More Related Content
DOCX
PPTX
Laws of Logic in Discrete Structures and their applications PDF
Aplicación de la serie Fourier en un circuito electrónico de potencia) PPTX
6.2 special cases system of linear equations PPTX
discrete structures and their introduction PPT
PDF
6.3 Equivalences versus partitions PPTX
proposition Logic-1.pptx Discrete Mathematics What's hot
PPTX
PPTX
PDF
PPTX
PPTX
1st, 2nd kind improper integrals PPTX
Presentation on inverse matrix PPTX
3.4 derivative and graphs PPTX
Inverse Matrix & Determinants PDF
Integration in the complex plane PPTX
PDF
PPT
PPT
python.ppt python python python python python PPT
Linear differential equation with constant coefficient PPT
Translating English to Propositional Logic PPT
PPTX
LECTURE 2: PROPOSITIONAL EQUIVALENCES PPTX
PPTX
PDF
Answers to Problems in "Elementary Linear Algebra" (12th Edition) by Anton Viewers also liked
PDF
X2 t01 04 mod arg form(2013) PDF
X2 t01 08 locus & complex nos 2 (2013) PDF
X2 t01 10 complex & trig (2013) PDF
X2 t01 07 locus & complex nos 1 (2013) PDF
X2 t01 06 geometrical representation (2013) PDF
X2 t01 09 de moivres theorem More from Nigel Simmons
PPT
Goodbye slideshare UPDATE PPT
PDF
12 x1 t02 02 integrating exponentials (2014) PDF
11 x1 t01 03 factorising (2014) PDF
11 x1 t01 02 binomial products (2014) PDF
12 x1 t02 01 differentiating exponentials (2014) PDF
11 x1 t01 01 algebra & indices (2014) PDF
12 x1 t01 03 integrating derivative on function (2013) PDF
12 x1 t01 02 differentiating logs (2013) PDF
12 x1 t01 01 log laws (2013) PDF
X2 t02 04 forming polynomials (2013) PDF
X2 t02 03 roots & coefficients (2013) PDF
X2 t02 02 multiple roots (2013) PDF
X2 t02 01 factorising complex expressions (2013) PDF
11 x1 t16 07 approximations (2013) PDF
11 x1 t16 06 derivative times function (2013) PDF
11 x1 t16 05 volumes (2013) PDF
11 x1 t16 04 areas (2013) PDF
11 x1 t16 03 indefinite integral (2013) PDF
11 x1 t16 02 definite integral (2013) X2 t01 05 conjugate properties (2013)
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
6 2i
e.g.If x iy
, show that x 2 y 2 2
3i
6 2i
x iy
3i
- 11.
6 2i
e.g.If x iy
, show that x 2 y 2 2
3i
6 2i
x iy
3i
6 2i
2
x iy
1
3i
- 12.
6 2i
e.g.If x iy
, show that x 2 y 2 2
3i
6 2i
x iy
3i
6 2i
2
x iy
1
3i
6 2i
x iy
3i
2
- 13.
6 2i
e.g.If x iy
, show that x 2 y 2 2
3i
6 2i
x iy
3i
6 2i
2
x iy
1
3i
6 2i
x iy
3i
6 2i
3i
2
- 14.
6 2i
e.g.If x iy
, show that x 2 y 2 2
3i
6 2i
x iy
3i
6 2i
2
x iy
1
3i
6 2i
x iy
3i
6 2i
3i
6 2i
2
x iy
2
3i
2
- 15.
6 2i
e.g.If x iy
, show that x 2 y 2 2
3i
6 2i
x iy
3i
6 2i
2
x iy
1
3i
Multiply 1 2
6 2i
x iy
3i
6 2i
3i
6 2i
2
x iy
2
3i
2
- 16.
6 2i
e.g.If x iy
, show that x 2 y 2 2
3i
6 2i
x iy
3i
6 2i
2
x iy
1
3i
Multiply 1 2
6 2i 6 2i
x iy x iy
3i 3i
2
2
6 2i
x iy
3i
6 2i
3i
6 2i
2
x iy
2
3i
2
- 17.
6 2i
e.g.If x iy
, show that x 2 y 2 2
3i
6 2i
x iy
3i
6 2i
2
x iy
1
3i
Multiply 1 2
6 2i 6 2i
x iy x iy
3i 3i
36 4
2
2 2
x y
9 1
4
2
2
6 2i
x iy
3i
6 2i
3i
6 2i
2
x iy
2
3i
2
- 18.
6 2i
e.g.If x iy
, show that x 2 y 2 2
3i
6 2i
x iy
3i
6 2i
2
x iy
1
3i
Multiply 1 2
6 2i 6 2i
x iy x iy
3i 3i
36 4
2
2 2
x y
9 1
4
x2 y2 2
2
2
6 2i
x iy
3i
6 2i
3i
6 2i
2
x iy
2
3i
2
- 19.
6 2i
e.g.If x iy
, show that x 2 y 2 2
3i
6 2i
x iy
3i
6 2i
2
x iy
1
3i
Multiply 1 2
6 2i 6 2i
x iy x iy
3i 3i
36 4
2
2 2
x y
9 1
4
x2 y2 2
2
6 2i
x iy
3i
6 2i
3i
6 2i
2
x iy
2
3i
2
2
Exercise 4H; 1 to 6