SlideShare a Scribd company logo
1 of 55
Download to read offline
Inverse Functions
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
A function and its inverse function are reflections of each other in
the line y = x.
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
A function and its inverse function are reflections of each other in
the line y = x.
If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x 
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
A function and its inverse function are reflections of each other in
the line y = x.
If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x 
The domain of y  f  x  is the range of y  f 1  x 
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
A function and its inverse function are reflections of each other in
the line y = x.
If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x 
The domain of y  f  x  is the range of y  f 1  x 
The range of y  f  x  is the domain of y  f 1  x 
Testing For Inverse Functions
Testing For Inverse Functions
(1) Use a horizontal line test
Testing For Inverse Functions
(1) Use a horizontal line test


e.g.
 i  y  x 2   y



                           x
Testing For Inverse Functions
(1) Use a horizontal line test


e.g.
 i  y  x 2   y



                           x


   Only has an inverse relation
Testing For Inverse Functions
(1) Use a horizontal line test


e.g.
 i  y  x 2   y                 ii  y  x 3   y



                           x                          x


   Only has an inverse relation
Testing For Inverse Functions
(1) Use a horizontal line test


e.g.
 i  y  x 2   y                 ii  y  x 3    y



                           x                                  x


   Only has an inverse relation            Has an inverse function
Testing For Inverse Functions
(1) Use a horizontal line test
                OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
Testing For Inverse Functions
(1) Use a horizontal line test
                OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
             OR
    x  y2
Testing For Inverse Functions
(1) Use a horizontal line test
                OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
             OR
    x  y2
    y x
    NOT UNIQUE
Testing For Inverse Functions
(1) Use a horizontal line test
              OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
             OR                                                OR
    x  y2                                            x  y3
    y x
    NOT UNIQUE
Testing For Inverse Functions
(1) Use a horizontal line test
              OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
             OR                                                OR
    x  y2                                            x  y3
    y x                                             y3 x
    NOT UNIQUE                                        UNIQUE
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
inverse function), then;
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
inverse function), then;

       f 1  f  x   x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
inverse function), then;

       f 1  f  x   x   AND       f  f 1  x   x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.            2x 1
        f x 
                3  2x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.            2x 1
        f x 
                3  2x
     2x 1      2 y 1
y          x
     3  2x     3 2y
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.            2x 1
        f x 
                3  2x
     2x 1           2 y 1
y          x
     3  2x          3 2y
       3  2 y x  2 y  1
         3 x  2 xy  2 y  1
        2 x  2  y  3 x  1
                       3x  1
                   y
                       2x  2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND         f  f 1  x   x

e.g.            2x 1                          2x 1  
        f x                               3         1
                3  2x                          3  2x 
                            f 1  f  x   
                                               2x 1 
   2x 1            2 y 1                   2        2
y         x                                 3  2x 
   3  2x           3 2y
     3  2 y x  2 y  1
      3 x  2 xy  2 y  1
     2 x  2  y  3 x  1
                    3x  1
                y
                    2x  2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND          f  f 1  x   x

e.g.            2x 1                           2x 1  
        f x                                3         1
                3  2x                           3  2x 
                            f 1  f  x   
                                                2x 1 
   2x 1            2 y 1                    2        2
y         x                                  3  2x 
   3  2x           3 2y
     3  2 y x  2 y  1                    6x  3  3  2x
                                            
      3 x  2 xy  2 y  1                    4x  2  6  4x
     2 x  2  y  3 x  1                 
                                              8x
                    3x  1                     8
                y                          x
                    2x  2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x    AND          f  f 1  x   x

e.g.            2x 1                           2x 1                         3x  1  
        f x                                3         1                   2          1
                3  2x
                                                             f  f 1  x   
                                                 3  2x                          2x  2 
                            f 1  f  x   
                                                2x 1                             3x  1 
   2x 1            2 y 1                    2         2                  3  2         
y         x                                  3  2x                            2x  2 
   3  2x           3 2y
     3  2 y x  2 y  1                    6x  3  3  2x
                                            
      3 x  2 xy  2 y  1                    4x  2  6  4x
     2 x  2  y  3 x  1                 
                                              8x
                    3x  1                     8
                y                          x
                    2x  2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x    AND           f  f 1  x   x

e.g.            2x 1                           2x 1                          3x  1  
        f x                                3         1                    2          1
                3  2x
                                                             f  f 1  x   
                                                 3  2x                           2x  2 
                            f 1  f  x   
                                                2x 1                              3x  1 
   2x 1            2 y 1                    2         2                   3  2         
y         x                                  3  2x                             2x  2 
   3  2x           3 2y
     3  2 y x  2 y  1                    6x  3  3  2x                 6x  2  2x  2
                                                                          
      3 x  2 xy  2 y  1                    4x  2  6  4x                 6x  6  6x  2
     2 x  2  y  3 x  1                 
                                              8x
                                                                           
                                                                             8x
                    3x  1                     8                              8
                y                          x                             x
                    2x  2
Restricting The Domain
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
                                                            y  x3

                                                              x
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y
                                                              x
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y

  f 1 : x  y 3                                              x
                1
     y  x     3
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y

  f 1 : x  y 3                                              x
                1
     y  x     3


       Domain: all real x
       Range: all real y
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y

  f 1 : x  y 3                                              x
                1
     y  x     3


       Domain: all real x
       Range: all real y
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y

  f 1 : x  y 3                                              x
                1
                                                   1
     y  x     3
                                             yx   3

       Domain: all real x
       Range: all real y
y  ex
ii  y  e x
                y

                1

                        x
y  ex
ii  y  e x
                         y
    Domain: all real x
   Range: y > 0          1
y  ex
    ii  y  e x
                               y
          Domain: all real x
         Range: y > 0          1

    1                                 x
f        :xe   y


      y  log x
y  ex
    ii  y  e x
                               y
          Domain: all real x
         Range: y > 0          1

    1                                 x
f        :xe   y


      y  log x

          Domain: x > 0
          Range: all real y
y  ex
    ii  y  e x
                               y
          Domain: all real x
         Range: y > 0          1

    1                                 x
f        :xe   y


      y  log x

          Domain: x > 0
          Range: all real y
y  ex
    ii  y  e x
                               y
          Domain: all real x                y  log x
         Range: y > 0          1
                                   1       x
    1
f        :xe   y


      y  log x

          Domain: x > 0
          Range: all real y
iii  y  x 2   y  x2   y



                              x
iii  y  x 2           y  x2   y
    Domain: all real x
    Range: y  0
                                      x
iii  y  x 2           y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                        x
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2


   Domain: x  0
   Range: y  0
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2


   Domain: x  0
   Range: y  0
iii  y  x 2                 y  x2                 1
                                        y
    Domain: all real x                          yx   2


    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2


   Domain: x  0
   Range: y  0
iii  y  x 2                   y  x2                              1
                                               y
    Domain: all real x                                         yx   2


    Range: y  0
    NO INVERSE                                             x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2


   Domain: x  0                         Book 2
                         Exercise 1A; 2, 4bdf, 7, 9, 13, 14, 16, 19
   Range: y  0

More Related Content

What's hot (13)

Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
 
Inverse Functions
Inverse FunctionsInverse Functions
Inverse Functions
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
4 5 inverse functions
4 5 inverse functions4 5 inverse functions
4 5 inverse functions
 
Lesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsLesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And Logarithms
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
Inverse functions and relations
Inverse functions and relationsInverse functions and relations
Inverse functions and relations
 
4.1 inverse functions
4.1 inverse functions4.1 inverse functions
4.1 inverse functions
 
7.7 one to_one_functions_-_inverse_functions
7.7 one to_one_functions_-_inverse_functions7.7 one to_one_functions_-_inverse_functions
7.7 one to_one_functions_-_inverse_functions
 
Calc 5.3
Calc 5.3Calc 5.3
Calc 5.3
 
Inverse functions 1.6
Inverse functions 1.6Inverse functions 1.6
Inverse functions 1.6
 
Inverse Functions
Inverse FunctionsInverse Functions
Inverse Functions
 
Ch07
Ch07Ch07
Ch07
 

Viewers also liked

11X1 T07 06 trig equations (2011)
11X1 T07 06 trig equations (2011)11X1 T07 06 trig equations (2011)
11X1 T07 06 trig equations (2011)
Nigel Simmons
 
X2 T04 01 by parts (2011)
X2 T04 01 by parts (2011)X2 T04 01 by parts (2011)
X2 T04 01 by parts (2011)
Nigel Simmons
 
12X1 T03 04 integrating trig (2011)
12X1 T03 04 integrating trig (2011)12X1 T03 04 integrating trig (2011)
12X1 T03 04 integrating trig (2011)
Nigel Simmons
 
11X1 T09 07 rates of change (2011)
11X1 T09 07 rates of change (2011)11X1 T09 07 rates of change (2011)
11X1 T09 07 rates of change (2011)
Nigel Simmons
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)
Nigel Simmons
 
11X1 T10 03 second derivative (2011)
11X1 T10 03 second derivative (2011)11X1 T10 03 second derivative (2011)
11X1 T10 03 second derivative (2011)
Nigel Simmons
 
11X1 T10 02 critical points (2011)
11X1 T10 02 critical points (2011)11X1 T10 02 critical points (2011)
11X1 T10 02 critical points (2011)
Nigel Simmons
 
X2 T06 06 banked curves (2011)
X2 T06 06 banked curves (2011)X2 T06 06 banked curves (2011)
X2 T06 06 banked curves (2011)
Nigel Simmons
 
11X1 t05 03 combinations
11X1 t05 03 combinations11X1 t05 03 combinations
11X1 t05 03 combinations
Nigel Simmons
 
11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)
Nigel Simmons
 
11 x1 t08 05 similar triangles
11 x1 t08 05 similar triangles11 x1 t08 05 similar triangles
11 x1 t08 05 similar triangles
Nigel Simmons
 
X2 T06 01 acceleration (2011)
X2 T06 01 acceleration (2011)X2 T06 01 acceleration (2011)
X2 T06 01 acceleration (2011)
Nigel Simmons
 
12X1 T03 03 differentiating trig (2011)
12X1 T03 03 differentiating trig (2011)12X1 T03 03 differentiating trig (2011)
12X1 T03 03 differentiating trig (2011)
Nigel Simmons
 
11X1 T06 04 point slope formula (2011)
11X1 T06 04 point slope formula (2011)11X1 T06 04 point slope formula (2011)
11X1 T06 04 point slope formula (2011)
Nigel Simmons
 
11X1 T10 03 equations reducible to quadratics (2010)
11X1 T10 03 equations reducible to quadratics (2010)11X1 T10 03 equations reducible to quadratics (2010)
11X1 T10 03 equations reducible to quadratics (2010)
Nigel Simmons
 
X2 T08 01 circle geometry
X2 T08 01 circle geometryX2 T08 01 circle geometry
X2 T08 01 circle geometry
Nigel Simmons
 
X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)
Nigel Simmons
 
11X1 T04 03 pythagorean trig identities (2011)
11X1 T04 03 pythagorean trig identities (2011)11X1 T04 03 pythagorean trig identities (2011)
11X1 T04 03 pythagorean trig identities (2011)
Nigel Simmons
 
11X1 T09 06 quotient & reciprocal rules (2011)
11X1 T09 06 quotient & reciprocal rules (2011)11X1 T09 06 quotient & reciprocal rules (2011)
11X1 T09 06 quotient & reciprocal rules (2011)
Nigel Simmons
 
12X1 t02 01 differentiating exponentials (2012)
12X1 t02 01 differentiating exponentials (2012)12X1 t02 01 differentiating exponentials (2012)
12X1 t02 01 differentiating exponentials (2012)
Nigel Simmons
 

Viewers also liked (20)

11X1 T07 06 trig equations (2011)
11X1 T07 06 trig equations (2011)11X1 T07 06 trig equations (2011)
11X1 T07 06 trig equations (2011)
 
X2 T04 01 by parts (2011)
X2 T04 01 by parts (2011)X2 T04 01 by parts (2011)
X2 T04 01 by parts (2011)
 
12X1 T03 04 integrating trig (2011)
12X1 T03 04 integrating trig (2011)12X1 T03 04 integrating trig (2011)
12X1 T03 04 integrating trig (2011)
 
11X1 T09 07 rates of change (2011)
11X1 T09 07 rates of change (2011)11X1 T09 07 rates of change (2011)
11X1 T09 07 rates of change (2011)
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)
 
11X1 T10 03 second derivative (2011)
11X1 T10 03 second derivative (2011)11X1 T10 03 second derivative (2011)
11X1 T10 03 second derivative (2011)
 
11X1 T10 02 critical points (2011)
11X1 T10 02 critical points (2011)11X1 T10 02 critical points (2011)
11X1 T10 02 critical points (2011)
 
X2 T06 06 banked curves (2011)
X2 T06 06 banked curves (2011)X2 T06 06 banked curves (2011)
X2 T06 06 banked curves (2011)
 
11X1 t05 03 combinations
11X1 t05 03 combinations11X1 t05 03 combinations
11X1 t05 03 combinations
 
11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)
 
11 x1 t08 05 similar triangles
11 x1 t08 05 similar triangles11 x1 t08 05 similar triangles
11 x1 t08 05 similar triangles
 
X2 T06 01 acceleration (2011)
X2 T06 01 acceleration (2011)X2 T06 01 acceleration (2011)
X2 T06 01 acceleration (2011)
 
12X1 T03 03 differentiating trig (2011)
12X1 T03 03 differentiating trig (2011)12X1 T03 03 differentiating trig (2011)
12X1 T03 03 differentiating trig (2011)
 
11X1 T06 04 point slope formula (2011)
11X1 T06 04 point slope formula (2011)11X1 T06 04 point slope formula (2011)
11X1 T06 04 point slope formula (2011)
 
11X1 T10 03 equations reducible to quadratics (2010)
11X1 T10 03 equations reducible to quadratics (2010)11X1 T10 03 equations reducible to quadratics (2010)
11X1 T10 03 equations reducible to quadratics (2010)
 
X2 T08 01 circle geometry
X2 T08 01 circle geometryX2 T08 01 circle geometry
X2 T08 01 circle geometry
 
X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)
 
11X1 T04 03 pythagorean trig identities (2011)
11X1 T04 03 pythagorean trig identities (2011)11X1 T04 03 pythagorean trig identities (2011)
11X1 T04 03 pythagorean trig identities (2011)
 
11X1 T09 06 quotient & reciprocal rules (2011)
11X1 T09 06 quotient & reciprocal rules (2011)11X1 T09 06 quotient & reciprocal rules (2011)
11X1 T09 06 quotient & reciprocal rules (2011)
 
12X1 t02 01 differentiating exponentials (2012)
12X1 t02 01 differentiating exponentials (2012)12X1 t02 01 differentiating exponentials (2012)
12X1 t02 01 differentiating exponentials (2012)
 

Similar to 12X1 05 01 inverse functions (2011)

11 x1 t02 08 inverse functions (2012)
11 x1 t02 08 inverse functions (2012)11 x1 t02 08 inverse functions (2012)
11 x1 t02 08 inverse functions (2012)
Nigel Simmons
 
11X1 T02 08 inverse functions (2011)
11X1 T02 08 inverse functions (2011)11X1 T02 08 inverse functions (2011)
11X1 T02 08 inverse functions (2011)
Nigel Simmons
 
11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)
Nigel Simmons
 
7.4 inverse functions
7.4 inverse functions7.4 inverse functions
7.4 inverse functions
hisema01
 
Jan. 6 Inverse Functions
Jan. 6 Inverse FunctionsJan. 6 Inverse Functions
Jan. 6 Inverse Functions
RyanWatt
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)
Nigel Simmons
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
Nigel Simmons
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)
Nigel Simmons
 
4.3 derivatives of inv erse trig. functions
4.3 derivatives of inv erse trig. functions4.3 derivatives of inv erse trig. functions
4.3 derivatives of inv erse trig. functions
dicosmo178
 
11 X1 T02 06 relations and functions (2010)
11 X1 T02 06 relations and functions (2010)11 X1 T02 06 relations and functions (2010)
11 X1 T02 06 relations and functions (2010)
Nigel Simmons
 

Similar to 12X1 05 01 inverse functions (2011) (20)

11 x1 t02 08 inverse functions (2012)
11 x1 t02 08 inverse functions (2012)11 x1 t02 08 inverse functions (2012)
11 x1 t02 08 inverse functions (2012)
 
11X1 T02 08 inverse functions (2011)
11X1 T02 08 inverse functions (2011)11X1 T02 08 inverse functions (2011)
11X1 T02 08 inverse functions (2011)
 
11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)
 
7.4 inverse functions
7.4 inverse functions7.4 inverse functions
7.4 inverse functions
 
4.1 Inverse Functions
4.1 Inverse Functions4.1 Inverse Functions
4.1 Inverse Functions
 
4.1 Inverse Functions
4.1 Inverse Functions4.1 Inverse Functions
4.1 Inverse Functions
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
Chapter 1 (functions).
Chapter 1 (functions).Chapter 1 (functions).
Chapter 1 (functions).
 
Jan. 6 Inverse Functions
Jan. 6 Inverse FunctionsJan. 6 Inverse Functions
Jan. 6 Inverse Functions
 
Analytic Geometry
Analytic GeometryAnalytic Geometry
Analytic Geometry
 
Module 3 exponential and logarithmic functions
Module 3   exponential and logarithmic functionsModule 3   exponential and logarithmic functions
Module 3 exponential and logarithmic functions
 
1.9 Inverse Functions.ppt
1.9 Inverse Functions.ppt1.9 Inverse Functions.ppt
1.9 Inverse Functions.ppt
 
Lesson 51
Lesson 51Lesson 51
Lesson 51
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)
 
29 inverse functions x
29 inverse functions  x29 inverse functions  x
29 inverse functions x
 
Composition and inverse of functions
Composition  and inverse of functionsComposition  and inverse of functions
Composition and inverse of functions
 
4.3 derivatives of inv erse trig. functions
4.3 derivatives of inv erse trig. functions4.3 derivatives of inv erse trig. functions
4.3 derivatives of inv erse trig. functions
 
11 X1 T02 06 relations and functions (2010)
11 X1 T02 06 relations and functions (2010)11 X1 T02 06 relations and functions (2010)
11 X1 T02 06 relations and functions (2010)
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

SURVEY I created for uni project research
SURVEY I created for uni project researchSURVEY I created for uni project research
SURVEY I created for uni project research
CaitlinCummins3
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code Examples
Peter Brusilovsky
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
EADTU
 

Recently uploaded (20)

Basic Civil Engineering notes on Transportation Engineering & Modes of Transport
Basic Civil Engineering notes on Transportation Engineering & Modes of TransportBasic Civil Engineering notes on Transportation Engineering & Modes of Transport
Basic Civil Engineering notes on Transportation Engineering & Modes of Transport
 
SURVEY I created for uni project research
SURVEY I created for uni project researchSURVEY I created for uni project research
SURVEY I created for uni project research
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code Examples
 
UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
 
Book Review of Run For Your Life Powerpoint
Book Review of Run For Your Life PowerpointBook Review of Run For Your Life Powerpoint
Book Review of Run For Your Life Powerpoint
 
Đề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinhĐề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinh
 
Andreas Schleicher presents at the launch of What does child empowerment mean...
Andreas Schleicher presents at the launch of What does child empowerment mean...Andreas Schleicher presents at the launch of What does child empowerment mean...
Andreas Schleicher presents at the launch of What does child empowerment mean...
 
OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...
 
e-Sealing at EADTU by Kamakshi Rajagopal
e-Sealing at EADTU by Kamakshi Rajagopale-Sealing at EADTU by Kamakshi Rajagopal
e-Sealing at EADTU by Kamakshi Rajagopal
 
Major project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategiesMajor project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategies
 
How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17
 
The Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDFThe Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDF
 
male presentation...pdf.................
male presentation...pdf.................male presentation...pdf.................
male presentation...pdf.................
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.ppt
 
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
 
Mattingly "AI & Prompt Design: Named Entity Recognition"
Mattingly "AI & Prompt Design: Named Entity Recognition"Mattingly "AI & Prompt Design: Named Entity Recognition"
Mattingly "AI & Prompt Design: Named Entity Recognition"
 
Improved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio AppImproved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio App
 
8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital Management8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital Management
 
ANTI PARKISON DRUGS.pptx
ANTI         PARKISON          DRUGS.pptxANTI         PARKISON          DRUGS.pptx
ANTI PARKISON DRUGS.pptx
 

12X1 05 01 inverse functions (2011)

  • 2. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value.
  • 3. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y)
  • 4. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y
  • 5. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x 
  • 6. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x  A function and its inverse function are reflections of each other in the line y = x.
  • 7. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x  A function and its inverse function are reflections of each other in the line y = x. If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x 
  • 8. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x  A function and its inverse function are reflections of each other in the line y = x. If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x  The domain of y  f  x  is the range of y  f 1  x 
  • 9. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x  A function and its inverse function are reflections of each other in the line y = x. If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x  The domain of y  f  x  is the range of y  f 1  x  The range of y  f  x  is the domain of y  f 1  x 
  • 10. Testing For Inverse Functions
  • 11. Testing For Inverse Functions (1) Use a horizontal line test
  • 12. Testing For Inverse Functions (1) Use a horizontal line test e.g. i  y  x 2 y x
  • 13. Testing For Inverse Functions (1) Use a horizontal line test e.g. i  y  x 2 y x Only has an inverse relation
  • 14. Testing For Inverse Functions (1) Use a horizontal line test e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation
  • 15. Testing For Inverse Functions (1) Use a horizontal line test e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function
  • 16. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function
  • 17. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function OR x  y2
  • 18. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function OR x  y2 y x NOT UNIQUE
  • 19. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function OR OR x  y2 x  y3 y x NOT UNIQUE
  • 20. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function OR OR x  y2 x  y3 y x y3 x NOT UNIQUE UNIQUE
  • 21. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then;
  • 22. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x
  • 23. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x
  • 24. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1 f x  3  2x
  • 25. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1 f x  3  2x 2x 1 2 y 1 y x 3  2x 3 2y
  • 26. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1 f x  3  2x 2x 1 2 y 1 y x 3  2x 3 2y 3  2 y x  2 y  1 3 x  2 xy  2 y  1 2 x  2  y  3 x  1 3x  1 y 2x  2
  • 27. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1  2x 1   f x  3  1 3  2x 3  2x  f 1  f  x     2x 1  2x 1 2 y 1 2 2 y x  3  2x  3  2x 3 2y 3  2 y x  2 y  1 3 x  2 xy  2 y  1 2 x  2  y  3 x  1 3x  1 y 2x  2
  • 28. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1  2x 1   f x  3  1 3  2x 3  2x  f 1  f  x     2x 1  2x 1 2 y 1 2 2 y x  3  2x  3  2x 3 2y 3  2 y x  2 y  1 6x  3  3  2x  3 x  2 xy  2 y  1 4x  2  6  4x 2 x  2  y  3 x  1  8x 3x  1 8 y x 2x  2
  • 29. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1  2x 1    3x  1   f x  3  1 2  1 3  2x f  f 1  x    3  2x  2x  2  f 1  f  x     2x 1   3x  1  2x 1 2 y 1 2  2 3  2  y x  3  2x   2x  2  3  2x 3 2y 3  2 y x  2 y  1 6x  3  3  2x  3 x  2 xy  2 y  1 4x  2  6  4x 2 x  2  y  3 x  1  8x 3x  1 8 y x 2x  2
  • 30. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1  2x 1    3x  1   f x  3  1 2  1 3  2x f  f 1  x    3  2x  2x  2  f 1  f  x     2x 1   3x  1  2x 1 2 y 1 2  2 3  2  y x  3  2x   2x  2  3  2x 3 2y 3  2 y x  2 y  1 6x  3  3  2x 6x  2  2x  2   3 x  2 xy  2 y  1 4x  2  6  4x 6x  6  6x  2 2 x  2  y  3 x  1  8x  8x 3x  1 8 8 y x x 2x  2
  • 32. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function.
  • 33. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible.
  • 34. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y y  x3 x
  • 35. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y x
  • 36. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y f 1 : x  y 3 x 1 y  x 3
  • 37. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y f 1 : x  y 3 x 1 y  x 3 Domain: all real x Range: all real y
  • 38. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y f 1 : x  y 3 x 1 y  x 3 Domain: all real x Range: all real y
  • 39. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y f 1 : x  y 3 x 1 1 y  x 3 yx 3 Domain: all real x Range: all real y
  • 40. y  ex ii  y  e x y 1 x
  • 41. y  ex ii  y  e x y Domain: all real x Range: y > 0 1
  • 42. y  ex ii  y  e x y Domain: all real x Range: y > 0 1 1 x f :xe y  y  log x
  • 43. y  ex ii  y  e x y Domain: all real x Range: y > 0 1 1 x f :xe y  y  log x Domain: x > 0 Range: all real y
  • 44. y  ex ii  y  e x y Domain: all real x Range: y > 0 1 1 x f :xe y  y  log x Domain: x > 0 Range: all real y
  • 45. y  ex ii  y  e x y Domain: all real x y  log x Range: y > 0 1 1 x 1 f :xe y  y  log x Domain: x > 0 Range: all real y
  • 46. iii  y  x 2 y  x2 y x
  • 47. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 x
  • 48. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x
  • 49. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0
  • 50. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0
  • 51. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2
  • 52. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2 Domain: x  0 Range: y  0
  • 53. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2 Domain: x  0 Range: y  0
  • 54. iii  y  x 2 y  x2 1 y Domain: all real x yx 2 Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2 Domain: x  0 Range: y  0
  • 55. iii  y  x 2 y  x2 1 y Domain: all real x yx 2 Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2 Domain: x  0 Book 2 Exercise 1A; 2, 4bdf, 7, 9, 13, 14, 16, 19 Range: y  0