Fazaia College of Education for Women
2
Presented to: Ma’am Javeria Hanif
Presented by: Hafsa Butt, Alishba Malik,Niha Iqbal
Discipline: BS.CS (III)
Subject: Multivariate Caculus
Fourier series of Periodic Function
3
4
Overview
• What is Fourier series?
• What is periodic function?
• What are integration rules?
• How to solve Fourier series with given periodic function.
Through examples.
• Applications of Fourier series.
“
5
Periodic Functions
A function f: R →R is said to be periodic if there exists a positive
number T such that f(x+T) = f(x) for all x ϵ R. T is called the period
of f(x).
Examples:
i. Trigonometric functions sin x, cos x, cosec x are periodic
functions with primitive period 2π.
ii. Sin 2x, cos 2x are periodic functions with primitive period π.
iii. Tan x has primitive period π.
Fourier Series
Then, f(x)=
6
Let f(x) be a periodic function with period 2π. Then we can obtain the
Fourier series in any interval of length 2 π.
0
1 1
cos sin
2
n n
n n
a
a nx b nx
 
 
 
 
,
0
1
( )
a f x dx


 
 
1
( )cos
n
a f x nxdx


 
 
1
( )sin
n
b f x xdx


 
 
The formulae for the coefficients a0, an, bn are known as Euler’s formulae.
7
Integration Properties
' '' '''
1 2 3 4 ......
uvdx uv uv u v u v
    

(suffixes(v) represent successive integrals and dashes(u’) represent
successive derivatives)
2 2
sin [ sin cos ]
ax
ax e
e bxdx a bx b bx
a b
 


2 2
cos [ cos sin ]
ax
ax e
e bxdx a bx b bx
a b
 


8
Example# 01
Obtain a Fourier series to represent f(x)=x2 in (0, 2𝛑) and hence deduce that
2
2 2 2 2
1 1 1 1
........
1 2 3 4 12

    
2
2 0
1 1
2
2
0
0
2
3
0
2
2
2
2
0
0
2
2
Let ( )
cos sin
2
be the Fourier series of ( ) in (0,2 ).
1
then
1
3
8
3
4 1
= cos
2 3
1 sin cos
-2x
n
n n
n
f x x
a
x a nx bn nx
f x
a x dx
x
a
a x nxdx
nx nx
x
n n










 
 

  

 
  
 

 
 
   
 
  
 
   
 
 


2
3
0
cos
+2
(using generalised rule of integeration by parts)
nx
n


 
  
 
9
2
3 3
1 4 2 2
4
n n n
n



 
 

  
 
 
 
 
 
2 2 2
2
2
0
2
2
2 3
0
sin 2 sin0 0
1 4 4
= =
cos2 n=(-1) 1
1
sin
1 cos sin cos
2 2
n
n
n
n n
b x nxdx
nx nx nx
x x
n n n




 


 
 
 
 
  
   

   
     
  
     
 
     
 

10
0
2
2
2
1 1
2
2 2 2
Substituting the values of a , a , b in (1), we get,
4 4 4
cos sin
3
4 cos cos2 cos3 sin sin 2 sin3
= +4 ..... -4 ......
3 1 2 3 1 2 3
n n
n n
x nx nx
n n
x x x x x x
 


 
 
  
   
     
   
   
 
2
......(2)
is the Fourier expansion of f(x) = x in (0, 2 )
Take x = in (2), so that,


2
2
2 2 2 2
2
2 2 2 2
2
2 2 2 2
4 1 1 1 1
= +4 .....
3 1 2 3 4
1 1 1 1
= -4 .....
3 1 2 3 4
1 1 1 1
.....
12 1 2 3 4





 
   
 
 

 
     
 
 

     
11
Example# 02
Express the function F(x) = -π, - π<x<0
= x, 0<x<π,
as a Fourier series. Hence deduce that
1
12 +
1
32 +
1
52 + ⋯ =
𝜋2
8
Let, f(x) =
𝑎0
2
+ σ𝑛=1
∞
𝑎𝑛 cos nx + σ𝑛=1
∞
𝑏𝑛
sin nx
Then,
𝒂𝟎=
1
𝜋
‫׬‬
−𝜋
𝜋
𝑓 𝑥 𝑑𝑥
=
1
𝜋
‫׬‬
−𝜋
0
− 𝜋𝑑𝑥 + ‫׬‬
0
𝜋
𝑥𝑑𝑥
=
1
𝜋
[−𝜋𝑥]−𝜋
0
+
1
𝜋
𝑥2
2 0
𝜋
=
1
𝜋
(0 –𝜋2
) +
1
𝜋
𝜋2
2
=
−𝜋
2
12
𝒂𝒏 = න
−𝜋
𝜋
𝑓 𝑥 cos nxdx =
1
𝜋
න
−𝜋
0
−𝜋cos𝑛𝑥𝑑𝑥 + න
0
𝜋
𝑥𝑐𝑜𝑠𝑛𝑥𝑑𝑥
=
1
𝜋
ቚ
−𝜋𝑠𝑖𝑛𝑛𝑥
𝑛
0
−𝜋
+ 𝑥
𝑠𝑖𝑛𝑛𝑥
𝑛
+ 1
𝑐𝑜𝑠𝑛𝑥
𝑛2
𝜋
0 =
1
𝜋
(−1)𝑛−1
𝑛2
𝒃𝒏=
1
𝜋
‫׬‬
−𝜋
𝜋
𝑓 𝑥 𝑠𝑖𝑛𝑛𝑥𝑑𝑥
By chain rule of integration
=
1
𝜋
න
−𝜋
0
−𝜋sin𝑛𝑥𝑑𝑥 + න
0
𝜋
𝑥𝑠𝑖𝑛𝑛𝑥𝑑𝑥 =
1
𝜋
ቚ
𝜋𝑐𝑜𝑠𝑛𝑥
𝑛
0
−𝜋
+ 𝑥
−𝑐𝑜𝑠𝑛𝑥
𝑛
− 1
−𝑠𝑖𝑛𝑛𝑥
𝑛2
𝜋
0
=
1
𝜋
𝜋
𝑛
(1 − (−1))𝑛
+
1
𝜋
𝜋
(−1)𝑛+1
𝑛
=
1
𝜋
𝜋
𝑛
+
(−1)𝑛
𝑛
(−𝜋 − 𝜋)
=
1
𝑛
1 − (−1))𝑛
2
13
f(x) =
−𝜋
4
+
1
𝜋
σ𝑛=1
∞ (−1)𝑛−1
𝑛2 𝑐𝑜𝑠𝑛𝑥 + σ𝑛=1
∞ 1−(−1))𝑛2
𝑛
sinnx
=
−𝜋
4
−
2
𝜋
𝑐𝑜𝑠𝑥
12 +
𝑐𝑜𝑠3𝑥
32 +
𝑐𝑜𝑠5𝑥
52 + ⋯ +
3𝑠𝑖𝑛𝑥
1
−
𝑠𝑖𝑛2𝑥
2
+
3𝑠𝑖𝑛3𝑥
3
− ⋯ …(2)
As the Fourier expansion of f(x) , F(x) is no defined when x=0
F(0) =
1
2
𝑙𝑡 𝑓 𝑥 + 𝑙𝑡 𝑓(𝑥)
𝑥 → 0+
𝑥 → 0−
=
1
2
0 − 𝜋 =
−𝜋
2
Substituting x=0
−𝜋
2
=
−𝜋
4
−
2
𝜋
1
12
+
1
32
+
1
52
−𝜋
4
=
−2
𝜋
1
12
+
1
32
+
1
52
=
𝜋2
8
𝑎𝑛𝑠. .
Exercise # 9b
14
•Obtain the Fourier series expansions for the following function in the
Intervals given against them.
( ) ( ) in (0, 2 )
x
a f x e 

0
1 1
Let cos sin ...(i)
2
x
n n
n n
a
e a nx b nx
 
 
  
 
2
2
0 0
0
1 1
[ ]
x
x
a e
e dx


 
 

2
2
0
1
[ 1]
1
e
e
a




 

 
15
 
2
0
2
2
0
2 0
2
2
2
2
2
1
cos
1
cos sin here a=1 and b=n
1
1
(cos2 sin2 ) (cos0 sin0 )
( 1)
sin2 sin0 0
1
[ (1 0) 1(1 0)]
cos2 ( 1) 1
( 1)
1
[
( 1)
x
n
x
n
e nxdx
a
e
nx n nx
n
e n n n e n n n
n
n
e
n
n
n






 






 
 
 

 
 
   
 

 
 
     
  
  



2
1]
e 

2
2
1
( 1)
n
e
a
n



 

16
 
   
   
   
2
0
2
2
0
2 0
2
2
2
2
2
2
2
2
2
1
sin
1
sin cos here a=1 and b=n
1
1
[ sin(2 ) cos(2 ) sin0 cos0 ]
( 1)
1
[ 0 (1) 1 0 (1) ]
( 1)
1
[ 1 ]
( 1)
1
[ ]
( 1)
( 1
x
n
x
n
e nxdx
b
e
nx n nx
n
e n n n e n
n
e n n
n
e n n
n
n ne
n
n ne
b
n









 






 
 
 

 
   

   

   

 


 


)
17
0
a , a , b
n n
Putting values of in equation (i)
2 2 2
2 2
1 1
2 2 2
2 2
1 1
2
2 2
1 1
1 1
cos sin
2 ( 1) ( 1)
1 1 ( 1)
= cos sin
2 ( 1) ( 1)
1 1 cos sin
2 ( 1) ( 1)
x
n n
n n
n n
e e n ne
e nx nx
n n
e e n e
nx nx
n n
e nx nx
n
n n
  
  

  
  

 
 
 
 
 
 
  
  
 
   
 
 
 

  
 
 
 
 
 
 
(b) f(x) = 𝒆𝒙
…..in (-π, π)
18
f(x) =
𝑎0
2
+ σ𝑛=1
∞
𝑎𝑛 cos nx + σ𝑛=1
∞
𝑏𝑛
sin nx …(i)
𝑎0 =
1
𝜋
‫׬‬
−𝜋
𝜋
𝑓 𝑥 𝑑𝑥
=
1
𝜋
𝑒𝑥
−𝜋
𝜋
=
1
𝜋
𝑒𝜋 − 𝑒−𝜋
= 2
𝑒𝜋−𝑒−𝜋
2𝜋
=
2
𝜋
𝑠𝑖𝑛ℎπ
𝑎𝑛 = න
−𝜋
𝜋
𝑓 𝑥 cos nxdx = න
−𝜋
𝜋
𝑒𝑥
cos nxdx
=
1
𝜋
[
𝑒𝑥
𝑛2+1
𝑐𝑜𝑠𝑛𝑥 + 𝑛𝑠𝑖𝑛𝑛𝑥 ]−𝜋
𝜋
=
1
𝜋(𝑛2+1)
𝑒𝜋 𝑐𝑜𝑠𝑛𝜋 + 𝑛𝑠𝑖𝑛𝑛𝜋 − 𝑒−𝜋 cos 𝑛 −𝜋 + 𝑛𝑠𝑖𝑛𝑛(−𝜋)
=
1
𝜋(𝑛2+1)
𝑒𝜋 𝑐𝑜𝑠𝑛𝜋 + 𝑛𝑠𝑖𝑛𝑛𝜋) − 𝑒−𝜋(cos 𝑛 −𝜋 + 𝑛𝑠𝑖𝑛𝑛(−𝜋)
=
1
𝜋(𝑛2+1)
𝑒𝜋(−1)𝑛+0 − 𝑒−𝜋( −1 𝑛 + 0)
=
1
𝜋(𝑛2+1)
𝑒𝜋
(−1)𝑛
− 𝑒−𝜋
−1 𝑛
=
(𝑒𝜋− 𝑒−𝜋)(−1)𝑛
𝜋(𝑛2+1)
=
2(−1)𝑛
𝜋(𝑛2+1)
𝑠𝑖𝑛ℎ𝜋
𝑏𝑛 =
1
𝜋
න
−𝜋
𝜋
𝑓 𝑥 𝑠𝑖𝑛𝑛𝑥𝑑𝑥
=
1
𝜋
[
𝑒𝑥
𝑛2+1
𝑠𝑖𝑛𝑛𝑥 − 𝑛𝑐𝑜𝑠𝑛𝑥 ]−𝜋
𝜋
=
1
𝜋(𝑛2+1)
𝑒𝜋( 𝑠𝑖𝑛𝑛𝜋 − 𝑛𝑐𝑜𝑠𝑛𝜋) − 𝑒−𝜋(sin 𝑛 −𝜋 − 𝑛𝑐𝑜𝑠𝑛 −𝜋 )
=
1
𝜋(𝑛2+1)
𝑒𝜋
(0 − 𝑛 −1 𝑛
) − 𝑒−𝜋
(0 − 𝑛 −1 𝑛
)
=
1
𝜋(𝑛2+1)
−𝑛𝑒𝜋(−1)𝑛+ 𝑛𝑒−𝜋 −1 𝑛
=
−2(−1)𝑛
𝜋(𝑛2+1)
(𝑒𝜋− 𝑒−𝜋)
2
=
−2(−1)𝑛
𝜋(𝑛2+1)
sinhπ
20
21
Putting values of 𝑎0 ,𝑎𝑛 , 𝑏𝑛 in equation(i)
𝑎0
2
+ σ𝑛=1
∞
𝑎𝑛 cos nx + σ𝑛=1
∞
𝑏𝑛
sin nx
=
2 𝑠𝑖𝑛ℎπ
2𝜋
+ σ𝑛=1
∞ 2(−1)𝑛
𝜋(𝑛2+1)
𝑠𝑖𝑛ℎ𝜋 cosnx + σ𝑛=1
∞ −2(−1)𝑛
𝜋(𝑛2+1)
sinhπ sinnx
=
𝑠𝑖𝑛ℎπ
𝜋
+ 2 σ𝑛=1
∞ (−1)𝑛
𝜋(𝑛2+1)
𝑠𝑖𝑛ℎ𝜋 cosnx - 2σ𝑛=1
∞ (−1)𝑛
𝜋(𝑛2+1)
sinhπ sinnx
=
𝑠𝑖𝑛ℎπ
𝜋
+ 1 + 2 ෍
𝑛=1
∞
(
(−1)𝑛
𝑐𝑜𝑠𝑛𝑥
(𝑛2 + 1)
−
−1 𝑛
𝑠𝑖𝑛𝑛𝑥
𝑛2 + 1
)
(c) f(x ) =
𝒙 − 𝝅 ≤ 𝒙 ≤ 𝟎
𝟎 𝟎 ≤ 𝒙 ≤ 𝝅
22
𝑎0
2
+ σ𝑛=1
∞
𝑎𝑛 cos nxdx + σ𝑛=1
∞
𝑏𝑛
sin nxdx …(i)
𝑎0 =
1
𝜋
‫׬‬
−𝜋
𝜋
𝑓 𝑥 𝑑𝑥
=
1
𝜋
‫׬‬
−𝜋
0
𝑥 𝑑𝑥 + ‫׬‬
0
𝜋
0 𝑑𝑥
=
1
𝜋
𝑥2
2 −𝜋
0
+ 0
=
1
𝜋
0
2
−
(−𝜋)2
2
𝑎0=
−𝜋
2
23
𝑎𝑛 = න
−𝜋
𝜋
𝑓 𝑥 cos nxdx
=
1
𝜋
‫׬‬−𝜋
0
𝑥 . cos nxdx +
1
𝜋
‫׬‬0
𝜋
0 cos nxdx
=
1
𝜋
𝑥.
−𝑠𝑖𝑛𝑥
𝑛
− (1)
𝑐𝑜𝑠𝑛𝑥
𝑛2
=
1
𝜋
[0 −
−𝜋 sin −𝜋
𝑛
] +
𝑐𝑜𝑠𝑛𝑥
𝑛2
−𝜋
0
=
1
𝜋
0 +
1
𝑛2 −
𝑐𝑜𝑠𝑛𝜋
𝑛2
=
1
𝑛2𝜋
1 − (−1)𝑛 =
1
𝑛2𝜋
1 − 1
= 0
24
For odd:
=
1
𝜋
1
𝑛2 −
𝑐𝑜𝑠𝑛𝜋
𝑛2
=
1
𝑛2𝜋
1 − (−1)
=
1
𝑛2𝜋
1 + 1)
=
2
𝑛2𝜋
2n is an even number; when it is 2n-1, it becomes odd
𝒂𝒏 =
2
(2𝑛−1)2𝜋
25
𝑏𝑛 =
1
𝜋
න
−𝜋
𝜋
𝑓 𝑥 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥
=
1
𝜋
‫׬‬−𝜋
0
𝑥. 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥 + ‫׬‬0
𝜋
0. 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥
=
1
𝜋
𝑥.
−𝑐𝑜𝑠𝑛𝑥
𝑛
+
𝑠𝑖𝑛𝑛𝑥
𝑛2
−𝜋
0
=
1
𝜋
0 −
−𝜋 −cos(−𝜋)
𝑛
+
𝑠𝑖𝑛𝑛(−𝜋)
𝑛2
=
1
𝜋
−𝜋 −cos(𝜋)
𝑛
+
𝑠𝑖𝑛𝑛(−𝜋)
𝑛2
=
1
𝜋
−𝜋 𝑐𝑜𝑠𝑛𝜋
𝑛
⸫ cosnπ = (−1)𝑛
26
When,
cosnπ is even = 1
cosnπ is odd = -1
For odd;
=
𝑐𝑜𝑠𝑛𝜋
𝑛
=
−(−1)𝑛
𝑛
=
1
𝑛
For even:
= −
1
𝑛
=
−1
𝑛
By substituting even and odd equations
𝑏𝑛=
(−1)𝑛+1
𝑛
27
Now,
Putting values of 𝑎0 ,𝑎𝑛 , 𝑏𝑛 in equation …1
f(x) =
−𝜋
2
2
+ σ𝑛=1
∞ 2
(2𝑛−1)2𝜋
𝑐𝑜𝑠𝑛𝑥 + σ𝑛=1
∞ (−1)𝑛+1
𝑛
𝑠𝑖𝑛 𝑛𝑥
=
−𝜋
4
+
2
𝜋
σ𝑛=1
∞ cos(2𝑛−1)𝑥
(2𝑛−1)2 + σ𝑛=1
∞ (−1)𝑛+1
𝑛
𝑠𝑖𝑛 𝑛𝑥
Applications
28
• A Fourier Series has many applications in mathematical analysis
as it is defined as the sum of multiple sines and cosines.
• Thus, it can be easily differentiated and integrated, which
usually analyses the functions such as saw waves which are
periodic signals in experimentation.
• It also provides an analytical approach to solve the
discontinuity problem. In calculus, this helps in solving complex
differential equations.
Thanks!
Any questions?
29

maths ppt.pdf

  • 2.
    Fazaia College ofEducation for Women 2 Presented to: Ma’am Javeria Hanif Presented by: Hafsa Butt, Alishba Malik,Niha Iqbal Discipline: BS.CS (III) Subject: Multivariate Caculus
  • 3.
    Fourier series ofPeriodic Function 3
  • 4.
    4 Overview • What isFourier series? • What is periodic function? • What are integration rules? • How to solve Fourier series with given periodic function. Through examples. • Applications of Fourier series.
  • 5.
    “ 5 Periodic Functions A functionf: R →R is said to be periodic if there exists a positive number T such that f(x+T) = f(x) for all x ϵ R. T is called the period of f(x). Examples: i. Trigonometric functions sin x, cos x, cosec x are periodic functions with primitive period 2π. ii. Sin 2x, cos 2x are periodic functions with primitive period π. iii. Tan x has primitive period π.
  • 6.
    Fourier Series Then, f(x)= 6 Letf(x) be a periodic function with period 2π. Then we can obtain the Fourier series in any interval of length 2 π. 0 1 1 cos sin 2 n n n n a a nx b nx         , 0 1 ( ) a f x dx       1 ( )cos n a f x nxdx       1 ( )sin n b f x xdx       The formulae for the coefficients a0, an, bn are known as Euler’s formulae.
  • 7.
    7 Integration Properties ' ''''' 1 2 3 4 ...... uvdx uv uv u v u v       (suffixes(v) represent successive integrals and dashes(u’) represent successive derivatives) 2 2 sin [ sin cos ] ax ax e e bxdx a bx b bx a b     2 2 cos [ cos sin ] ax ax e e bxdx a bx b bx a b    
  • 8.
    8 Example# 01 Obtain aFourier series to represent f(x)=x2 in (0, 2𝛑) and hence deduce that 2 2 2 2 2 1 1 1 1 ........ 1 2 3 4 12       2 2 0 1 1 2 2 0 0 2 3 0 2 2 2 2 0 0 2 2 Let ( ) cos sin 2 be the Fourier series of ( ) in (0,2 ). 1 then 1 3 8 3 4 1 = cos 2 3 1 sin cos -2x n n n n f x x a x a nx bn nx f x a x dx x a a x nxdx nx nx x n n                                                     2 3 0 cos +2 (using generalised rule of integeration by parts) nx n         
  • 9.
    9 2 3 3 1 42 2 4 n n n n                      2 2 2 2 2 0 2 2 2 3 0 sin 2 sin0 0 1 4 4 = = cos2 n=(-1) 1 1 sin 1 cos sin cos 2 2 n n n n n b x nxdx nx nx nx x x n n n                                                      
  • 10.
    10 0 2 2 2 1 1 2 2 22 Substituting the values of a , a , b in (1), we get, 4 4 4 cos sin 3 4 cos cos2 cos3 sin sin 2 sin3 = +4 ..... -4 ...... 3 1 2 3 1 2 3 n n n n x nx nx n n x x x x x x                                2 ......(2) is the Fourier expansion of f(x) = x in (0, 2 ) Take x = in (2), so that,   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 1 1 1 1 = +4 ..... 3 1 2 3 4 1 1 1 1 = -4 ..... 3 1 2 3 4 1 1 1 1 ..... 12 1 2 3 4                                   
  • 11.
    11 Example# 02 Express thefunction F(x) = -π, - π<x<0 = x, 0<x<π, as a Fourier series. Hence deduce that 1 12 + 1 32 + 1 52 + ⋯ = 𝜋2 8 Let, f(x) = 𝑎0 2 + σ𝑛=1 ∞ 𝑎𝑛 cos nx + σ𝑛=1 ∞ 𝑏𝑛 sin nx Then, 𝒂𝟎= 1 𝜋 ‫׬‬ −𝜋 𝜋 𝑓 𝑥 𝑑𝑥 = 1 𝜋 ‫׬‬ −𝜋 0 − 𝜋𝑑𝑥 + ‫׬‬ 0 𝜋 𝑥𝑑𝑥 = 1 𝜋 [−𝜋𝑥]−𝜋 0 + 1 𝜋 𝑥2 2 0 𝜋 = 1 𝜋 (0 –𝜋2 ) + 1 𝜋 𝜋2 2 = −𝜋 2
  • 12.
    12 𝒂𝒏 = න −𝜋 𝜋 𝑓𝑥 cos nxdx = 1 𝜋 න −𝜋 0 −𝜋cos𝑛𝑥𝑑𝑥 + න 0 𝜋 𝑥𝑐𝑜𝑠𝑛𝑥𝑑𝑥 = 1 𝜋 ቚ −𝜋𝑠𝑖𝑛𝑛𝑥 𝑛 0 −𝜋 + 𝑥 𝑠𝑖𝑛𝑛𝑥 𝑛 + 1 𝑐𝑜𝑠𝑛𝑥 𝑛2 𝜋 0 = 1 𝜋 (−1)𝑛−1 𝑛2 𝒃𝒏= 1 𝜋 ‫׬‬ −𝜋 𝜋 𝑓 𝑥 𝑠𝑖𝑛𝑛𝑥𝑑𝑥 By chain rule of integration = 1 𝜋 න −𝜋 0 −𝜋sin𝑛𝑥𝑑𝑥 + න 0 𝜋 𝑥𝑠𝑖𝑛𝑛𝑥𝑑𝑥 = 1 𝜋 ቚ 𝜋𝑐𝑜𝑠𝑛𝑥 𝑛 0 −𝜋 + 𝑥 −𝑐𝑜𝑠𝑛𝑥 𝑛 − 1 −𝑠𝑖𝑛𝑛𝑥 𝑛2 𝜋 0 = 1 𝜋 𝜋 𝑛 (1 − (−1))𝑛 + 1 𝜋 𝜋 (−1)𝑛+1 𝑛 = 1 𝜋 𝜋 𝑛 + (−1)𝑛 𝑛 (−𝜋 − 𝜋) = 1 𝑛 1 − (−1))𝑛 2
  • 13.
    13 f(x) = −𝜋 4 + 1 𝜋 σ𝑛=1 ∞ (−1)𝑛−1 𝑛2𝑐𝑜𝑠𝑛𝑥 + σ𝑛=1 ∞ 1−(−1))𝑛2 𝑛 sinnx = −𝜋 4 − 2 𝜋 𝑐𝑜𝑠𝑥 12 + 𝑐𝑜𝑠3𝑥 32 + 𝑐𝑜𝑠5𝑥 52 + ⋯ + 3𝑠𝑖𝑛𝑥 1 − 𝑠𝑖𝑛2𝑥 2 + 3𝑠𝑖𝑛3𝑥 3 − ⋯ …(2) As the Fourier expansion of f(x) , F(x) is no defined when x=0 F(0) = 1 2 𝑙𝑡 𝑓 𝑥 + 𝑙𝑡 𝑓(𝑥) 𝑥 → 0+ 𝑥 → 0− = 1 2 0 − 𝜋 = −𝜋 2 Substituting x=0 −𝜋 2 = −𝜋 4 − 2 𝜋 1 12 + 1 32 + 1 52 −𝜋 4 = −2 𝜋 1 12 + 1 32 + 1 52 = 𝜋2 8 𝑎𝑛𝑠. .
  • 14.
    Exercise # 9b 14 •Obtainthe Fourier series expansions for the following function in the Intervals given against them. ( ) ( ) in (0, 2 ) x a f x e   0 1 1 Let cos sin ...(i) 2 x n n n n a e a nx b nx          2 2 0 0 0 1 1 [ ] x x a e e dx        2 2 0 1 [ 1] 1 e e a         
  • 15.
    15   2 0 2 2 0 2 0 2 2 2 2 2 1 cos 1 cossin here a=1 and b=n 1 1 (cos2 sin2 ) (cos0 sin0 ) ( 1) sin2 sin0 0 1 [ (1 0) 1(1 0)] cos2 ( 1) 1 ( 1) 1 [ ( 1) x n x n e nxdx a e nx n nx n e n n n e n n n n n e n n n                                                    2 1] e   2 2 1 ( 1) n e a n      
  • 16.
    16              2 0 2 2 0 2 0 2 2 2 2 2 2 2 2 2 1 sin 1 sin cos here a=1 and b=n 1 1 [ sin(2 ) cos(2 ) sin0 cos0 ] ( 1) 1 [ 0 (1) 1 0 (1) ] ( 1) 1 [ 1 ] ( 1) 1 [ ] ( 1) ( 1 x n x n e nxdx b e nx n nx n e n n n e n n e n n n e n n n n ne n n ne b n                                                  )
  • 17.
    17 0 a , a, b n n Putting values of in equation (i) 2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 1 1 1 1 cos sin 2 ( 1) ( 1) 1 1 ( 1) = cos sin 2 ( 1) ( 1) 1 1 cos sin 2 ( 1) ( 1) x n n n n n n e e n ne e nx nx n n e e n e nx nx n n e nx nx n n n                                                            
  • 18.
    (b) f(x) =𝒆𝒙 …..in (-π, π) 18 f(x) = 𝑎0 2 + σ𝑛=1 ∞ 𝑎𝑛 cos nx + σ𝑛=1 ∞ 𝑏𝑛 sin nx …(i) 𝑎0 = 1 𝜋 ‫׬‬ −𝜋 𝜋 𝑓 𝑥 𝑑𝑥 = 1 𝜋 𝑒𝑥 −𝜋 𝜋 = 1 𝜋 𝑒𝜋 − 𝑒−𝜋 = 2 𝑒𝜋−𝑒−𝜋 2𝜋 = 2 𝜋 𝑠𝑖𝑛ℎπ
  • 19.
    𝑎𝑛 = න −𝜋 𝜋 𝑓𝑥 cos nxdx = න −𝜋 𝜋 𝑒𝑥 cos nxdx = 1 𝜋 [ 𝑒𝑥 𝑛2+1 𝑐𝑜𝑠𝑛𝑥 + 𝑛𝑠𝑖𝑛𝑛𝑥 ]−𝜋 𝜋 = 1 𝜋(𝑛2+1) 𝑒𝜋 𝑐𝑜𝑠𝑛𝜋 + 𝑛𝑠𝑖𝑛𝑛𝜋 − 𝑒−𝜋 cos 𝑛 −𝜋 + 𝑛𝑠𝑖𝑛𝑛(−𝜋) = 1 𝜋(𝑛2+1) 𝑒𝜋 𝑐𝑜𝑠𝑛𝜋 + 𝑛𝑠𝑖𝑛𝑛𝜋) − 𝑒−𝜋(cos 𝑛 −𝜋 + 𝑛𝑠𝑖𝑛𝑛(−𝜋) = 1 𝜋(𝑛2+1) 𝑒𝜋(−1)𝑛+0 − 𝑒−𝜋( −1 𝑛 + 0) = 1 𝜋(𝑛2+1) 𝑒𝜋 (−1)𝑛 − 𝑒−𝜋 −1 𝑛 = (𝑒𝜋− 𝑒−𝜋)(−1)𝑛 𝜋(𝑛2+1) = 2(−1)𝑛 𝜋(𝑛2+1) 𝑠𝑖𝑛ℎ𝜋
  • 20.
    𝑏𝑛 = 1 𝜋 න −𝜋 𝜋 𝑓 𝑥𝑠𝑖𝑛𝑛𝑥𝑑𝑥 = 1 𝜋 [ 𝑒𝑥 𝑛2+1 𝑠𝑖𝑛𝑛𝑥 − 𝑛𝑐𝑜𝑠𝑛𝑥 ]−𝜋 𝜋 = 1 𝜋(𝑛2+1) 𝑒𝜋( 𝑠𝑖𝑛𝑛𝜋 − 𝑛𝑐𝑜𝑠𝑛𝜋) − 𝑒−𝜋(sin 𝑛 −𝜋 − 𝑛𝑐𝑜𝑠𝑛 −𝜋 ) = 1 𝜋(𝑛2+1) 𝑒𝜋 (0 − 𝑛 −1 𝑛 ) − 𝑒−𝜋 (0 − 𝑛 −1 𝑛 ) = 1 𝜋(𝑛2+1) −𝑛𝑒𝜋(−1)𝑛+ 𝑛𝑒−𝜋 −1 𝑛 = −2(−1)𝑛 𝜋(𝑛2+1) (𝑒𝜋− 𝑒−𝜋) 2 = −2(−1)𝑛 𝜋(𝑛2+1) sinhπ 20
  • 21.
    21 Putting values of𝑎0 ,𝑎𝑛 , 𝑏𝑛 in equation(i) 𝑎0 2 + σ𝑛=1 ∞ 𝑎𝑛 cos nx + σ𝑛=1 ∞ 𝑏𝑛 sin nx = 2 𝑠𝑖𝑛ℎπ 2𝜋 + σ𝑛=1 ∞ 2(−1)𝑛 𝜋(𝑛2+1) 𝑠𝑖𝑛ℎ𝜋 cosnx + σ𝑛=1 ∞ −2(−1)𝑛 𝜋(𝑛2+1) sinhπ sinnx = 𝑠𝑖𝑛ℎπ 𝜋 + 2 σ𝑛=1 ∞ (−1)𝑛 𝜋(𝑛2+1) 𝑠𝑖𝑛ℎ𝜋 cosnx - 2σ𝑛=1 ∞ (−1)𝑛 𝜋(𝑛2+1) sinhπ sinnx = 𝑠𝑖𝑛ℎπ 𝜋 + 1 + 2 ෍ 𝑛=1 ∞ ( (−1)𝑛 𝑐𝑜𝑠𝑛𝑥 (𝑛2 + 1) − −1 𝑛 𝑠𝑖𝑛𝑛𝑥 𝑛2 + 1 )
  • 22.
    (c) f(x )= 𝒙 − 𝝅 ≤ 𝒙 ≤ 𝟎 𝟎 𝟎 ≤ 𝒙 ≤ 𝝅 22 𝑎0 2 + σ𝑛=1 ∞ 𝑎𝑛 cos nxdx + σ𝑛=1 ∞ 𝑏𝑛 sin nxdx …(i) 𝑎0 = 1 𝜋 ‫׬‬ −𝜋 𝜋 𝑓 𝑥 𝑑𝑥 = 1 𝜋 ‫׬‬ −𝜋 0 𝑥 𝑑𝑥 + ‫׬‬ 0 𝜋 0 𝑑𝑥 = 1 𝜋 𝑥2 2 −𝜋 0 + 0 = 1 𝜋 0 2 − (−𝜋)2 2 𝑎0= −𝜋 2
  • 23.
    23 𝑎𝑛 = න −𝜋 𝜋 𝑓𝑥 cos nxdx = 1 𝜋 ‫׬‬−𝜋 0 𝑥 . cos nxdx + 1 𝜋 ‫׬‬0 𝜋 0 cos nxdx = 1 𝜋 𝑥. −𝑠𝑖𝑛𝑥 𝑛 − (1) 𝑐𝑜𝑠𝑛𝑥 𝑛2 = 1 𝜋 [0 − −𝜋 sin −𝜋 𝑛 ] + 𝑐𝑜𝑠𝑛𝑥 𝑛2 −𝜋 0 = 1 𝜋 0 + 1 𝑛2 − 𝑐𝑜𝑠𝑛𝜋 𝑛2 = 1 𝑛2𝜋 1 − (−1)𝑛 = 1 𝑛2𝜋 1 − 1 = 0
  • 24.
    24 For odd: = 1 𝜋 1 𝑛2 − 𝑐𝑜𝑠𝑛𝜋 𝑛2 = 1 𝑛2𝜋 1− (−1) = 1 𝑛2𝜋 1 + 1) = 2 𝑛2𝜋 2n is an even number; when it is 2n-1, it becomes odd 𝒂𝒏 = 2 (2𝑛−1)2𝜋
  • 25.
    25 𝑏𝑛 = 1 𝜋 න −𝜋 𝜋 𝑓 𝑥𝑠𝑖𝑛𝑛𝑥 𝑑𝑥 = 1 𝜋 ‫׬‬−𝜋 0 𝑥. 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥 + ‫׬‬0 𝜋 0. 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥 = 1 𝜋 𝑥. −𝑐𝑜𝑠𝑛𝑥 𝑛 + 𝑠𝑖𝑛𝑛𝑥 𝑛2 −𝜋 0 = 1 𝜋 0 − −𝜋 −cos(−𝜋) 𝑛 + 𝑠𝑖𝑛𝑛(−𝜋) 𝑛2 = 1 𝜋 −𝜋 −cos(𝜋) 𝑛 + 𝑠𝑖𝑛𝑛(−𝜋) 𝑛2 = 1 𝜋 −𝜋 𝑐𝑜𝑠𝑛𝜋 𝑛 ⸫ cosnπ = (−1)𝑛
  • 26.
    26 When, cosnπ is even= 1 cosnπ is odd = -1 For odd; = 𝑐𝑜𝑠𝑛𝜋 𝑛 = −(−1)𝑛 𝑛 = 1 𝑛 For even: = − 1 𝑛 = −1 𝑛 By substituting even and odd equations 𝑏𝑛= (−1)𝑛+1 𝑛
  • 27.
    27 Now, Putting values of𝑎0 ,𝑎𝑛 , 𝑏𝑛 in equation …1 f(x) = −𝜋 2 2 + σ𝑛=1 ∞ 2 (2𝑛−1)2𝜋 𝑐𝑜𝑠𝑛𝑥 + σ𝑛=1 ∞ (−1)𝑛+1 𝑛 𝑠𝑖𝑛 𝑛𝑥 = −𝜋 4 + 2 𝜋 σ𝑛=1 ∞ cos(2𝑛−1)𝑥 (2𝑛−1)2 + σ𝑛=1 ∞ (−1)𝑛+1 𝑛 𝑠𝑖𝑛 𝑛𝑥
  • 28.
    Applications 28 • A FourierSeries has many applications in mathematical analysis as it is defined as the sum of multiple sines and cosines. • Thus, it can be easily differentiated and integrated, which usually analyses the functions such as saw waves which are periodic signals in experimentation. • It also provides an analytical approach to solve the discontinuity problem. In calculus, this helps in solving complex differential equations.
  • 29.