SlideShare a Scribd company logo
Inverse Relations
Inverse Relations
If y = f(x) is a relation, then the inverse relation obtained by
interchanging x and y is x = f(y)
e.g. y  x 3  x      inverse relation is x  y 3  y
Inverse Relations
If y = f(x) is a relation, then the inverse relation obtained by
interchanging x and y is x = f(y)
e.g. y  x 3  x      inverse relation is x  y 3  y

The domain of the relation is the range of its inverse relation
Inverse Relations
If y = f(x) is a relation, then the inverse relation obtained by
interchanging x and y is x = f(y)
e.g. y  x 3  x      inverse relation is x  y 3  y

The domain of the relation is the range of its inverse relation
The range of the relation is the domain of its inverse relation
Inverse Relations
If y = f(x) is a relation, then the inverse relation obtained by
interchanging x and y is x = f(y)
e.g. y  x 3  x      inverse relation is x  y 3  y

The domain of the relation is the range of its inverse relation
The range of the relation is the domain of its inverse relation
A relation and its inverse relation are reflections of each other in
the line y = x.
Inverse Relations
If y = f(x) is a relation, then the inverse relation obtained by
interchanging x and y is x = f(y)
e.g. y  x 3  x      inverse relation is x  y 3  y

The domain of the relation is the range of its inverse relation
The range of the relation is the domain of its inverse relation
A relation and its inverse relation are reflections of each other in
the line y = x.
    e.g. y  x 2
Inverse Relations
If y = f(x) is a relation, then the inverse relation obtained by
interchanging x and y is x = f(y)
e.g. y  x 3  x      inverse relation is x  y 3  y

The domain of the relation is the range of its inverse relation
The range of the relation is the domain of its inverse relation
A relation and its inverse relation are reflections of each other in
the line y = x.
    e.g. y  x 2
  domain: all real x
    range: y  0
Inverse Relations
If y = f(x) is a relation, then the inverse relation obtained by
interchanging x and y is x = f(y)
e.g. y  x 3  x      inverse relation is x  y 3  y

The domain of the relation is the range of its inverse relation
The range of the relation is the domain of its inverse relation
A relation and its inverse relation are reflections of each other in
the line y = x.
    e.g. y  x 2               inverse relation: x  y 2
  domain: all real x
    range: y  0
Inverse Relations
If y = f(x) is a relation, then the inverse relation obtained by
interchanging x and y is x = f(y)
e.g. y  x 3  x      inverse relation is x  y 3  y

The domain of the relation is the range of its inverse relation
The range of the relation is the domain of its inverse relation
A relation and its inverse relation are reflections of each other in
the line y = x.
    e.g. y  x 2               inverse relation: x  y 2
  domain: all real x                  domain: x  0
    range: y  0                         range: all real y
Inverse Functions
Inverse Functions
If an inverse relation of a function, is a function, then it is called
an inverse function.
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
   i  y  x 2 y



                               x
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
   i  y  x 2 y



                               x
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
   i  y  x 2 y



                               x
Only has an
inverse relation
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
   i  y  x 2 y



                               x
Only has an             OR
inverse relation       x  y2
                       y x
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
   i  y  x 2 y



                               x
Only has an      OR
inverse relationx  y2
                y x
        NOT UNIQUE
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
   i  y  x 2 y                         ii  y  x 3          y



                               x                                           x
Only has an      OR
inverse relationx  y2
                y x
        NOT UNIQUE
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
   i  y  x 2 y                         ii  y  x 3          y



                               x                                           x
Only has an      OR
inverse relationx  y2
                y x
        NOT UNIQUE
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
   i  y  x 2 y                         ii  y  x 3          y



                               x                                           x
Only has an      OR
                                               Has an
inverse relationx  y2
                                               inverse function
                y x
        NOT UNIQUE
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
   i  y  x 2 y                         ii  y  x 3          y



                               x                                           x
Only has an      OR                                                    OR
                                               Has an
inverse relationx  y2                                                x  y3
                                               inverse function
                y x                                                 y3 x
        NOT UNIQUE
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
   i  y  x 2 y                         ii  y  x 3          y



                               x                                           x
Only has an      OR                                                OR
                                               Has an
inverse relationx  y2                                           x  y3
                                               inverse function
                y x                                            y3 x
        NOT UNIQUE                                          UNIQUE
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
inverse function), then;

       f 1  f  x   x   AND       f  f 1  x   x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.             x2
        f  x 
                 x2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.             x2
        f  x 
                 x2
        x2     y2
y          x
        x2     y2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.             x2
        f  x 
                 x2
        x2     y2
y          x
        x2     y2
        y  2 x  y  2
         xy  2 x  y  2
         x  1 y  2 x  2
                     2x  2
                y
                     1 x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.             x2               x22
        f  x                  2      
                 x2                x 2
               f 1  f  x    
                                       x2
   x2     y2                    1 
                                          
y     x                            x 2
   x2     y2
        y  2 x  y  2
         xy  2 x  y  2
         x  1 y  2 x  2
                     2x  2
                y
                     1 x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.             x2                         x22
        f  x                           2       
                 x2                          x 2
                        f 1  f  x    
                                                 x2
   x2             y2                     1       
y         x                                  x 2
   x2             y2
                                          2x  4  2x  4
    y  2 x  y  2                   
                                           x2 x2
     xy  2 x  y  2
                                          4x
     x  1 y  2 x  2               
                                          4
                 2x  2                 x
             y
                  1 x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND        f  f 1  x   x

e.g.             x2                         x22                        2x  2   2
        f  x                           2                                      
                 x2                          x 2                          1 x 
                        f 1  f  x                f  f 1  x    
                                                 x2                       2x  2   2
   x2             y2                     1                                   
y         x                                  x 2                      1 x 
   x2             y2
                                          2x  4  2x  4
    y  2 x  y  2                   
                                           x2 x2
     xy  2 x  y  2
                                          4x
     x  1 y  2 x  2               
                                          4
                 2x  2                 x
             y
                  1 x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND        f  f 1  x   x

e.g.             x2                         x22                        2x  2   2
        f  x                           2                                      
                 x2                          x 2                          1 x 
                        f 1  f  x                f  f 1  x    
                                                 x2                       2x  2   2
   x2             y2                     1                                   
y         x                                  x 2                      1 x 
   x2             y2
                                          2x  4  2x  4                2x  2  2  2x
    y  2 x  y  2                                               
                                           x2 x2                      2x  2  2  2x
     xy  2 x  y  2
                                          4x                             4x
     x  1 y  2 x  2                                           
                                          4                              4
                 2x  2                 x                           x
             y
                  1 x
(ii) Draw the inverse relation
                             y




                                 x
(ii) Draw the inverse relation
                             y




                                 x
(ii) Draw the inverse relation
                             y




                                 x
(ii) Draw the inverse relation
                             y




                                            x




      Exercise 2H; 1aceg, 2, 3bdf, 5ac, 6bd, 7ac, 9bde, 10adfhj

More Related Content

Viewers also liked

X2 T02 03 roots & coefficients (2011)
X2 T02 03 roots & coefficients (2011)X2 T02 03 roots & coefficients (2011)
X2 T02 03 roots & coefficients (2011)
Nigel Simmons
 
11 x1 t05 04 point slope formula (2012)
11 x1 t05 04 point slope formula (2012)11 x1 t05 04 point slope formula (2012)
11 x1 t05 04 point slope formula (2012)
Nigel Simmons
 
X2 T01 11 locus & complex nos 2 (2011)
X2 T01 11 locus & complex nos 2 (2011)X2 T01 11 locus & complex nos 2 (2011)
X2 T01 11 locus & complex nos 2 (2011)Nigel Simmons
 
12 x1 t05 01 inverse functions (2012)
12 x1 t05 01 inverse functions (2012)12 x1 t05 01 inverse functions (2012)
12 x1 t05 01 inverse functions (2012)
Nigel Simmons
 
X2 t04 02 trig integrals (2012)
X2 t04 02 trig integrals (2012)X2 t04 02 trig integrals (2012)
X2 t04 02 trig integrals (2012)Nigel Simmons
 
11 x1 t02 04 rationalising the denominator (2012)
11 x1 t02 04 rationalising the denominator (2012)11 x1 t02 04 rationalising the denominator (2012)
11 x1 t02 04 rationalising the denominator (2012)
Nigel Simmons
 
11 x1 t03 02 sketching polynomials (2012)
11 x1 t03 02 sketching polynomials (2012)11 x1 t03 02 sketching polynomials (2012)
11 x1 t03 02 sketching polynomials (2012)
Nigel Simmons
 
11 x1 t02 09 shifting curves i (2012)
11 x1 t02 09 shifting curves i (2012)11 x1 t02 09 shifting curves i (2012)
11 x1 t02 09 shifting curves i (2012)Nigel Simmons
 
11 x1 t07 06 transversals (2012)
11 x1 t07 06 transversals (2012)11 x1 t07 06 transversals (2012)
11 x1 t07 06 transversals (2012)
Nigel Simmons
 
X2 t06 06 banked curves (2012)
X2 t06 06 banked curves (2012)X2 t06 06 banked curves (2012)
X2 t06 06 banked curves (2012)
Nigel Simmons
 
X2 T01 09 geometrical representation (2011)
X2 T01 09 geometrical representation (2011)X2 T01 09 geometrical representation (2011)
X2 T01 09 geometrical representation (2011)
Nigel Simmons
 

Viewers also liked (11)

X2 T02 03 roots & coefficients (2011)
X2 T02 03 roots & coefficients (2011)X2 T02 03 roots & coefficients (2011)
X2 T02 03 roots & coefficients (2011)
 
11 x1 t05 04 point slope formula (2012)
11 x1 t05 04 point slope formula (2012)11 x1 t05 04 point slope formula (2012)
11 x1 t05 04 point slope formula (2012)
 
X2 T01 11 locus & complex nos 2 (2011)
X2 T01 11 locus & complex nos 2 (2011)X2 T01 11 locus & complex nos 2 (2011)
X2 T01 11 locus & complex nos 2 (2011)
 
12 x1 t05 01 inverse functions (2012)
12 x1 t05 01 inverse functions (2012)12 x1 t05 01 inverse functions (2012)
12 x1 t05 01 inverse functions (2012)
 
X2 t04 02 trig integrals (2012)
X2 t04 02 trig integrals (2012)X2 t04 02 trig integrals (2012)
X2 t04 02 trig integrals (2012)
 
11 x1 t02 04 rationalising the denominator (2012)
11 x1 t02 04 rationalising the denominator (2012)11 x1 t02 04 rationalising the denominator (2012)
11 x1 t02 04 rationalising the denominator (2012)
 
11 x1 t03 02 sketching polynomials (2012)
11 x1 t03 02 sketching polynomials (2012)11 x1 t03 02 sketching polynomials (2012)
11 x1 t03 02 sketching polynomials (2012)
 
11 x1 t02 09 shifting curves i (2012)
11 x1 t02 09 shifting curves i (2012)11 x1 t02 09 shifting curves i (2012)
11 x1 t02 09 shifting curves i (2012)
 
11 x1 t07 06 transversals (2012)
11 x1 t07 06 transversals (2012)11 x1 t07 06 transversals (2012)
11 x1 t07 06 transversals (2012)
 
X2 t06 06 banked curves (2012)
X2 t06 06 banked curves (2012)X2 t06 06 banked curves (2012)
X2 t06 06 banked curves (2012)
 
X2 T01 09 geometrical representation (2011)
X2 T01 09 geometrical representation (2011)X2 T01 09 geometrical representation (2011)
X2 T01 09 geometrical representation (2011)
 

Similar to 11 x1 t02 08 inverse functions (2012)

12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)
Nigel Simmons
 
12X1 05 01 inverse functions (2011)
12X1 05 01 inverse functions (2011)12X1 05 01 inverse functions (2011)
12X1 05 01 inverse functions (2011)
Nigel Simmons
 
7.4 inverse functions
7.4 inverse functions7.4 inverse functions
7.4 inverse functions
hisema01
 
Inverse functions and relations
Inverse functions and relationsInverse functions and relations
Inverse functions and relations
Jessica Garcia
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
Matthew Leingang
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
Matthew Leingang
 
4.1 Inverse Functions
4.1 Inverse Functions4.1 Inverse Functions
4.1 Inverse Functions
smiller5
 
A27 4 inversefxns notes
A27 4 inversefxns notesA27 4 inversefxns notes
A27 4 inversefxns notes
vhiggins1
 
Chapter 1 (functions).
Chapter 1 (functions).Chapter 1 (functions).
Chapter 1 (functions).
Eko Wijayanto
 
1.9 Inverse Functions.ppt
1.9 Inverse Functions.ppt1.9 Inverse Functions.ppt
1.9 Inverse Functions.ppt
RACHELPAQUITCAADA
 
Jan. 6 Inverse Functions
Jan. 6 Inverse FunctionsJan. 6 Inverse Functions
Jan. 6 Inverse Functions
RyanWatt
 
4.1 Inverse Functions
4.1 Inverse Functions4.1 Inverse Functions
4.1 Inverse Functions
smiller5
 
Calc 5.3
Calc 5.3Calc 5.3
Calc 5.3
hartcher
 
Lesson 6.4
Lesson 6.4Lesson 6.4
Lesson 6.4
nscross40
 
2 7 Bzca5e
2 7 Bzca5e2 7 Bzca5e
2 7 Bzca5e
silvia
 
11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)
Nigel Simmons
 
11 x1 t02 06 relations & functions (2013)
11 x1 t02 06 relations & functions (2013)11 x1 t02 06 relations & functions (2013)
11 x1 t02 06 relations & functions (2013)
Nigel Simmons
 
11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)
Nigel Simmons
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
Jessica Garcia
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivatives
Laxmikant Deshmukh
 

Similar to 11 x1 t02 08 inverse functions (2012) (20)

12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)
 
12X1 05 01 inverse functions (2011)
12X1 05 01 inverse functions (2011)12X1 05 01 inverse functions (2011)
12X1 05 01 inverse functions (2011)
 
7.4 inverse functions
7.4 inverse functions7.4 inverse functions
7.4 inverse functions
 
Inverse functions and relations
Inverse functions and relationsInverse functions and relations
Inverse functions and relations
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
 
4.1 Inverse Functions
4.1 Inverse Functions4.1 Inverse Functions
4.1 Inverse Functions
 
A27 4 inversefxns notes
A27 4 inversefxns notesA27 4 inversefxns notes
A27 4 inversefxns notes
 
Chapter 1 (functions).
Chapter 1 (functions).Chapter 1 (functions).
Chapter 1 (functions).
 
1.9 Inverse Functions.ppt
1.9 Inverse Functions.ppt1.9 Inverse Functions.ppt
1.9 Inverse Functions.ppt
 
Jan. 6 Inverse Functions
Jan. 6 Inverse FunctionsJan. 6 Inverse Functions
Jan. 6 Inverse Functions
 
4.1 Inverse Functions
4.1 Inverse Functions4.1 Inverse Functions
4.1 Inverse Functions
 
Calc 5.3
Calc 5.3Calc 5.3
Calc 5.3
 
Lesson 6.4
Lesson 6.4Lesson 6.4
Lesson 6.4
 
2 7 Bzca5e
2 7 Bzca5e2 7 Bzca5e
2 7 Bzca5e
 
11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)
 
11 x1 t02 06 relations & functions (2013)
11 x1 t02 06 relations & functions (2013)11 x1 t02 06 relations & functions (2013)
11 x1 t02 06 relations & functions (2013)
 
11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivatives
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
simonomuemu
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
Nicholas Montgomery
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Excellence Foundation for South Sudan
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
PECB
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
Scholarhat
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
Jean Carlos Nunes Paixão
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
Nguyen Thanh Tu Collection
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
Celine George
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
NgcHiNguyn25
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Dr. Vinod Kumar Kanvaria
 
Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
adhitya5119
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
History of Stoke Newington
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
AyyanKhan40
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Akanksha trivedi rama nursing college kanpur.
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
Colégio Santa Teresinha
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
Celine George
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
Celine George
 

Recently uploaded (20)

Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
 
Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
 

11 x1 t02 08 inverse functions (2012)

  • 2. Inverse Relations If y = f(x) is a relation, then the inverse relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x inverse relation is x  y 3  y
  • 3. Inverse Relations If y = f(x) is a relation, then the inverse relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x inverse relation is x  y 3  y The domain of the relation is the range of its inverse relation
  • 4. Inverse Relations If y = f(x) is a relation, then the inverse relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x inverse relation is x  y 3  y The domain of the relation is the range of its inverse relation The range of the relation is the domain of its inverse relation
  • 5. Inverse Relations If y = f(x) is a relation, then the inverse relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x inverse relation is x  y 3  y The domain of the relation is the range of its inverse relation The range of the relation is the domain of its inverse relation A relation and its inverse relation are reflections of each other in the line y = x.
  • 6. Inverse Relations If y = f(x) is a relation, then the inverse relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x inverse relation is x  y 3  y The domain of the relation is the range of its inverse relation The range of the relation is the domain of its inverse relation A relation and its inverse relation are reflections of each other in the line y = x. e.g. y  x 2
  • 7. Inverse Relations If y = f(x) is a relation, then the inverse relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x inverse relation is x  y 3  y The domain of the relation is the range of its inverse relation The range of the relation is the domain of its inverse relation A relation and its inverse relation are reflections of each other in the line y = x. e.g. y  x 2 domain: all real x range: y  0
  • 8. Inverse Relations If y = f(x) is a relation, then the inverse relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x inverse relation is x  y 3  y The domain of the relation is the range of its inverse relation The range of the relation is the domain of its inverse relation A relation and its inverse relation are reflections of each other in the line y = x. e.g. y  x 2 inverse relation: x  y 2 domain: all real x range: y  0
  • 9. Inverse Relations If y = f(x) is a relation, then the inverse relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x inverse relation is x  y 3  y The domain of the relation is the range of its inverse relation The range of the relation is the domain of its inverse relation A relation and its inverse relation are reflections of each other in the line y = x. e.g. y  x 2 inverse relation: x  y 2 domain: all real x domain: x  0 range: y  0 range: all real y
  • 11. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function.
  • 12. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test
  • 13. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
  • 14. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. i  y  x 2 y x
  • 15. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. i  y  x 2 y x
  • 16. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. i  y  x 2 y x Only has an inverse relation
  • 17. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. i  y  x 2 y x Only has an OR inverse relation x  y2 y x
  • 18. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. i  y  x 2 y x Only has an OR inverse relationx  y2 y x NOT UNIQUE
  • 19. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. i  y  x 2 y ii  y  x 3 y x x Only has an OR inverse relationx  y2 y x NOT UNIQUE
  • 20. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. i  y  x 2 y ii  y  x 3 y x x Only has an OR inverse relationx  y2 y x NOT UNIQUE
  • 21. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. i  y  x 2 y ii  y  x 3 y x x Only has an OR Has an inverse relationx  y2 inverse function y x NOT UNIQUE
  • 22. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. i  y  x 2 y ii  y  x 3 y x x Only has an OR OR Has an inverse relationx  y2 x  y3 inverse function y x y3 x NOT UNIQUE
  • 23. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. i  y  x 2 y ii  y  x 3 y x x Only has an OR OR Has an inverse relationx  y2 x  y3 inverse function y x y3 x NOT UNIQUE UNIQUE
  • 24. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x
  • 25. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. x2 f  x  x2
  • 26. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. x2 f  x  x2 x2 y2 y x x2 y2
  • 27. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. x2 f  x  x2 x2 y2 y x x2 y2  y  2 x  y  2 xy  2 x  y  2  x  1 y  2 x  2 2x  2 y 1 x
  • 28. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. x2  x22 f  x  2  x2 x 2 f 1  f  x     x2 x2 y2 1    y x  x 2 x2 y2  y  2 x  y  2 xy  2 x  y  2  x  1 y  2 x  2 2x  2 y 1 x
  • 29. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. x2  x22 f  x  2  x2 x 2 f 1  f  x     x2 x2 y2 1   y x  x 2 x2 y2 2x  4  2x  4  y  2 x  y  2  x2 x2 xy  2 x  y  2 4x  x  1 y  2 x  2  4 2x  2 x y 1 x
  • 30. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. x2  x22  2x  2   2 f  x  2    x2 x 2 1 x  f 1  f  x     f  f 1  x     x2  2x  2   2 x2 y2 1     y x  x 2  1 x  x2 y2 2x  4  2x  4  y  2 x  y  2  x2 x2 xy  2 x  y  2 4x  x  1 y  2 x  2  4 2x  2 x y 1 x
  • 31. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. x2  x22  2x  2   2 f  x  2    x2 x 2 1 x  f 1  f  x     f  f 1  x     x2  2x  2   2 x2 y2 1     y x  x 2  1 x  x2 y2 2x  4  2x  4 2x  2  2  2x  y  2 x  y  2   x2 x2 2x  2  2  2x xy  2 x  y  2 4x 4x  x  1 y  2 x  2   4 4 2x  2 x x y 1 x
  • 32. (ii) Draw the inverse relation y x
  • 33. (ii) Draw the inverse relation y x
  • 34. (ii) Draw the inverse relation y x
  • 35. (ii) Draw the inverse relation y x Exercise 2H; 1aceg, 2, 3bdf, 5ac, 6bd, 7ac, 9bde, 10adfhj