36x5 + 2x6 A 7;x( )= 5040 + 24900x + 63308x2 + 66158x3 + 38390x4 +13037x5 + 2660x6 + 328x7 + 26x8 + x9 A n;3( )= 3n n−1( ) 2n n−1( ) 3 j − i( )+1 3 j − i( )1≤i, j≤n j−i odd ∏Conjecture: (MRR, 1983) A n;0( )= n! A n;1( )= An = 3i +1( )! n + i( )!i=0 n−1 ∏     A n;2( )= 2n(n−1)/2
  • 42. Mills & Robbins (suggested by Richard Stanley) (1991) Symmetries of ASM’s A n( )= 3j +1( )! n + j( )!j=0 n−1 ∏ AV 2n +1( )= −3( )n2 3 j − i( )+1 j − i + 2n +11≤i, j≤2n+1 2 j ∏           A n( ) AHT 2n( )= −3( )n n−1( )/2 3 j − i( )+ 2 j − i + ni, j ∏     A n( ) AQT 4n( )= AHT 2n( )⋅ A n( )2 Vertically symmetric ASM’s Half-turn symmetric ASM’s Quarter-turn symmetric ASM’s
  • 43. December, 1992 Zeilberger announces a proof that # of ASM’s equals 3j +1( )! n + j( )!j=0 n−1 ∏ Doron Zeilberger Rutgers University
  • 44. December, 1992 Zeilberger announces a proof that # of ASM’s equals 3j +1( )! n + j( )!j=0 n−1 ∏ 1995 all gaps removed, published as “Proof of the Alternating Sign Matrix Conjecture,” Elect. J. of Combinatorics, 1996.
  • 45. Zeilberger’s proof is an 84-page tour de force, but it still left open the original conjecture: An,k An,k+1 = n − 2 k −1     + n −1 k −1     n − 2 n − k −1     + n −1 n − k −1    
  • 46. 1996 Kuperberg announces a simple proof “Another proof of the alternating sign matrix conjecture,” International Mathematics Research Notices Greg Kuperberg UC Davis
  • 47. “Another proof of the alternating sign matrix conjecture,” International Mathematics Research Notices Physicists have been studying ASM’s for decades, only they call them square ice (aka the six-vertex model ). 1996 Kuperberg announces a simple proof
  • 48. H O H O H O H O H O H H H H H H H O H O H O H O H O H H H H H H H O H O H O H O H O H H H H H H H O H O H O H O H O H H H H H H H O H O H O H O H O H
  • 49.
  • 52. N = # of vertical I = inversion number = N + # of SW x2, y3
  • 54. det 1 xi − yj( )axi − yj( )       xi − yj( )axi − yj( )i, j=1 n ∏ xi − xj( )yi − yj( )1≤i< j≤n∏ = 1− a( )2N A( ) an(n−1)/2− Inv A( ) A∈An ∑ × xi vert ∏ yj axi − yj( )SW, NE ∏ xi − yj( )NW, SE ∏ Proof: LHS is symmetric polynomial in x’s and in y’s Degree n – 1 in x1 By induction, LHS = RHS when x1 = y1 Sufficient to show that RHS is symmetric polynomial in x’s and in y’s
  • 55. LHS is symmetric polynomial in x’s and in y’s Degree n – 1 in x1 By induction, LHS = RHS when x1 = –y1 Sufficient to show that RHS is symmetric polynomial in x’s and in y’s — follows from Baxter’s triangle-to-triangle relation Proof: Rodney J. Baxter Australian National University
  • 56. a = z−4 , xi = z2 , yi = 1 RHS = z − z−1 ( ) n n−1( ) z + z−1 ( ) 2N A( ) A∈An ∑ det 1 xi − yj( )axi − yj( )       xi − yj( )axi − yj( )i, j=1 n ∏ xi − xj( )yi − yj( )1≤i< j≤n∏ = 1− a( )2N A( ) an(n−1)/2−Inv A( ) A∈An ∑ × xi vert ∏ yj axi − yj( )SW, NE ∏ xi − yj( )NW, SE ∏
  • 57. det 1 xi − yj( )axi − yj( )       xi − yj( )axi + yj( )i, j=1 n ∏ xi − xj( )yi − yj( )1≤i< j≤n∏ = 1− a( )2N A( ) an(n−1)/2−Inv A( ) A∈An ∑ × xi vert ∏ yj axi − yj( )SW, NE ∏ xi − yj( )NW, SE ∏ z = eπi/3 : RHS = −3( )n n−1( )/2 An , z = eπi/4 : RHS = −2( )n n−1( )/2 2N A( ) A∈An ∑ , z = eπi/6 : RHS = −1( )n n−1( )/2 3N A( ) A∈An ∑ . a = z−4 , xi = z2 , yi = 1 RHS = z − z−1 ( ) n n−1( ) z + z−1 ( ) 2N A( ) A∈An ∑
  • 58. 1996 Doron Zeilberger uses this determinant to prove the original conjecture “Proof of the refined alternating sign matrix conjecture,” New York Journal of Mathematics
  • 59. 2001, Kuperberg uses the power of the triangle-to-triangle relation to prove some of the conjectured formulas: AV 2n +1( )= −3( )n2 3 j − i( )+1 j − i + 2n +1i, j≤2n+1 2 j ∏           A n( ) AHT 2n( )= −3( )n n−1( )/2 3 j − i( )+ 2 j − i + ni, j ∏       A n( ) AQT 4n( )= AHT 2n( )⋅ A n( )2
  • 60. Kuperberg, 2001: proved formulas for counting some new six-vertex models: AUU 2n( )= −3( )n2 22n 3 j − i( )+ 2 j − i + 2n +11≤i, j≤2n+1 2 j ∏ 1 −1 0 1 0 1 −1 0 0 0 0 0 0 0 1 0            
  • 61. Kuperberg, 2001: proved formulas for many symmetry classes of ASM’s and some new ones 1 −1 0 1 0 1 −1 0 0 0 0 0 0 0 1 0             AUU 2n( )= −3( )n2 22n 3 j − i( )+ 2 j − i + 2n +11≤i, j≤2n+1 2 j ∏
  • 62. Soichi Okada, Nagoya University 1993, Okada finds the equivalent of the λ-determinant for the other Weyl Denominator Formulas. 2004, Okada shows that the formulas for counting ASM’s, including those subject to symmetry conditions, are simply the dimensions of certain irreducible representations, i.e. specializations of Weyl Character formulas.
  • 63. sλ 1,1,K ,1( )= ρ + λ( )⋅r ρ ⋅rr∈A2 n−1 + ∏ = 3j +1( ) 2     − 3i +1( ) 2     j − i1≤i< j≤2n ∏ 3−n(n−1)/2 sλ 1,1,K ,1( )= 3i +1( )! n + i( )!i=0 n−1 ∏ Number of n × n ASM’s is 3–n(n–1)/2 times the dimension of the irreducible representation of GL2n indexed by λ = n −1,n −1,n − 2,n − 2,K ,1,1,0,0( ) A2n−1 + = ei − ej 1 ≤ i < j ≤ 2n{ } ρ = n − 1 2,n − 3 2,K ,−n + 1 2( )
  • 64. dim Sp4n λ( )= ρC + λ( )⋅r ρC ⋅rr∈C2n + ∏ = 6n + 2 − 3i +1 2     − 3j +1 2     4n + 2 − i − j          1≤i< j≤2n ∏ 3j +1 2     − 3i +1 2     j − i           3n +1− 3i +1 2     2n +1− ii=1 2n ∏ Number of (2n+1) × (2n+1) vertically symmetric ASM’s is 3–n(n–1) times the dimension of the irreducible representation of Sp4n indexed by λ = n −1,n −1,n − 2,n − 2,K ,1,1,0,0( ) C2n + = ei ± ej 1 ≤ i < j ≤ 2n{ }U 2ei 1 ≤ i ≤ 2n{ } ρC = 1 2 r = r∈C2n + ∑ 2n,2n −1,K ,1( )
  • 65. NEW for 2004: Number of (4n+1) × (4n+1) vertically and horizontally symmetric ASM’s is 2–2n 3–n(2n–1) times λ = n −1,n −1,n − 2,n − 2,K ,1,1,0,0( ) µ = n − 1 2,n − 3 2,n − 3 2,K , 3 2, 3 2, 1 2( ) dim Sp4n λ( )× dim %O4n µ( )= ρC + λ( )⋅r ρC ⋅rr∈C2n + ∏       ρD + µ( )⋅r ρD ⋅rr∈D2n + ∏       C2n + = ei ± ej 1 ≤ i < j ≤ 2n{ }U 2ei 1 ≤ i ≤ 2n{ } ρC = 2n,2n −1,K ,1( ) D2n + = ei ± ej 1 ≤ i < j ≤ 2n{ } ρD = 2n −1,2n − 2,K ,1,0( )
  • 66. Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture Cambridge University Press & MAA, 1999 OKADA, Enumeration of Symmetry Classes of Alternating Sign Matrices and Characters of Classical Groups, arXiv:math.CO/0408234 v1 18 Aug 2004