SlideShare a Scribd company logo
Inverse Relations
Inverse Relations
If y = f(x) is a relation, then the inverse relation obtained by
interchanging x and y is x = f(y)
e.g. y  x 3  x      inverse relation is x  y 3  y
Inverse Relations
If y = f(x) is a relation, then the inverse relation obtained by
interchanging x and y is x = f(y)
e.g. y  x 3  x      inverse relation is x  y 3  y

The domain of the relation is the range of its inverse relation
Inverse Relations
If y = f(x) is a relation, then the inverse relation obtained by
interchanging x and y is x = f(y)
e.g. y  x 3  x      inverse relation is x  y 3  y

The domain of the relation is the range of its inverse relation
The range of the relation is the domain of its inverse relation
Inverse Relations
If y = f(x) is a relation, then the inverse relation obtained by
interchanging x and y is x = f(y)
e.g. y  x 3  x      inverse relation is x  y 3  y

The domain of the relation is the range of its inverse relation
The range of the relation is the domain of its inverse relation
A relation and its inverse relation are reflections of each other in
the line y = x.
Inverse Relations
If y = f(x) is a relation, then the inverse relation obtained by
interchanging x and y is x = f(y)
e.g. y  x 3  x      inverse relation is x  y 3  y

The domain of the relation is the range of its inverse relation
The range of the relation is the domain of its inverse relation
A relation and its inverse relation are reflections of each other in
the line y = x.
    e.g. y  x 2
Inverse Relations
If y = f(x) is a relation, then the inverse relation obtained by
interchanging x and y is x = f(y)
e.g. y  x 3  x      inverse relation is x  y 3  y

The domain of the relation is the range of its inverse relation
The range of the relation is the domain of its inverse relation
A relation and its inverse relation are reflections of each other in
the line y = x.
    e.g. y  x 2
  domain: all real x
    range: y  0
Inverse Relations
If y = f(x) is a relation, then the inverse relation obtained by
interchanging x and y is x = f(y)
e.g. y  x 3  x      inverse relation is x  y 3  y

The domain of the relation is the range of its inverse relation
The range of the relation is the domain of its inverse relation
A relation and its inverse relation are reflections of each other in
the line y = x.
    e.g. y  x 2               inverse relation: x  y 2
  domain: all real x
    range: y  0
Inverse Relations
If y = f(x) is a relation, then the inverse relation obtained by
interchanging x and y is x = f(y)
e.g. y  x 3  x      inverse relation is x  y 3  y

The domain of the relation is the range of its inverse relation
The range of the relation is the domain of its inverse relation
A relation and its inverse relation are reflections of each other in
the line y = x.
    e.g. y  x 2               inverse relation: x  y 2
  domain: all real x                  domain: x  0
    range: y  0                         range: all real y
Inverse Functions
Inverse Functions
If an inverse relation of a function, is a function, then it is called
an inverse function.
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
   i  y  x 2 y



                               x
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
   i  y  x 2 y



                               x
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
   i  y  x 2 y



                               x
Only has an
inverse relation
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
   i  y  x 2 y



                               x
Only has an             OR
inverse relation       x  y2
                       y x
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
   i  y  x 2 y



                               x
Only has an      OR
inverse relationx  y2
                y x
        NOT UNIQUE
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
   i  y  x 2 y                         ii  y  x 3          y



                               x                                           x
Only has an      OR
inverse relationx  y2
                y x
        NOT UNIQUE
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
   i  y  x 2 y                         ii  y  x 3          y



                               x                                           x
Only has an      OR
inverse relationx  y2
                y x
        NOT UNIQUE
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
   i  y  x 2 y                         ii  y  x 3          y



                               x                                           x
Only has an      OR
                                               Has an
inverse relationx  y2
                                               inverse function
                y x
        NOT UNIQUE
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
   i  y  x 2 y                         ii  y  x 3          y



                               x                                           x
Only has an      OR                                                    OR
                                               Has an
inverse relationx  y2                                                x  y3
                                               inverse function
                y x                                                 y3 x
        NOT UNIQUE
Inverse Functions
 If an inverse relation of a function, is a function, then it is called
 an inverse function.
Testing For Inverse Functions
(1) Use a horizontal line test OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
   i  y  x 2 y                         ii  y  x 3          y



                               x                                           x
Only has an      OR                                                OR
                                               Has an
inverse relationx  y2                                           x  y3
                                               inverse function
                y x                                            y3 x
        NOT UNIQUE                                          UNIQUE
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
inverse function), then;

       f 1  f  x   x   AND       f  f 1  x   x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.             x2
        f  x 
                 x2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.             x2
        f  x 
                 x2
        x2     y2
y          x
        x2     y2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.             x2
        f  x 
                 x2
        x2     y2
y          x
        x2     y2
        y  2 x  y  2
         xy  2 x  y  2
         x  1 y  2 x  2
                     2x  2
                y
                     1 x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.             x2               x22
        f  x                  2      
                 x2                x 2
               f 1  f  x    
                                       x2
   x2     y2                    1 
                                          
y     x                            x 2
   x2     y2
        y  2 x  y  2
         xy  2 x  y  2
         x  1 y  2 x  2
                     2x  2
                y
                     1 x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.             x2                         x22
        f  x                           2       
                 x2                          x 2
                        f 1  f  x    
                                                 x2
   x2             y2                     1       
y         x                                  x 2
   x2             y2
                                          2x  4  2x  4
    y  2 x  y  2                   
                                           x2 x2
     xy  2 x  y  2
                                          4x
     x  1 y  2 x  2               
                                          4
                 2x  2                 x
             y
                  1 x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND        f  f 1  x   x

e.g.             x2                         x22                        2x  2   2
        f  x                           2                                      
                 x2                          x 2                          1 x 
                        f 1  f  x                f  f 1  x    
                                                 x2                       2x  2   2
   x2             y2                     1                                   
y         x                                  x 2                      1 x 
   x2             y2
                                          2x  4  2x  4
    y  2 x  y  2                   
                                           x2 x2
     xy  2 x  y  2
                                          4x
     x  1 y  2 x  2               
                                          4
                 2x  2                 x
             y
                  1 x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND        f  f 1  x   x

e.g.             x2                         x22                        2x  2   2
        f  x                           2                                      
                 x2                          x 2                          1 x 
                        f 1  f  x                f  f 1  x    
                                                 x2                       2x  2   2
   x2             y2                     1                                   
y         x                                  x 2                      1 x 
   x2             y2
                                          2x  4  2x  4                2x  2  2  2x
    y  2 x  y  2                                               
                                           x2 x2                      2x  2  2  2x
     xy  2 x  y  2
                                          4x                             4x
     x  1 y  2 x  2                                           
                                          4                              4
                 2x  2                 x                           x
             y
                  1 x
(ii) Draw the inverse relation
                             y




                                 x
(ii) Draw the inverse relation
                             y




                                 x
(ii) Draw the inverse relation
                             y




                                 x
(ii) Draw the inverse relation
                             y




                                            x




      Exercise 2H; 1aceg, 2, 3bdf, 5ac, 6bd, 7ac, 9bde, 10adfhj

More Related Content

Viewers also liked

11X1 T10 04 sums of a sequence
11X1 T10 04 sums of a sequence11X1 T10 04 sums of a sequence
11X1 T10 04 sums of a sequence
Nigel Simmons
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factors
Nigel Simmons
 
12X1 T04 02 Finance Formulas (2010)
12X1 T04 02 Finance Formulas (2010)12X1 T04 02 Finance Formulas (2010)
12X1 T04 02 Finance Formulas (2010)
Nigel Simmons
 
11 X1 T02 05 surdic equalities (2010)
11 X1 T02 05 surdic equalities (2010)11 X1 T02 05 surdic equalities (2010)
11 X1 T02 05 surdic equalities (2010)Nigel Simmons
 
12X1 T09 04 permutations II
12X1 T09 04 permutations II12X1 T09 04 permutations II
12X1 T09 04 permutations II
Nigel Simmons
 
X2 T05 07 Quadratic Denominators
X2 T05 07 Quadratic DenominatorsX2 T05 07 Quadratic Denominators
X2 T05 07 Quadratic Denominators
Nigel Simmons
 
12X1 T09 06 probability & counting techniques
12X1 T09 06 probability & counting techniques12X1 T09 06 probability & counting techniques
12X1 T09 06 probability & counting techniques
Nigel Simmons
 
Probability
ProbabilityProbability
Probability
Emmanuel Alimpolos
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 

Viewers also liked (9)

11X1 T10 04 sums of a sequence
11X1 T10 04 sums of a sequence11X1 T10 04 sums of a sequence
11X1 T10 04 sums of a sequence
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factors
 
12X1 T04 02 Finance Formulas (2010)
12X1 T04 02 Finance Formulas (2010)12X1 T04 02 Finance Formulas (2010)
12X1 T04 02 Finance Formulas (2010)
 
11 X1 T02 05 surdic equalities (2010)
11 X1 T02 05 surdic equalities (2010)11 X1 T02 05 surdic equalities (2010)
11 X1 T02 05 surdic equalities (2010)
 
12X1 T09 04 permutations II
12X1 T09 04 permutations II12X1 T09 04 permutations II
12X1 T09 04 permutations II
 
X2 T05 07 Quadratic Denominators
X2 T05 07 Quadratic DenominatorsX2 T05 07 Quadratic Denominators
X2 T05 07 Quadratic Denominators
 
12X1 T09 06 probability & counting techniques
12X1 T09 06 probability & counting techniques12X1 T09 06 probability & counting techniques
12X1 T09 06 probability & counting techniques
 
Probability
ProbabilityProbability
Probability
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 

Similar to 11 X1 T02 08 inverse functions (2010)

12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)
Nigel Simmons
 
12X1 05 01 inverse functions (2011)
12X1 05 01 inverse functions (2011)12X1 05 01 inverse functions (2011)
12X1 05 01 inverse functions (2011)
Nigel Simmons
 
12 x1 t05 01 inverse functions (2012)
12 x1 t05 01 inverse functions (2012)12 x1 t05 01 inverse functions (2012)
12 x1 t05 01 inverse functions (2012)
Nigel Simmons
 
7.4 inverse functions
7.4 inverse functions7.4 inverse functions
7.4 inverse functions
hisema01
 
Inverse functions and relations
Inverse functions and relationsInverse functions and relations
Inverse functions and relations
Jessica Garcia
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
Matthew Leingang
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
Matthew Leingang
 
4.1 Inverse Functions
4.1 Inverse Functions4.1 Inverse Functions
4.1 Inverse Functions
smiller5
 
A27 4 inversefxns notes
A27 4 inversefxns notesA27 4 inversefxns notes
A27 4 inversefxns notes
vhiggins1
 
Chapter 1 (functions).
Chapter 1 (functions).Chapter 1 (functions).
Chapter 1 (functions).
Eko Wijayanto
 
1.9 Inverse Functions.ppt
1.9 Inverse Functions.ppt1.9 Inverse Functions.ppt
1.9 Inverse Functions.ppt
RACHELPAQUITCAADA
 
Jan. 6 Inverse Functions
Jan. 6 Inverse FunctionsJan. 6 Inverse Functions
Jan. 6 Inverse Functions
RyanWatt
 
4.1 Inverse Functions
4.1 Inverse Functions4.1 Inverse Functions
4.1 Inverse Functions
smiller5
 
Calc 5.3
Calc 5.3Calc 5.3
Calc 5.3
hartcher
 
Lesson 6.4
Lesson 6.4Lesson 6.4
Lesson 6.4
nscross40
 
2 7 Bzca5e
2 7 Bzca5e2 7 Bzca5e
2 7 Bzca5e
silvia
 
11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)
Nigel Simmons
 
11 x1 t02 06 relations & functions (2013)
11 x1 t02 06 relations & functions (2013)11 x1 t02 06 relations & functions (2013)
11 x1 t02 06 relations & functions (2013)
Nigel Simmons
 
11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)
Nigel Simmons
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
Jessica Garcia
 

Similar to 11 X1 T02 08 inverse functions (2010) (20)

12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)
 
12X1 05 01 inverse functions (2011)
12X1 05 01 inverse functions (2011)12X1 05 01 inverse functions (2011)
12X1 05 01 inverse functions (2011)
 
12 x1 t05 01 inverse functions (2012)
12 x1 t05 01 inverse functions (2012)12 x1 t05 01 inverse functions (2012)
12 x1 t05 01 inverse functions (2012)
 
7.4 inverse functions
7.4 inverse functions7.4 inverse functions
7.4 inverse functions
 
Inverse functions and relations
Inverse functions and relationsInverse functions and relations
Inverse functions and relations
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
 
4.1 Inverse Functions
4.1 Inverse Functions4.1 Inverse Functions
4.1 Inverse Functions
 
A27 4 inversefxns notes
A27 4 inversefxns notesA27 4 inversefxns notes
A27 4 inversefxns notes
 
Chapter 1 (functions).
Chapter 1 (functions).Chapter 1 (functions).
Chapter 1 (functions).
 
1.9 Inverse Functions.ppt
1.9 Inverse Functions.ppt1.9 Inverse Functions.ppt
1.9 Inverse Functions.ppt
 
Jan. 6 Inverse Functions
Jan. 6 Inverse FunctionsJan. 6 Inverse Functions
Jan. 6 Inverse Functions
 
4.1 Inverse Functions
4.1 Inverse Functions4.1 Inverse Functions
4.1 Inverse Functions
 
Calc 5.3
Calc 5.3Calc 5.3
Calc 5.3
 
Lesson 6.4
Lesson 6.4Lesson 6.4
Lesson 6.4
 
2 7 Bzca5e
2 7 Bzca5e2 7 Bzca5e
2 7 Bzca5e
 
11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)
 
11 x1 t02 06 relations & functions (2013)
11 x1 t02 06 relations & functions (2013)11 x1 t02 06 relations & functions (2013)
11 x1 t02 06 relations & functions (2013)
 
11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 

More from Nigel Simmons

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
simonomuemu
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
Celine George
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Excellence Foundation for South Sudan
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Dr. Vinod Kumar Kanvaria
 
Top five deadliest dog breeds in America
Top five deadliest dog breeds in AmericaTop five deadliest dog breeds in America
Top five deadliest dog breeds in America
Bisnar Chase Personal Injury Attorneys
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
Priyankaranawat4
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
thanhdowork
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
Celine George
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
mulvey2
 
Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
adhitya5119
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
eBook.com.bd (প্রয়োজনীয় বাংলা বই)
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
Nicholas Montgomery
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
Jean Carlos Nunes Paixão
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
TechSoup
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Akanksha trivedi rama nursing college kanpur.
 
Types of Herbal Cosmetics its standardization.
Types of Herbal Cosmetics its standardization.Types of Herbal Cosmetics its standardization.
Types of Herbal Cosmetics its standardization.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
Nguyen Thanh Tu Collection
 

Recently uploaded (20)

Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
 
Top five deadliest dog breeds in America
Top five deadliest dog breeds in AmericaTop five deadliest dog breeds in America
Top five deadliest dog breeds in America
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
 
Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
 
Types of Herbal Cosmetics its standardization.
Types of Herbal Cosmetics its standardization.Types of Herbal Cosmetics its standardization.
Types of Herbal Cosmetics its standardization.
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
 

11 X1 T02 08 inverse functions (2010)

  • 2. Inverse Relations If y = f(x) is a relation, then the inverse relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x inverse relation is x  y 3  y
  • 3. Inverse Relations If y = f(x) is a relation, then the inverse relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x inverse relation is x  y 3  y The domain of the relation is the range of its inverse relation
  • 4. Inverse Relations If y = f(x) is a relation, then the inverse relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x inverse relation is x  y 3  y The domain of the relation is the range of its inverse relation The range of the relation is the domain of its inverse relation
  • 5. Inverse Relations If y = f(x) is a relation, then the inverse relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x inverse relation is x  y 3  y The domain of the relation is the range of its inverse relation The range of the relation is the domain of its inverse relation A relation and its inverse relation are reflections of each other in the line y = x.
  • 6. Inverse Relations If y = f(x) is a relation, then the inverse relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x inverse relation is x  y 3  y The domain of the relation is the range of its inverse relation The range of the relation is the domain of its inverse relation A relation and its inverse relation are reflections of each other in the line y = x. e.g. y  x 2
  • 7. Inverse Relations If y = f(x) is a relation, then the inverse relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x inverse relation is x  y 3  y The domain of the relation is the range of its inverse relation The range of the relation is the domain of its inverse relation A relation and its inverse relation are reflections of each other in the line y = x. e.g. y  x 2 domain: all real x range: y  0
  • 8. Inverse Relations If y = f(x) is a relation, then the inverse relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x inverse relation is x  y 3  y The domain of the relation is the range of its inverse relation The range of the relation is the domain of its inverse relation A relation and its inverse relation are reflections of each other in the line y = x. e.g. y  x 2 inverse relation: x  y 2 domain: all real x range: y  0
  • 9. Inverse Relations If y = f(x) is a relation, then the inverse relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x inverse relation is x  y 3  y The domain of the relation is the range of its inverse relation The range of the relation is the domain of its inverse relation A relation and its inverse relation are reflections of each other in the line y = x. e.g. y  x 2 inverse relation: x  y 2 domain: all real x domain: x  0 range: y  0 range: all real y
  • 11. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function.
  • 12. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test
  • 13. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
  • 14. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. i  y  x 2 y x
  • 15. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. i  y  x 2 y x
  • 16. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. i  y  x 2 y x Only has an inverse relation
  • 17. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. i  y  x 2 y x Only has an OR inverse relation x  y2 y x
  • 18. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. i  y  x 2 y x Only has an OR inverse relationx  y2 y x NOT UNIQUE
  • 19. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. i  y  x 2 y ii  y  x 3 y x x Only has an OR inverse relationx  y2 y x NOT UNIQUE
  • 20. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. i  y  x 2 y ii  y  x 3 y x x Only has an OR inverse relationx  y2 y x NOT UNIQUE
  • 21. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. i  y  x 2 y ii  y  x 3 y x x Only has an OR Has an inverse relationx  y2 inverse function y x NOT UNIQUE
  • 22. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. i  y  x 2 y ii  y  x 3 y x x Only has an OR OR Has an inverse relationx  y2 x  y3 inverse function y x y3 x NOT UNIQUE
  • 23. Inverse Functions If an inverse relation of a function, is a function, then it is called an inverse function. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. i  y  x 2 y ii  y  x 3 y x x Only has an OR OR Has an inverse relationx  y2 x  y3 inverse function y x y3 x NOT UNIQUE UNIQUE
  • 24. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x
  • 25. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. x2 f  x  x2
  • 26. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. x2 f  x  x2 x2 y2 y x x2 y2
  • 27. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. x2 f  x  x2 x2 y2 y x x2 y2  y  2 x  y  2 xy  2 x  y  2  x  1 y  2 x  2 2x  2 y 1 x
  • 28. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. x2  x22 f  x  2  x2 x 2 f 1  f  x     x2 x2 y2 1    y x  x 2 x2 y2  y  2 x  y  2 xy  2 x  y  2  x  1 y  2 x  2 2x  2 y 1 x
  • 29. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. x2  x22 f  x  2  x2 x 2 f 1  f  x     x2 x2 y2 1   y x  x 2 x2 y2 2x  4  2x  4  y  2 x  y  2  x2 x2 xy  2 x  y  2 4x  x  1 y  2 x  2  4 2x  2 x y 1 x
  • 30. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. x2  x22  2x  2   2 f  x  2    x2 x 2 1 x  f 1  f  x     f  f 1  x     x2  2x  2   2 x2 y2 1     y x  x 2  1 x  x2 y2 2x  4  2x  4  y  2 x  y  2  x2 x2 xy  2 x  y  2 4x  x  1 y  2 x  2  4 2x  2 x y 1 x
  • 31. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. x2  x22  2x  2   2 f  x  2    x2 x 2 1 x  f 1  f  x     f  f 1  x     x2  2x  2   2 x2 y2 1     y x  x 2  1 x  x2 y2 2x  4  2x  4 2x  2  2  2x  y  2 x  y  2   x2 x2 2x  2  2  2x xy  2 x  y  2 4x 4x  x  1 y  2 x  2   4 4 2x  2 x x y 1 x
  • 32. (ii) Draw the inverse relation y x
  • 33. (ii) Draw the inverse relation y x
  • 34. (ii) Draw the inverse relation y x
  • 35. (ii) Draw the inverse relation y x Exercise 2H; 1aceg, 2, 3bdf, 5ac, 6bd, 7ac, 9bde, 10adfhj