SlideShare a Scribd company logo
1 of 36
Multiplication and
Division of
Polynomial
Analyn M. Delos Santos
Target Competency
⦁ Define polynomials and the
remarks and theorems
involving polynomials
⦁ Multiply and divide
polynomials
Basic Concepts
An expression of the form
π‘Ž0π‘₯𝑛
+ π‘Ž1π‘₯π‘›βˆ’1
+ . . . + π‘Žπ‘› in
which π‘Ž0, π‘Ž1 , . . . , π‘Žπ‘› are
given numbers (real or
imaginary) and with x as the
variable is called an integral
rational function of x or a
polynomial in x.
Basic Concepts
The constants π‘Ž0, π‘Ž1 , . . . , π‘Žπ‘›
are called coefficients, and
the single monomials π‘Ž0π‘₯𝑛
,
π‘Ž1π‘₯π‘›βˆ’1
, . . . , π‘Žπ‘› are called
the terms of the polynomial.
If π‘Ž0 β‰  0, the polynomial is of
degree n and π‘Ž0π‘₯𝑛
is the
leading term.
Examples
f (x) = 3π‘₯3
– x + 2
g (x) = 4π‘₯4
– π‘₯3
+ 2x – 1
h (x) = 2π‘₯
2
– (3 + 2)x + 4
f (-1) = 0
g (i) = 3 + 3i
h (1) = 1
Multiplication of Polynomials
Example 1.
Multiply π‘₯2 - x + 1 and π‘₯2 + x + 1
(π‘₯2
- x + 1) x (π‘₯2
+ x + 1)
π‘₯4 - π‘₯3+π‘₯2
π‘₯3 - π‘₯2+ x
π‘₯2 - x + 1 0
π‘₯4 + π‘₯2 + 1
1 -1 1 x 1 1 1
1 -1 1
1 -1 1
1 -1 1 0
1 0 1 0 1
π‘₯4 + 0 π‘₯3 + π‘₯2 + 0x + 1 = π‘₯4 + π‘₯2 + 1
Example 2.
Multiply π‘₯5 + π‘₯3 – 2π‘₯2 + 3 by 2π‘₯4 – 3π‘₯3 + 4π‘₯2 – 1
1 0 1 -2 0 3 x 2 -3 4 0 -1
2 0 2 -4 0 6
-3 0 -3 6 0 -9
4 0 4 -8 0 12
-1 0 -1 2 0 -3
2 -3 6 -7 9 -2 -10 14 0 -3
2π‘₯9
– 3 π‘₯8
+ 6π‘₯7
– 7π‘₯6
+ 9π‘₯5
– 2 π‘₯4
– 10π‘₯3
+ 14π‘₯2
– 3
Example 3.
Multiply 2π‘₯4 – 3π‘₯3 + x – 1by π‘₯3 + 3π‘₯2 – 1
2 -3 0 1 -1 x 1 3 0 -1
2 -3 0 1 -1
6 -9 0 3 -3
-2 3 0 -1 1 1
2 3 -9 -1 5 -3 -1 1
2π‘₯7 + 3π‘₯6 – 9π‘₯5 – π‘₯4 + 5π‘₯3 – 3π‘₯2 – x + 1
Remark:
If two non - identically vanishing polynomials
f(x) and g(x) have the leading terms π‘Ž0π‘₯𝑛
and 𝑏0π‘₯π‘š, the leading term of the product
will be π‘Ž0𝑏0π‘₯𝑛+π‘š and the coefficient differs
from 0; hence, f(x)g(x) is a non - identically
vanishing polynomial. Consequently, if f(x)
g(x) = 0 one of the factors must be an
identically vanishing polynomial.
Division of Polynomials
Let f(x) = π’‚πŸŽπ’™π’ + π’‚πŸπ’™π’βˆ’πŸ+ . . . + 𝒂𝒏 g(x) =π’ƒπŸŽ π’™π’Ž + π’ƒπŸπ’™π’Žβˆ’πŸ+ . . . + π’ƒπ’Ž
be two polynomials of degrees n and m, respectively, so
that π‘Ž0 β‰  0, 𝑏0β‰  0, and assume that n β‰₯ m. By choosing
properly a constant 𝑐0 we can obtain the polynomial f(x)
– 𝑐0π‘₯π‘›βˆ’π‘š
g(x) = 𝑓1(x) which, if not vanishing identically,
will have degree 𝑛1 < n; for this it suffices to take 𝑐0 =
π‘Ž0
𝑏0 .
As long as 𝑛1 β‰₯ m, a constant 𝑐1 can be found so that
𝑓1 (x) – 𝑐1π‘₯𝑛1βˆ’π‘š g(x) = 𝑓2 (x) which, if not vanishing
identically, will have degree 𝑛2 < 𝑛1.
Division of Polynomials
If 𝑛2m, the same process can be repeated. Now
the degrees of the β€œpartial remainders” 𝑓1 (x),
𝑓2 (x) . . . form a decreasing sequence so that
there will be some first partial remainder
π‘“π‘˜+1(x) that either vanishes identically or is of
degree π‘›π‘˜+1 < m.
Division of Polynomials
By eliminating 𝑓1(x), 𝑓2(x), . . . , π‘“π‘˜(x) from the
identities f(x) – 𝑐0π‘₯π‘›βˆ’π‘š g(x) = 𝑓1 (x), 𝑓1 (x) –
𝑐1π‘₯𝑛1βˆ’π‘šg(x) = 𝑓2(x), . . . , π‘“π‘˜(x) – π‘π‘˜π‘₯π‘›π‘˜βˆ’π‘šg(x) =
π‘“π‘˜+1 (x) and setting for brevity 𝑐0π‘₯π‘›βˆ’π‘š
+
𝑐1π‘₯𝑛1βˆ’π‘š
+ . . . + π‘π‘˜π‘₯π‘›π‘˜βˆ’π‘š
= q(x), π‘“π‘˜+1 (x) = r(x) we
obtain the identity f(x) = g(x) q(x) + r(x) in which
r(x) has a degree < m or vanishes identically.
The polynomials q(x) and r(x) are called the
quotient and the remainder in the division of f(x)
by g(x).
Dividend Divisor
1 1 0 0 3 0 0 0 -1 1 -3 0 4 1
1 -3 0 4 1 1 4 12 32 82 quotient
` 4 0 -4 2 0
4 -12 0 16 4
12 -4 -14 -4 0
12-36 0 48 12
32 -14 -52 -12 0
32 -96 0 128 32
82 -52 -140 -32 -1
82 -246 0 328 82
194 -140 -360 -83 remainder
Example 1.
Divide π‘₯8 + π‘₯7 +3π‘₯4 – 1 by π‘₯4 – 3π‘₯3 + 4x + 1
Thus, the quotient and the
remainder are
π‘₯4
+ 4π‘₯3
+ 12π‘₯2
+ 32x + 82, quotient
194 π‘₯3
– 140 π‘₯2
– 360 x – 83,
remainder and identically
π‘₯8
+ π‘₯7
+3π‘₯4
– 1 = (π‘₯4
– 3π‘₯3
+ 4x +
1)( π‘₯4 + 4π‘₯3+ 12π‘₯2 + 32x + 82) +
194π‘₯3 – 140π‘₯2 – 360 x – 83.
Dividend Divisor
1 3 0 0 -2 3 -1 1 1 0 0 -1 1
1 0 0 -1 1 1 3 0 1 quotient
β€˜ 3 0 1 -3 3
3 0 0 -3 3
0 1 0 0 -1
0 0 0 0 0
1 0 0 -1 1
1 0 0 -1 1
0 remainder
Example 2.
Divide π‘₯7 + 3π‘₯6 - 2π‘₯3 +3π‘₯2 – x + 1 by π‘₯4 – x + 1
Thus, the quotient and the
remainder are
π‘₯3
+3π‘₯2
+ 1, quotient
0, remainder and identically
π‘₯7
+ 3π‘₯6
- 2π‘₯3
+3π‘₯2
– x + 1 = (π‘₯4
– x
+ 1)(π‘₯3
+3π‘₯2
+ 1).
Remark1: If the remainder in the division of f(x) by g(x)
is 0, that is, if f(x) = g(x) q(x) where q(x) is a polynomial,
it is said that f(x) is divisible by g(x) or that g(x) is a
divisor of f(x).
Remark 2: If two polynomials f and 𝑓1 are divisible by g,
then for arbitrary polynomials l and 𝑙1 the polynomial lf +
𝑙1𝑓1 will be divisible by g. In fact, by hypothesis f =gq
𝑓1=gπ‘ž1 where q and π‘ž1 are polynomials; hence, lf + 𝑙1𝑓1
= g (lq + 𝑙1π‘ž1) is divisible by g.
The Remainder Theorem
The remainder obtained in
dividing f(x) by x – c is the
value of the polynomial f(x) for
x = c, that is f(c).
Proof. Since the divisor is of the first degree, the
remainder will be a constant r. Calling the quotient
q(x), we have the identity f(x) = (x – c) q(x) + r. On
substituting the number c in place of x into this identity
we must get equal numbers. Now, since r is a constant,
it is not affected by this substitution and the value of the
right-hand member for x = c will be (c – c) q(c) + r = r
whereas the value of the left-hand member is f(c);
hence, r = f(c), which means also that identically in x f(x)
= (x – c) q(x) + f(c). It follows from this theorem that f(x)
is divisible by x – c if and only if f(c) = 0.
x – c = x + 3
c = -3
f(-3) = -27 + 9 + 15 + 3 = 0
f(x) is divisible by x + 3
To show that π‘₯𝑛 – 𝑐𝑛 is divisible by x – c. This is true
since 𝑐𝑛 – 𝑐𝑛 = 0; the quotient found by ordinary division
is π‘₯π‘›βˆ’1
+ 𝑐π‘₯π‘›βˆ’2
+ 𝑐2
π‘₯π‘›βˆ’3
+ . . . + π‘π‘›βˆ’1
.
Example 1.
Divide f(x) = π‘₯3 + π‘₯2 - 5x + 3 by x + 3
x – c = x + 2
c = -2
f(-2) = 16 – 24 + 12 – 6 + 2 = 0
f(x) is divisible by x + 2
Example 2.
Divide f(x) = π‘₯4
+ 3π‘₯3
+ 3π‘₯2
+ 3x + 2 by x + 2
Synthetic Division
From the identity, f(x) = (x – c) q(x) + r let us
substitute q (x) = 𝑏0 π‘₯π‘›βˆ’1
+ 𝑏1 π‘₯π‘›βˆ’2
+ . . . + π‘π‘›βˆ’1
where 𝑏0 , 𝑏1 , . . . , π‘π‘›βˆ’1 are coefficients to be
determined. Performing the multiplication, we
have (x – c) q(x) = 𝑏0 π‘₯𝑛
+ (𝑏1 βˆ’ 𝑐𝑏0) π‘₯π‘›βˆ’1
+
(𝑏2 βˆ’ 𝑐𝑏1) π‘₯π‘›βˆ’2
+ . . . + (π‘π‘›βˆ’1 βˆ’ π‘π‘π‘›βˆ’2) π‘₯ βˆ’ π‘π‘π‘›βˆ’1,
and
(x – c) q(x) + r = 𝑏0 π‘₯𝑛 + (𝑏1 βˆ’ 𝑐𝑏0) π‘₯π‘›βˆ’1 +
(π‘π‘›βˆ’1 βˆ’ π‘π‘π‘›βˆ’2) π‘₯ + π‘Ÿ βˆ’ π‘π‘π‘›βˆ’1.
Since this polynomial must
be identical to π‘Ž0 π‘₯𝑛 + π‘Ž1 π‘₯𝑛
+ . . . + π‘Žπ‘› to determine
𝑏0, 𝑏1, . . . , π‘π‘›βˆ’1 and r we
equate coefficients of like
powers of x, getting the set
of equations
π’ƒπŸŽ = π’‚πŸŽ
π’ƒπŸ – π’„π’ƒπŸŽ = π’‚πŸ
π’ƒπŸ – π’„π’ƒπŸ = π’‚πŸ
. . . ,
π’ƒπ’βˆ’πŸ – π’„π’ƒπ’βˆ’πŸ = π’‚π’βˆ’πŸ
𝒓 βˆ’ π’„π’ƒπ’βˆ’πŸ = 𝒂𝒏
from which it follows that
𝑏0, 𝑏1, . . . , π‘π‘›βˆ’1 , r are found
one after another as follows:
𝑏0 = π‘Ž0
𝑏1 = π‘Ž1 + 𝑐𝑏0
𝑏2 = π‘Ž2 + 𝑐𝑏1
. . . ,
π‘π‘›βˆ’1 = π‘Žπ‘›βˆ’1 + π‘π‘π‘›βˆ’2
π‘Ÿ = π‘Žπ‘› + π‘π‘π‘›βˆ’1
π‘Ž0 π‘Ž1 π‘Ž2 . . . π‘Žπ‘›βˆ’1 π‘Žπ‘›
𝑏0𝑐 𝑏1𝑐 . . . π‘π‘›βˆ’2𝑐 π‘π‘›βˆ’1𝑐
𝐚𝟎 = π›πŸŽ π›πŸ π›πŸ . . . π›π§βˆ’πŸ 𝐫 remainder
The calculation is of a recursive nature and in
practice can be arranged more conveniently thus:
coefficients of the quotient
The independent expressions for
𝑏0, 𝑏1, . . . , π‘π‘›βˆ’1 , r obtained by
successive substitutions are
𝑏0 = π‘Ž0
𝑏1 = π‘Ž0𝑐 + π‘Ž1 ,
𝑏2 = π‘Ž0𝑐2 + π‘Ž1𝑐 + π‘Ž2 ,
. . . ,
π‘π‘›βˆ’1 = π‘Ž0π‘π‘›βˆ’1
+ π‘Ž0π‘π‘›βˆ’2
+ . . . +
π‘Žπ‘›βˆ’1
and
π‘Ÿ = π‘Ž0𝑐𝑛
+ π‘Ž1π‘π‘›βˆ’1
+ . . . + π‘Žπ‘› = f(c)
which gives the second proof of
the remainder theorem.
Considering the sequence of
polynomials
𝑓0 = π‘Ž0 ,
𝑓1 = π‘₯𝑓0 + π‘Ž1 ,
𝑓2 = π‘₯𝑓1 + π‘Ž2 ,
. . . ,
𝑓𝑛 (x) = π‘₯π‘“π‘›βˆ’1(x) + π‘Žπ‘›
It is clear that
𝑓𝑖(π‘₯) = π‘Ž0π‘₯𝑖
+ π‘Ž1π‘₯𝑖 βˆ’1
+ . . . + π‘Žπ‘–
Hence
𝑏𝑖 = 𝑓𝑖(𝑐) , i = 0, 1, 2, . . . , i – 1
and, moreover,
𝑓𝑖(π‘₯) = (x – c) ⦋ 𝑓0(𝑐)π‘₯π‘–βˆ’1 +
𝑓1(𝑐)π‘₯𝑖 βˆ’2 + . . . + π‘“π‘–βˆ’1 (𝑐)⦌ + 𝑓𝑖(𝑐)
-2⃓ 3 -7 5 0 -1 - 6 -8
-6 26 -62 124 -246 504
3 -13 31 -62 123 -252 496
Hence, the quotient is
3π‘₯5 – 13π‘₯4 + 31π‘₯3 – 62π‘₯2 + 123x – 252
And the remainder is
r = 496
Example 1
Divide 3π‘₯6 – 7π‘₯5 + 5π‘₯4 – π‘₯2 – 6x – 8 by π‘₯ + 2
1 ⃓ 5 0 -7 6 -2 4
5 5 -2 4 2
5 5 -2 4 2 6
Hence, the quotient is
5π‘₯4 + 5π‘₯3 – 2π‘₯2 + 4x + 2
And the remainder is
r = 6
Example 2
Divide 5π‘₯5
– 7π‘₯3
+ 6π‘₯2
–2x + 4 by π‘₯ – 1
-2⃓ 2 -6 7 -5 1
-4 20 -54 118
2 -10 27 -59 119
Hence, the quotient is
2π‘₯3 - 10π‘₯2+ 27x - 59
And the remainder is
r = 119
Example 3
Divide 2π‘₯4 – 6π‘₯3 + 7π‘₯2 –5x + 1 by π‘₯ + 2
The derivative of
f(x) = π‘Ž0π‘₯𝑛 + π‘Ž1π‘₯π‘›βˆ’1+ . . . +
π‘Žπ‘›βˆ’1 x + π‘Žπ‘› is
f '(x) = π‘›π‘Ž0π‘₯π‘›βˆ’1
+(n – 1)
π‘Ž1π‘₯π‘›βˆ’2+ . . . + π‘Žπ‘›βˆ’1
Since f’(x) is a polynomial,
we can consider its
derivative, which is called the
second derivative, f ’’(x), of
f(x). Similarly, the derivative
of the second derivative is
the third derivative, f ’’’(x), of
f(x), etc. Now take the
expansion
f(x) = 𝐴0+ 𝐴1 π‘₯ βˆ’ 𝑐 +
𝐴2 (π‘₯ βˆ’ 𝑐 )2 + . . . +
𝐴𝑛 (π‘₯ βˆ’ 𝑐 )𝑛
Form successive derivatives of both members
f ’(x) = 𝐴1+ 2𝐴2 π‘₯ βˆ’ 𝑐 + 3𝐴3 (π‘₯ βˆ’ 𝑐 )2
+ . . . +
𝑛𝐴𝑛 (π‘₯ βˆ’ 𝑐 )π‘›βˆ’1
f ’’(x) = 2𝐴2+ 3 β€’ 2𝐴3 π‘₯ βˆ’ 𝑐 + . . . + 𝑛(𝑛
in the general
𝐴𝑖 =
𝑓𝑖(c)
1β€’2β€’3‒𝑖
Thus, the expansion of f(x) in powers of x – c
takes the form
f (x) = f (c) +
𝑓′(c)
1
(x –c) +
𝑓′′(c)
1β€’2
(x – c)2 + . . . +
𝑓𝑛(c)
1β€’2β€’3 . . .β€’ 𝑛
(x – c)𝑛
f (x) = f (1) +
𝑓′(1)
1
(x –1) +
𝑓′′(1)
1β€’2
(x – 1)2
+
𝑓′′′(1)
1β€’2β€’3
(x – 1)3
f(x) = π‘₯3 + π‘₯2 + x + 1
f(1) = (1)3 + (1)2 + 1 + 1
f(1) = 4
𝑓′(x) = 3π‘₯2 + 2x + 1
𝑓′
(1) = 3(1)2
+ 2(1) + 1
𝑓′
(1) = 6
𝑓′′(x) = 6x + 2
𝑓′′(1) = 6 (1) + 2
𝑓′′(1) = 8
𝑓′′′
(x) = 6
𝑓′′′(1) = 6
Example 1
Find the taylor’s formula of π‘₯3 + π‘₯2 + x + 1 at x = 1
f (x) = 4 +
6
1
(x –1) +
8
1β€’2
(x – 1)2
+
6
1β€’2β€’3
(x – 1)3
f (x) = 4 + 6(x – 1) + 4 (x – 1)2
+ (x – 1)3
f (x) = f (1) +
𝑓′(1)
1
(x –1) +
𝑓′′(1)
1β€’2
(x – 1)2 +
𝑓′′′(1)
1β€’2β€’3
(x – 1)3
f(x) = βˆ’ π‘₯4 + 6π‘₯3 + x –1
f(1) = βˆ’(1)4
+ 6(1)3
+ 1 – 1
f(1) = 5
𝑓′
(x) = βˆ’4π‘₯3
+ 18π‘₯2
+ 1
𝑓′(1) = βˆ’4(1)3 + 18(1)2 + 1
𝑓′(1) = 15
𝑓′′
(x) = βˆ’12π‘₯2
+ 36x
𝑓′′(1) = βˆ’12(1)2 + 36 (1)
𝑓′′
(1) = 24
𝑓′′′
(x) = - 24x + 36
𝑓′′′(1) = -24 (1) + 36
𝑓′′′(1) = 12
Example 2
Find the taylor’s formula of βˆ’ π‘₯4
+ 6π‘₯3
+ x –1 at x = 1
f (x) = 5 +
15
1
(x –1) +
24
1β€’2
(x – 1)2
+
12
1β€’2β€’3
(x – 1)3
f (x) = 5 + 15(x – 1) + 12 (x – 1)2
+ 2(x – 1)3
Thank you
for
listening!
Activity
1. Multiply π‘₯4
+ 4π‘₯3
– 5π‘₯2
– 2 by π‘₯4
– 4π‘₯3
– 5π‘₯2
– 2
using the method of detached coefficients.
2. Divide 2π‘₯7 – 3π‘₯6 + π‘₯5 – 3π‘₯4 + 5π‘₯3 – 4π‘₯2 + 2x –
1 by 2π‘₯3
– 3π‘₯2
+ x – 1
3. Without actual division show that 2π‘₯4
– 7π‘₯3
–
2π‘₯2 + 13x + 6 is divisible by π‘₯2 – 5x + 6.
4. By synthetic division find the quotient and the
remainder in the division of 6π‘₯3
– 10π‘₯2
+ 5x + 3
by x – 12.

More Related Content

Similar to Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomials.pptx

The remainder theorem powerpoint
The remainder theorem powerpointThe remainder theorem powerpoint
The remainder theorem powerpointJuwileene Soriano
Β 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomialsArvy Crescini
Β 
Zeros of a polynomial function
Zeros of a polynomial functionZeros of a polynomial function
Zeros of a polynomial functionMartinGeraldine
Β 
Higher Maths 2.1.1 - Polynomials
Higher Maths 2.1.1 - PolynomialsHigher Maths 2.1.1 - Polynomials
Higher Maths 2.1.1 - Polynomialstimschmitz
Β 
NCERT Class 9 Maths Polynomials
NCERT Class 9 Maths  PolynomialsNCERT Class 9 Maths  Polynomials
NCERT Class 9 Maths PolynomialsPankajGahlot2
Β 
Derivatives
DerivativesDerivatives
DerivativesNisarg Amin
Β 
1.7 sign charts of factorable formulas t
1.7 sign charts of factorable formulas t1.7 sign charts of factorable formulas t
1.7 sign charts of factorable formulas tmath260
Β 
polynomials class 9th maths presentation
polynomials class 9th maths presentationpolynomials class 9th maths presentation
polynomials class 9th maths presentationAnushkaDubey19
Β 
Sbma 4603 numerical methods Assignment
Sbma 4603 numerical methods AssignmentSbma 4603 numerical methods Assignment
Sbma 4603 numerical methods AssignmentSaidatina Khadijah
Β 
Form 4 add maths note
Form 4 add maths noteForm 4 add maths note
Form 4 add maths noteSazlin A Ghani
Β 
3.2 properties of division and roots t
3.2 properties of division and roots t3.2 properties of division and roots t
3.2 properties of division and roots tmath260
Β 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4MAY NURHAYATI
Β 
Produccion escrita expresiones algebraicas
Produccion escrita   expresiones algebraicasProduccion escrita   expresiones algebraicas
Produccion escrita expresiones algebraicasJuinAndresDiaz
Β 
Dividing polynomials
Dividing polynomialsDividing polynomials
Dividing polynomialsEducaciΓ³n
Β 
Understanding the remainder theorem
Understanding  the remainder theoremUnderstanding  the remainder theorem
Understanding the remainder theoremMartinGeraldine
Β 
Module 1 polynomial functions
Module 1   polynomial functionsModule 1   polynomial functions
Module 1 polynomial functionsdionesioable
Β 
Polynomial- Maths project
Polynomial- Maths projectPolynomial- Maths project
Polynomial- Maths projectRITURAJ DAS
Β 

Similar to Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomials.pptx (20)

The remainder theorem powerpoint
The remainder theorem powerpointThe remainder theorem powerpoint
The remainder theorem powerpoint
Β 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomials
Β 
Zeros of a polynomial function
Zeros of a polynomial functionZeros of a polynomial function
Zeros of a polynomial function
Β 
Higher Maths 2.1.1 - Polynomials
Higher Maths 2.1.1 - PolynomialsHigher Maths 2.1.1 - Polynomials
Higher Maths 2.1.1 - Polynomials
Β 
NCERT Class 9 Maths Polynomials
NCERT Class 9 Maths  PolynomialsNCERT Class 9 Maths  Polynomials
NCERT Class 9 Maths Polynomials
Β 
Derivatives
DerivativesDerivatives
Derivatives
Β 
Factor theorem
Factor theoremFactor theorem
Factor theorem
Β 
1.7 sign charts of factorable formulas t
1.7 sign charts of factorable formulas t1.7 sign charts of factorable formulas t
1.7 sign charts of factorable formulas t
Β 
polynomials class 9th maths presentation
polynomials class 9th maths presentationpolynomials class 9th maths presentation
polynomials class 9th maths presentation
Β 
Sbma 4603 numerical methods Assignment
Sbma 4603 numerical methods AssignmentSbma 4603 numerical methods Assignment
Sbma 4603 numerical methods Assignment
Β 
Core 1 revision notes a
Core 1 revision notes aCore 1 revision notes a
Core 1 revision notes a
Β 
Form 4 add maths note
Form 4 add maths noteForm 4 add maths note
Form 4 add maths note
Β 
3.2 properties of division and roots t
3.2 properties of division and roots t3.2 properties of division and roots t
3.2 properties of division and roots t
Β 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4
Β 
Polynomials
PolynomialsPolynomials
Polynomials
Β 
Produccion escrita expresiones algebraicas
Produccion escrita   expresiones algebraicasProduccion escrita   expresiones algebraicas
Produccion escrita expresiones algebraicas
Β 
Dividing polynomials
Dividing polynomialsDividing polynomials
Dividing polynomials
Β 
Understanding the remainder theorem
Understanding  the remainder theoremUnderstanding  the remainder theorem
Understanding the remainder theorem
Β 
Module 1 polynomial functions
Module 1   polynomial functionsModule 1   polynomial functions
Module 1 polynomial functions
Β 
Polynomial- Maths project
Polynomial- Maths projectPolynomial- Maths project
Polynomial- Maths project
Β 

Recently uploaded

Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
Β 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
Β 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
Β 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
Β 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
Β 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
Β 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
Β 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
Β 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
Β 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
Β 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
Β 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
Β 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
Β 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
Β 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
Β 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
Β 

Recently uploaded (20)

CΓ³digo Creativo y Arte de Software | Unidad 1
CΓ³digo Creativo y Arte de Software | Unidad 1CΓ³digo Creativo y Arte de Software | Unidad 1
CΓ³digo Creativo y Arte de Software | Unidad 1
Β 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Β 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
Β 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
Β 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
Β 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Β 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
Β 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
Β 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
Β 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
Β 
Model Call Girl in Bikash Puri Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Bikash Puri  Delhi reach out to us at πŸ”9953056974πŸ”Model Call Girl in Bikash Puri  Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Bikash Puri Delhi reach out to us at πŸ”9953056974πŸ”
Β 
Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”
Β 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
Β 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
Β 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
Β 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
Β 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
Β 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
Β 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
Β 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
Β 

Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomials.pptx

  • 2. Target Competency ⦁ Define polynomials and the remarks and theorems involving polynomials ⦁ Multiply and divide polynomials
  • 3. Basic Concepts An expression of the form π‘Ž0π‘₯𝑛 + π‘Ž1π‘₯π‘›βˆ’1 + . . . + π‘Žπ‘› in which π‘Ž0, π‘Ž1 , . . . , π‘Žπ‘› are given numbers (real or imaginary) and with x as the variable is called an integral rational function of x or a polynomial in x.
  • 4. Basic Concepts The constants π‘Ž0, π‘Ž1 , . . . , π‘Žπ‘› are called coefficients, and the single monomials π‘Ž0π‘₯𝑛 , π‘Ž1π‘₯π‘›βˆ’1 , . . . , π‘Žπ‘› are called the terms of the polynomial. If π‘Ž0 β‰  0, the polynomial is of degree n and π‘Ž0π‘₯𝑛 is the leading term.
  • 5. Examples f (x) = 3π‘₯3 – x + 2 g (x) = 4π‘₯4 – π‘₯3 + 2x – 1 h (x) = 2π‘₯ 2 – (3 + 2)x + 4 f (-1) = 0 g (i) = 3 + 3i h (1) = 1
  • 6. Multiplication of Polynomials Example 1. Multiply π‘₯2 - x + 1 and π‘₯2 + x + 1 (π‘₯2 - x + 1) x (π‘₯2 + x + 1) π‘₯4 - π‘₯3+π‘₯2 π‘₯3 - π‘₯2+ x π‘₯2 - x + 1 0 π‘₯4 + π‘₯2 + 1
  • 7. 1 -1 1 x 1 1 1 1 -1 1 1 -1 1 1 -1 1 0 1 0 1 0 1 π‘₯4 + 0 π‘₯3 + π‘₯2 + 0x + 1 = π‘₯4 + π‘₯2 + 1
  • 8. Example 2. Multiply π‘₯5 + π‘₯3 – 2π‘₯2 + 3 by 2π‘₯4 – 3π‘₯3 + 4π‘₯2 – 1 1 0 1 -2 0 3 x 2 -3 4 0 -1 2 0 2 -4 0 6 -3 0 -3 6 0 -9 4 0 4 -8 0 12 -1 0 -1 2 0 -3 2 -3 6 -7 9 -2 -10 14 0 -3 2π‘₯9 – 3 π‘₯8 + 6π‘₯7 – 7π‘₯6 + 9π‘₯5 – 2 π‘₯4 – 10π‘₯3 + 14π‘₯2 – 3
  • 9. Example 3. Multiply 2π‘₯4 – 3π‘₯3 + x – 1by π‘₯3 + 3π‘₯2 – 1 2 -3 0 1 -1 x 1 3 0 -1 2 -3 0 1 -1 6 -9 0 3 -3 -2 3 0 -1 1 1 2 3 -9 -1 5 -3 -1 1 2π‘₯7 + 3π‘₯6 – 9π‘₯5 – π‘₯4 + 5π‘₯3 – 3π‘₯2 – x + 1
  • 10. Remark: If two non - identically vanishing polynomials f(x) and g(x) have the leading terms π‘Ž0π‘₯𝑛 and 𝑏0π‘₯π‘š, the leading term of the product will be π‘Ž0𝑏0π‘₯𝑛+π‘š and the coefficient differs from 0; hence, f(x)g(x) is a non - identically vanishing polynomial. Consequently, if f(x) g(x) = 0 one of the factors must be an identically vanishing polynomial.
  • 11. Division of Polynomials Let f(x) = π’‚πŸŽπ’™π’ + π’‚πŸπ’™π’βˆ’πŸ+ . . . + 𝒂𝒏 g(x) =π’ƒπŸŽ π’™π’Ž + π’ƒπŸπ’™π’Žβˆ’πŸ+ . . . + π’ƒπ’Ž be two polynomials of degrees n and m, respectively, so that π‘Ž0 β‰  0, 𝑏0β‰  0, and assume that n β‰₯ m. By choosing properly a constant 𝑐0 we can obtain the polynomial f(x) – 𝑐0π‘₯π‘›βˆ’π‘š g(x) = 𝑓1(x) which, if not vanishing identically, will have degree 𝑛1 < n; for this it suffices to take 𝑐0 = π‘Ž0 𝑏0 . As long as 𝑛1 β‰₯ m, a constant 𝑐1 can be found so that 𝑓1 (x) – 𝑐1π‘₯𝑛1βˆ’π‘š g(x) = 𝑓2 (x) which, if not vanishing identically, will have degree 𝑛2 < 𝑛1.
  • 12. Division of Polynomials If 𝑛2m, the same process can be repeated. Now the degrees of the β€œpartial remainders” 𝑓1 (x), 𝑓2 (x) . . . form a decreasing sequence so that there will be some first partial remainder π‘“π‘˜+1(x) that either vanishes identically or is of degree π‘›π‘˜+1 < m.
  • 13. Division of Polynomials By eliminating 𝑓1(x), 𝑓2(x), . . . , π‘“π‘˜(x) from the identities f(x) – 𝑐0π‘₯π‘›βˆ’π‘š g(x) = 𝑓1 (x), 𝑓1 (x) – 𝑐1π‘₯𝑛1βˆ’π‘šg(x) = 𝑓2(x), . . . , π‘“π‘˜(x) – π‘π‘˜π‘₯π‘›π‘˜βˆ’π‘šg(x) = π‘“π‘˜+1 (x) and setting for brevity 𝑐0π‘₯π‘›βˆ’π‘š + 𝑐1π‘₯𝑛1βˆ’π‘š + . . . + π‘π‘˜π‘₯π‘›π‘˜βˆ’π‘š = q(x), π‘“π‘˜+1 (x) = r(x) we obtain the identity f(x) = g(x) q(x) + r(x) in which r(x) has a degree < m or vanishes identically. The polynomials q(x) and r(x) are called the quotient and the remainder in the division of f(x) by g(x).
  • 14. Dividend Divisor 1 1 0 0 3 0 0 0 -1 1 -3 0 4 1 1 -3 0 4 1 1 4 12 32 82 quotient ` 4 0 -4 2 0 4 -12 0 16 4 12 -4 -14 -4 0 12-36 0 48 12 32 -14 -52 -12 0 32 -96 0 128 32 82 -52 -140 -32 -1 82 -246 0 328 82 194 -140 -360 -83 remainder Example 1. Divide π‘₯8 + π‘₯7 +3π‘₯4 – 1 by π‘₯4 – 3π‘₯3 + 4x + 1
  • 15. Thus, the quotient and the remainder are π‘₯4 + 4π‘₯3 + 12π‘₯2 + 32x + 82, quotient 194 π‘₯3 – 140 π‘₯2 – 360 x – 83, remainder and identically π‘₯8 + π‘₯7 +3π‘₯4 – 1 = (π‘₯4 – 3π‘₯3 + 4x + 1)( π‘₯4 + 4π‘₯3+ 12π‘₯2 + 32x + 82) + 194π‘₯3 – 140π‘₯2 – 360 x – 83.
  • 16. Dividend Divisor 1 3 0 0 -2 3 -1 1 1 0 0 -1 1 1 0 0 -1 1 1 3 0 1 quotient β€˜ 3 0 1 -3 3 3 0 0 -3 3 0 1 0 0 -1 0 0 0 0 0 1 0 0 -1 1 1 0 0 -1 1 0 remainder Example 2. Divide π‘₯7 + 3π‘₯6 - 2π‘₯3 +3π‘₯2 – x + 1 by π‘₯4 – x + 1
  • 17. Thus, the quotient and the remainder are π‘₯3 +3π‘₯2 + 1, quotient 0, remainder and identically π‘₯7 + 3π‘₯6 - 2π‘₯3 +3π‘₯2 – x + 1 = (π‘₯4 – x + 1)(π‘₯3 +3π‘₯2 + 1).
  • 18. Remark1: If the remainder in the division of f(x) by g(x) is 0, that is, if f(x) = g(x) q(x) where q(x) is a polynomial, it is said that f(x) is divisible by g(x) or that g(x) is a divisor of f(x). Remark 2: If two polynomials f and 𝑓1 are divisible by g, then for arbitrary polynomials l and 𝑙1 the polynomial lf + 𝑙1𝑓1 will be divisible by g. In fact, by hypothesis f =gq 𝑓1=gπ‘ž1 where q and π‘ž1 are polynomials; hence, lf + 𝑙1𝑓1 = g (lq + 𝑙1π‘ž1) is divisible by g.
  • 19. The Remainder Theorem The remainder obtained in dividing f(x) by x – c is the value of the polynomial f(x) for x = c, that is f(c).
  • 20. Proof. Since the divisor is of the first degree, the remainder will be a constant r. Calling the quotient q(x), we have the identity f(x) = (x – c) q(x) + r. On substituting the number c in place of x into this identity we must get equal numbers. Now, since r is a constant, it is not affected by this substitution and the value of the right-hand member for x = c will be (c – c) q(c) + r = r whereas the value of the left-hand member is f(c); hence, r = f(c), which means also that identically in x f(x) = (x – c) q(x) + f(c). It follows from this theorem that f(x) is divisible by x – c if and only if f(c) = 0.
  • 21. x – c = x + 3 c = -3 f(-3) = -27 + 9 + 15 + 3 = 0 f(x) is divisible by x + 3 To show that π‘₯𝑛 – 𝑐𝑛 is divisible by x – c. This is true since 𝑐𝑛 – 𝑐𝑛 = 0; the quotient found by ordinary division is π‘₯π‘›βˆ’1 + 𝑐π‘₯π‘›βˆ’2 + 𝑐2 π‘₯π‘›βˆ’3 + . . . + π‘π‘›βˆ’1 . Example 1. Divide f(x) = π‘₯3 + π‘₯2 - 5x + 3 by x + 3
  • 22. x – c = x + 2 c = -2 f(-2) = 16 – 24 + 12 – 6 + 2 = 0 f(x) is divisible by x + 2 Example 2. Divide f(x) = π‘₯4 + 3π‘₯3 + 3π‘₯2 + 3x + 2 by x + 2
  • 23. Synthetic Division From the identity, f(x) = (x – c) q(x) + r let us substitute q (x) = 𝑏0 π‘₯π‘›βˆ’1 + 𝑏1 π‘₯π‘›βˆ’2 + . . . + π‘π‘›βˆ’1 where 𝑏0 , 𝑏1 , . . . , π‘π‘›βˆ’1 are coefficients to be determined. Performing the multiplication, we have (x – c) q(x) = 𝑏0 π‘₯𝑛 + (𝑏1 βˆ’ 𝑐𝑏0) π‘₯π‘›βˆ’1 + (𝑏2 βˆ’ 𝑐𝑏1) π‘₯π‘›βˆ’2 + . . . + (π‘π‘›βˆ’1 βˆ’ π‘π‘π‘›βˆ’2) π‘₯ βˆ’ π‘π‘π‘›βˆ’1, and (x – c) q(x) + r = 𝑏0 π‘₯𝑛 + (𝑏1 βˆ’ 𝑐𝑏0) π‘₯π‘›βˆ’1 + (π‘π‘›βˆ’1 βˆ’ π‘π‘π‘›βˆ’2) π‘₯ + π‘Ÿ βˆ’ π‘π‘π‘›βˆ’1.
  • 24. Since this polynomial must be identical to π‘Ž0 π‘₯𝑛 + π‘Ž1 π‘₯𝑛 + . . . + π‘Žπ‘› to determine 𝑏0, 𝑏1, . . . , π‘π‘›βˆ’1 and r we equate coefficients of like powers of x, getting the set of equations π’ƒπŸŽ = π’‚πŸŽ π’ƒπŸ – π’„π’ƒπŸŽ = π’‚πŸ π’ƒπŸ – π’„π’ƒπŸ = π’‚πŸ . . . , π’ƒπ’βˆ’πŸ – π’„π’ƒπ’βˆ’πŸ = π’‚π’βˆ’πŸ 𝒓 βˆ’ π’„π’ƒπ’βˆ’πŸ = 𝒂𝒏 from which it follows that 𝑏0, 𝑏1, . . . , π‘π‘›βˆ’1 , r are found one after another as follows: 𝑏0 = π‘Ž0 𝑏1 = π‘Ž1 + 𝑐𝑏0 𝑏2 = π‘Ž2 + 𝑐𝑏1 . . . , π‘π‘›βˆ’1 = π‘Žπ‘›βˆ’1 + π‘π‘π‘›βˆ’2 π‘Ÿ = π‘Žπ‘› + π‘π‘π‘›βˆ’1
  • 25. π‘Ž0 π‘Ž1 π‘Ž2 . . . π‘Žπ‘›βˆ’1 π‘Žπ‘› 𝑏0𝑐 𝑏1𝑐 . . . π‘π‘›βˆ’2𝑐 π‘π‘›βˆ’1𝑐 𝐚𝟎 = π›πŸŽ π›πŸ π›πŸ . . . π›π§βˆ’πŸ 𝐫 remainder The calculation is of a recursive nature and in practice can be arranged more conveniently thus: coefficients of the quotient
  • 26. The independent expressions for 𝑏0, 𝑏1, . . . , π‘π‘›βˆ’1 , r obtained by successive substitutions are 𝑏0 = π‘Ž0 𝑏1 = π‘Ž0𝑐 + π‘Ž1 , 𝑏2 = π‘Ž0𝑐2 + π‘Ž1𝑐 + π‘Ž2 , . . . , π‘π‘›βˆ’1 = π‘Ž0π‘π‘›βˆ’1 + π‘Ž0π‘π‘›βˆ’2 + . . . + π‘Žπ‘›βˆ’1 and π‘Ÿ = π‘Ž0𝑐𝑛 + π‘Ž1π‘π‘›βˆ’1 + . . . + π‘Žπ‘› = f(c) which gives the second proof of the remainder theorem. Considering the sequence of polynomials 𝑓0 = π‘Ž0 , 𝑓1 = π‘₯𝑓0 + π‘Ž1 , 𝑓2 = π‘₯𝑓1 + π‘Ž2 , . . . , 𝑓𝑛 (x) = π‘₯π‘“π‘›βˆ’1(x) + π‘Žπ‘› It is clear that 𝑓𝑖(π‘₯) = π‘Ž0π‘₯𝑖 + π‘Ž1π‘₯𝑖 βˆ’1 + . . . + π‘Žπ‘– Hence 𝑏𝑖 = 𝑓𝑖(𝑐) , i = 0, 1, 2, . . . , i – 1 and, moreover, 𝑓𝑖(π‘₯) = (x – c) ⦋ 𝑓0(𝑐)π‘₯π‘–βˆ’1 + 𝑓1(𝑐)π‘₯𝑖 βˆ’2 + . . . + π‘“π‘–βˆ’1 (𝑐)⦌ + 𝑓𝑖(𝑐)
  • 27. -2⃓ 3 -7 5 0 -1 - 6 -8 -6 26 -62 124 -246 504 3 -13 31 -62 123 -252 496 Hence, the quotient is 3π‘₯5 – 13π‘₯4 + 31π‘₯3 – 62π‘₯2 + 123x – 252 And the remainder is r = 496 Example 1 Divide 3π‘₯6 – 7π‘₯5 + 5π‘₯4 – π‘₯2 – 6x – 8 by π‘₯ + 2
  • 28. 1 ⃓ 5 0 -7 6 -2 4 5 5 -2 4 2 5 5 -2 4 2 6 Hence, the quotient is 5π‘₯4 + 5π‘₯3 – 2π‘₯2 + 4x + 2 And the remainder is r = 6 Example 2 Divide 5π‘₯5 – 7π‘₯3 + 6π‘₯2 –2x + 4 by π‘₯ – 1
  • 29. -2⃓ 2 -6 7 -5 1 -4 20 -54 118 2 -10 27 -59 119 Hence, the quotient is 2π‘₯3 - 10π‘₯2+ 27x - 59 And the remainder is r = 119 Example 3 Divide 2π‘₯4 – 6π‘₯3 + 7π‘₯2 –5x + 1 by π‘₯ + 2
  • 30. The derivative of f(x) = π‘Ž0π‘₯𝑛 + π‘Ž1π‘₯π‘›βˆ’1+ . . . + π‘Žπ‘›βˆ’1 x + π‘Žπ‘› is f '(x) = π‘›π‘Ž0π‘₯π‘›βˆ’1 +(n – 1) π‘Ž1π‘₯π‘›βˆ’2+ . . . + π‘Žπ‘›βˆ’1 Since f’(x) is a polynomial, we can consider its derivative, which is called the second derivative, f ’’(x), of f(x). Similarly, the derivative of the second derivative is the third derivative, f ’’’(x), of f(x), etc. Now take the expansion f(x) = 𝐴0+ 𝐴1 π‘₯ βˆ’ 𝑐 + 𝐴2 (π‘₯ βˆ’ 𝑐 )2 + . . . + 𝐴𝑛 (π‘₯ βˆ’ 𝑐 )𝑛
  • 31. Form successive derivatives of both members f ’(x) = 𝐴1+ 2𝐴2 π‘₯ βˆ’ 𝑐 + 3𝐴3 (π‘₯ βˆ’ 𝑐 )2 + . . . + 𝑛𝐴𝑛 (π‘₯ βˆ’ 𝑐 )π‘›βˆ’1 f ’’(x) = 2𝐴2+ 3 β€’ 2𝐴3 π‘₯ βˆ’ 𝑐 + . . . + 𝑛(𝑛
  • 32. in the general 𝐴𝑖 = 𝑓𝑖(c) 1β€’2β€’3‒𝑖 Thus, the expansion of f(x) in powers of x – c takes the form f (x) = f (c) + 𝑓′(c) 1 (x –c) + 𝑓′′(c) 1β€’2 (x – c)2 + . . . + 𝑓𝑛(c) 1β€’2β€’3 . . .β€’ 𝑛 (x – c)𝑛
  • 33. f (x) = f (1) + 𝑓′(1) 1 (x –1) + 𝑓′′(1) 1β€’2 (x – 1)2 + 𝑓′′′(1) 1β€’2β€’3 (x – 1)3 f(x) = π‘₯3 + π‘₯2 + x + 1 f(1) = (1)3 + (1)2 + 1 + 1 f(1) = 4 𝑓′(x) = 3π‘₯2 + 2x + 1 𝑓′ (1) = 3(1)2 + 2(1) + 1 𝑓′ (1) = 6 𝑓′′(x) = 6x + 2 𝑓′′(1) = 6 (1) + 2 𝑓′′(1) = 8 𝑓′′′ (x) = 6 𝑓′′′(1) = 6 Example 1 Find the taylor’s formula of π‘₯3 + π‘₯2 + x + 1 at x = 1 f (x) = 4 + 6 1 (x –1) + 8 1β€’2 (x – 1)2 + 6 1β€’2β€’3 (x – 1)3 f (x) = 4 + 6(x – 1) + 4 (x – 1)2 + (x – 1)3
  • 34. f (x) = f (1) + 𝑓′(1) 1 (x –1) + 𝑓′′(1) 1β€’2 (x – 1)2 + 𝑓′′′(1) 1β€’2β€’3 (x – 1)3 f(x) = βˆ’ π‘₯4 + 6π‘₯3 + x –1 f(1) = βˆ’(1)4 + 6(1)3 + 1 – 1 f(1) = 5 𝑓′ (x) = βˆ’4π‘₯3 + 18π‘₯2 + 1 𝑓′(1) = βˆ’4(1)3 + 18(1)2 + 1 𝑓′(1) = 15 𝑓′′ (x) = βˆ’12π‘₯2 + 36x 𝑓′′(1) = βˆ’12(1)2 + 36 (1) 𝑓′′ (1) = 24 𝑓′′′ (x) = - 24x + 36 𝑓′′′(1) = -24 (1) + 36 𝑓′′′(1) = 12 Example 2 Find the taylor’s formula of βˆ’ π‘₯4 + 6π‘₯3 + x –1 at x = 1 f (x) = 5 + 15 1 (x –1) + 24 1β€’2 (x – 1)2 + 12 1β€’2β€’3 (x – 1)3 f (x) = 5 + 15(x – 1) + 12 (x – 1)2 + 2(x – 1)3
  • 36. Activity 1. Multiply π‘₯4 + 4π‘₯3 – 5π‘₯2 – 2 by π‘₯4 – 4π‘₯3 – 5π‘₯2 – 2 using the method of detached coefficients. 2. Divide 2π‘₯7 – 3π‘₯6 + π‘₯5 – 3π‘₯4 + 5π‘₯3 – 4π‘₯2 + 2x – 1 by 2π‘₯3 – 3π‘₯2 + x – 1 3. Without actual division show that 2π‘₯4 – 7π‘₯3 – 2π‘₯2 + 13x + 6 is divisible by π‘₯2 – 5x + 6. 4. By synthetic division find the quotient and the remainder in the division of 6π‘₯3 – 10π‘₯2 + 5x + 3 by x – 12.