SlideShare a Scribd company logo
Harder Extension 1
   Circle Geometry
Harder Extension 1
                Circle Geometry
Converse Circle Theorems
Harder Extension 1
                Circle Geometry
Converse Circle Theorems
(1) The circle whose diameter is the hypotenuse of a right angled
    triangle passes through the third vertex.
Harder Extension 1
                Circle Geometry
Converse Circle Theorems
(1) The circle whose diameter is the hypotenuse of a right angled
    triangle passes through the third vertex.
          C


  A                 B
Harder Extension 1
                Circle Geometry
Converse Circle Theorems
(1) The circle whose diameter is the hypotenuse of a right angled
    triangle passes through the third vertex.
          C
                          ABC are concyclic with AB diameter

  A                 B
Harder Extension 1
                Circle Geometry
Converse Circle Theorems
(1) The circle whose diameter is the hypotenuse of a right angled
    triangle passes through the third vertex.
          C
                          ABC are concyclic with AB diameter
                                 in a semicircle  90 
                                                       

  A                 B
Harder Extension 1
                Circle Geometry
Converse Circle Theorems
(1) The circle whose diameter is the hypotenuse of a right angled
    triangle passes through the third vertex.
          C
                          ABC are concyclic with AB diameter
                                 in a semicircle  90 
                                                       

   A                  B
(2) If an interval AB subtends the same angle at two points P and Q on
     the same side of AB, then A,B,P,Q are concyclic.
Harder Extension 1
                Circle Geometry
Converse Circle Theorems
(1) The circle whose diameter is the hypotenuse of a right angled
    triangle passes through the third vertex.
          C
                          ABC are concyclic with AB diameter
                                 in a semicircle  90 
                                                       

   A                  B
(2) If an interval AB subtends the same angle at two points P and Q on
     the same side of AB, then A,B,P,Q are concyclic.
       P            Q
              

  A                  B
Harder Extension 1
                Circle Geometry
Converse Circle Theorems
(1) The circle whose diameter is the hypotenuse of a right angled
    triangle passes through the third vertex.
          C
                          ABC are concyclic with AB diameter
                                 in a semicircle  90 
                                                       

   A                  B
(2) If an interval AB subtends the same angle at two points P and Q on
     the same side of AB, then A,B,P,Q are concyclic.
       P            Q
                            ABQP is a cyclic quadrilateral

  A                  B
Harder Extension 1
                Circle Geometry
Converse Circle Theorems
(1) The circle whose diameter is the hypotenuse of a right angled
    triangle passes through the third vertex.
          C
                          ABC are concyclic with AB diameter
                                 in a semicircle  90 
                                                       

   A                  B
(2) If an interval AB subtends the same angle at two points P and Q on
     the same side of AB, then A,B,P,Q are concyclic.
       P            Q
                            ABQP is a cyclic quadrilateral
                                s in same segment are  
   A                   B
(3) If a pair of opposite angles in a quadrilateral are supplementary (or
     if an exterior angle equals the opposite interior angle) then the
     quadrilateral is cyclic.
(3) If a pair of opposite angles in a quadrilateral are supplementary (or
     if an exterior angle equals the opposite interior angle) then the
     quadrilateral is cyclic.


The Four Centres Of A Triangle
(3) If a pair of opposite angles in a quadrilateral are supplementary (or
     if an exterior angle equals the opposite interior angle) then the
     quadrilateral is cyclic.


The Four Centres Of A Triangle
(1) The angle bisectors of the vertices are concurrent at the incentre
    which is the centre of the incircle, tangent to all three sides.
(3) If a pair of opposite angles in a quadrilateral are supplementary (or
     if an exterior angle equals the opposite interior angle) then the
     quadrilateral is cyclic.


The Four Centres Of A Triangle
(1) The angle bisectors of the vertices are concurrent at the incentre
    which is the centre of the incircle, tangent to all three sides.
(3) If a pair of opposite angles in a quadrilateral are supplementary (or
     if an exterior angle equals the opposite interior angle) then the
     quadrilateral is cyclic.


The Four Centres Of A Triangle
(1) The angle bisectors of the vertices are concurrent at the incentre
    which is the centre of the incircle, tangent to all three sides.

                                        
                                         
               incentre
                                    
(3) If a pair of opposite angles in a quadrilateral are supplementary (or
     if an exterior angle equals the opposite interior angle) then the
     quadrilateral is cyclic.


The Four Centres Of A Triangle
(1) The angle bisectors of the vertices are concurrent at the incentre
    which is the centre of the incircle, tangent to all three sides.

                                        
                                         
               incentre                           incircle
                                    
(2) The perpendicular bisectors of the sides are concurrent at the
    circumcentre which is the centre of the circumcircle, passing
    through all three vertices.
(2) The perpendicular bisectors of the sides are concurrent at the
    circumcentre which is the centre of the circumcircle, passing
    through all three vertices.
(2) The perpendicular bisectors of the sides are concurrent at the
    circumcentre which is the centre of the circumcircle, passing
    through all three vertices.




       circumcentre
(2) The perpendicular bisectors of the sides are concurrent at the
    circumcentre which is the centre of the circumcircle, passing
    through all three vertices.




       circumcentre
                                                 circumcircle
(2) The perpendicular bisectors of the sides are concurrent at the
    circumcentre which is the centre of the circumcircle, passing
    through all three vertices.




       circumcentre
                                                 circumcircle
(3) The medians are concurrent at the centroid, and the centroid trisects
    each median.
(2) The perpendicular bisectors of the sides are concurrent at the
    circumcentre which is the centre of the circumcircle, passing
    through all three vertices.




       circumcentre
                                                 circumcircle
(3) The medians are concurrent at the centroid, and the centroid trisects
    each median.
(2) The perpendicular bisectors of the sides are concurrent at the
    circumcentre which is the centre of the circumcircle, passing
    through all three vertices.




       circumcentre
                                                 circumcircle
(3) The medians are concurrent at the centroid, and the centroid trisects
    each median.




            centroid
(4) The altitudes are concurrent at the orthocentre.
(4) The altitudes are concurrent at the orthocentre.
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
            a     b     c
                           diameter if circumcircle
          sin A sin B sin C
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
               a     b     c
                              diameter if circumcircle
             sin A sin B sin C
Proof:            A



                          B


         C
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
               a     b     c
                              diameter if circumcircle
             sin A sin B sin C
Proof:            A
                      P


                 O        B


         C
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
               a     b     c
                              diameter if circumcircle
             sin A sin B sin C
Proof:            A            A  P          in same segment 
                      P


                 O        B


         C
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
               a     b     c
                              diameter if circumcircle
             sin A sin B sin C
Proof:            A              A  P        in same segment 
                      P
                              sin A  sin P


                 O        B


         C
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
               a     b     c
                              diameter if circumcircle
             sin A sin B sin C
Proof:            A              A  P        in same segment 
                      P
                              sin A  sin P
                              PBC  90
                 O        B


         C
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
               a     b     c
                              diameter if circumcircle
             sin A sin B sin C
Proof:            A              A  P        in same segment 
                      P
                              sin A  sin P
                              PBC  90        in semicircle  90 
                                                                    


                 O        B


         C
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
               a     b     c
                              diameter if circumcircle
             sin A sin B sin C
Proof:            A            A  P          in same segment 
                      P
                            sin A  sin P
                            PBC  90          in semicircle  90 
                                                                    

                              BC
                 O        B       sin P
                              PC

         C
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
               a     b     c
                              diameter if circumcircle
             sin A sin B sin C
Proof:            A            A  P          in same segment 
                      P
                            sin A  sin P
                            PBC  90          in semicircle  90 
                                                                    

                               BC
                 O        B         sin P
                               PC
                              BC
                                    PC
         C                   sin P
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
               a     b     c
                              diameter if circumcircle
             sin A sin B sin C
Proof:            A            A  P          in same segment 
                      P
                            sin A  sin P
                            PBC  90          in semicircle  90 
                                                                    

                               BC
                 O        B         sin P
                               PC
                              BC                          BC
                                    PC            PC 
                             sin P                       sin A
         C
e.g. (1990)




In the diagram, AB is a fixed chord of a circle, P a variable point in the
circle and AC and BD are perpendicular to BP and AP respectively.
e.g. (1990)




In the diagram, AB is a fixed chord of a circle, P a variable point in the
circle and AC and BD are perpendicular to BP and AP respectively.
(i) Show that ABCD is a cyclic quadrilateral on a circle with AB as
    diameter.
e.g. (1990)




In the diagram, AB is a fixed chord of a circle, P a variable point in the
circle and AC and BD are perpendicular to BP and AP respectively.
(i) Show that ABCD is a cyclic quadrilateral on a circle with AB as
    diameter.
    BDA  ACB  90
e.g. (1990)




In the diagram, AB is a fixed chord of a circle, P a variable point in the
circle and AC and BD are perpendicular to BP and AP respectively.
(i) Show that ABCD is a cyclic quadrilateral on a circle with AB as
    diameter.
    BDA  ACB  90                      given 
e.g. (1990)




In the diagram, AB is a fixed chord of a circle, P a variable point in the
circle and AC and BD are perpendicular to BP and AP respectively.
(i) Show that ABCD is a cyclic quadrilateral on a circle with AB as
    diameter.
   BDA  ACB  90                       given 
   ABCD is a cyclic quadrilateral
e.g. (1990)




In the diagram, AB is a fixed chord of a circle, P a variable point in the
circle and AC and BD are perpendicular to BP and AP respectively.
(i) Show that ABCD is a cyclic quadrilateral on a circle with AB as
    diameter.
   BDA  ACB  90                       given 
   ABCD is a cyclic quadrilateral         s in same segment are 
e.g. (1990)




In the diagram, AB is a fixed chord of a circle, P a variable point in the
circle and AC and BD are perpendicular to BP and AP respectively.
(i) Show that ABCD is a cyclic quadrilateral on a circle with AB as
    diameter.
   BDA  ACB  90                        given 
   ABCD is a cyclic quadrilateral          s in same segment are 
  AB is diameter as  in semicircle  90
(ii) Show that triangles PCD and APB are similar
(ii) Show that triangles PCD and APB are similar
      APB  DPC
(ii) Show that triangles PCD and APB are similar
      APB  DPC                       common s 
(ii) Show that triangles PCD and APB are similar
      APB  DPC                       common s 
      PDC  PBA
(ii) Show that triangles PCD and APB are similar
      APB  DPC                       common s 
      PDC  PBA                       exterior cyclic quadrilateral
(ii) Show that triangles PCD and APB are similar
      APB  DPC                       common s 
      PDC  PBA                       exterior cyclic quadrilateral
     PDC ||| PBA
(ii) Show that triangles PCD and APB are similar
      APB  DPC                       common s 
      PDC  PBA                       exterior cyclic quadrilateral
     PDC ||| PBA                     equiangular 
(iii) Show that as P varies, the segment CD has constant length.
P                                               P




  A                B                              C                D
(iii) Show that as P varies, the segment CD has constant length.
P                                               P




  A                B                              C                D
(iii) Show that as P varies, the segment CD has constant length.
          CD PC
              
          AB AP
P                                                   P




  A                  B                             C                     D
(iii) Show that as P varies, the segment CD has constant length.
          CD PC
                                         ratio of sides in ||| s 
          AB AP
P                                                   P




  A                  B                             C                     D
(iii) Show that as P varies, the segment CD has constant length.
          CD PC
                                         ratio of sides in ||| s 
          AB AP
          PC
In PCA,       cos P
          AP
P                                                   P




  A                  B                             C                     D
(iii) Show that as P varies, the segment CD has constant length.
          CD PC
                                         ratio of sides in ||| s 
          AB AP
          PC
In PCA,       cos P
          AP
          CD
              cos P
          AB
P                                                   P




  A                  B                             C                     D
(iii) Show that as P varies, the segment CD has constant length.
          CD PC
                                         ratio of sides in ||| s 
          AB AP
          PC
In PCA,       cos P
          AP
          CD
              cos P
          AB
          CD  AB cos P
P                                                   P




  A                  B                             C                     D
(iii) Show that as P varies, the segment CD has constant length.
          CD PC
                                         ratio of sides in ||| s 
          AB AP
          PC
In PCA,       cos P
          AP
          CD
              cos P
          AB
          CD  AB cos P
    Now, P is constant
P                                                 P




  A                 B                              C                   D
(iii) Show that as P varies, the segment CD has constant length.
          CD PC
                                         ratio of sides in ||| s 
          AB AP
          PC
In PCA,       cos P
          AP
          CD
              cos P
          AB
          CD  AB cos P
    Now, P is constant                   s in same segment are 
P                                                 P




  A                 B                              C                   D
(iii) Show that as P varies, the segment CD has constant length.
          CD PC
                                         ratio of sides in ||| s 
           AB AP
          PC
In PCA,       cos P
          AP
          CD
              cos P
           AB
          CD  AB cos P
    Now, P is constant                   s in same segment are 
         and AB is fixed
P                                                 P




  A                 B                              C                   D
(iii) Show that as P varies, the segment CD has constant length.
          CD PC
                                         ratio of sides in ||| s 
           AB AP
          PC
In PCA,       cos P
          AP
          CD
              cos P
           AB
          CD  AB cos P
    Now, P is constant                   s in same segment are 
         and AB is fixed                  given 
P                                                 P




  A                 B                              C                   D
(iii) Show that as P varies, the segment CD has constant length.
          CD PC
                                         ratio of sides in ||| s 
           AB AP
          PC
In PCA,       cos P
          AP
          CD
              cos P
           AB
          CD  AB cos P
    Now, P is constant                   s in same segment are 
         and AB is fixed                  given 
       CD is constant
(iv) Find the locus of the midpoint of CD.
(iv) Find the locus of the midpoint of CD.
   ABCD is a cyclic quadrilateral with AB diameter.
       D             C


  A                       B
(iv) Find the locus of the midpoint of CD.
   ABCD is a cyclic quadrilateral with AB diameter.
            M
     D             C            Let M be the midpoint of CD


  A                       B
(iv) Find the locus of the midpoint of CD.
   ABCD is a cyclic quadrilateral with AB diameter.
            M
     D             C            Let M be the midpoint of CD
                                O is the midpoint of AB

  A                       B
             O
(iv) Find the locus of the midpoint of CD.
   ABCD is a cyclic quadrilateral with AB diameter.
            M
     D             C            Let M be the midpoint of CD
                                O is the midpoint of AB
                                OM is constant
  A                       B
             O
(iv) Find the locus of the midpoint of CD.
   ABCD is a cyclic quadrilateral with AB diameter.
            M
     D             C            Let M be the midpoint of CD
                                O is the midpoint of AB
                                OM is constant
  A
             O
                          B
                                chords are equidistant from the centre
(iv) Find the locus of the midpoint of CD.
   ABCD is a cyclic quadrilateral with AB diameter.
            M
     D             C            Let M be the midpoint of CD
                                  O is the midpoint of AB
                                  OM is constant
  A
             O
                          B
                                  chords are equidistant from the centre
 M is a fixed distance from O
(iv) Find the locus of the midpoint of CD.
   ABCD is a cyclic quadrilateral with AB diameter.
            M
     D             C            Let M be the midpoint of CD
                                  O is the midpoint of AB
                                  OM is constant
  A
             O
                          B
                                  chords are equidistant from the centre
 M is a fixed distance from O
  OM 2  OC 2  MC 2
(iv) Find the locus of the midpoint of CD.
   ABCD is a cyclic quadrilateral with AB diameter.
            M
     D             C            Let M be the midpoint of CD
                                  O is the midpoint of AB
                                  OM is constant
  A
             O
                          B
                                  chords are equidistant from the centre
 M is a fixed distance from O
  OM 2  OC 2  MC 2
                 2             2
         1      1         
         AB    AB cos P 
         2      2         
         1         1
        AB  AB 2 cos 2 P
              2

         4         4
         1
        AB 2 sin 2 P
         4
(iv) Find the locus of the midpoint of CD.
   ABCD is a cyclic quadrilateral with AB diameter.
            M
     D             C            Let M be the midpoint of CD
                                  O is the midpoint of AB
                                  OM is constant
  A
             O
                          B
                                  chords are equidistant from the centre
 M is a fixed distance from O
  OM 2  OC 2  MC 2
                 2             2
         1      1         
         AB    AB cos P 
         2      2         
         1         1
        AB  AB 2 cos 2 P
              2

         4         4
         1
        AB 2 sin 2 P
         4
         1
  OM  AB sin P
         2
(iv) Find the locus of the midpoint of CD.
   ABCD is a cyclic quadrilateral with AB diameter.
            M
     D             C            Let M be the midpoint of CD
                                  O is the midpoint of AB
                                  OM is constant
  A
             O
                          B
                                  chords are equidistant from the centre
 M is a fixed distance from O              locus is circle, centre O
  OM 2  OC 2  MC 2                                     1
                 2             2             and radius  AB sin P
         1      1         
         AB    AB cos P                            2
         2      2         
         1         1
        AB  AB 2 cos 2 P
              2

         4         4
         1
        AB 2 sin 2 P
         4
         1
  OM  AB sin P
         2
2008 Extension 2 Question 7b)




In the diagram, the points P, Q and R lie on a circle. The tangent at P
and the secant QR intersect at T. The bisector of PQR meets QR at S
so that QPS  RPS   . The intervals RS, SQ and PT have lengths
a, b and c respectively.
2008 Extension 2 Question 7b)




In the diagram, the points P, Q and R lie on a circle. The tangent at P
and the secant QR intersect at T. The bisector of PQR meets QR at S
so that QPS  RPS   . The intervals RS, SQ and PT have lengths
a, b and c respectively.
(i) Show that TSP  TPS
2008 Extension 2 Question 7b)




In the diagram, the points P, Q and R lie on a circle. The tangent at P
and the secant QR intersect at T. The bisector of PQR meets QR at S
so that QPS  RPS   . The intervals RS, SQ and PT have lengths
a, b and c respectively.
(i) Show that TSP  TPS
   RQP  RPT
2008 Extension 2 Question 7b)




In the diagram, the points P, Q and R lie on a circle. The tangent at P
and the secant QR intersect at T. The bisector of PQR meets QR at S
so that QPS  RPS   . The intervals RS, SQ and PT have lengths
a, b and c respectively.
(i) Show that TSP  TPS
   RQP  RPT                           alternate segment theorem 
2008 Extension 2 Question 7b)




In the diagram, the points P, Q and R lie on a circle. The tangent at P
and the secant QR intersect at T. The bisector of PQR meets QR at S
so that QPS  RPS   . The intervals RS, SQ and PT have lengths
a, b and c respectively.
(i) Show that TSP  TPS
   RQP  RPT                           alternate segment theorem 
   TSP  RQP  SPQ
2008 Extension 2 Question 7b)




In the diagram, the points P, Q and R lie on a circle. The tangent at P
and the secant QR intersect at T. The bisector of PQR meets QR at S
so that QPS  RPS   . The intervals RS, SQ and PT have lengths
a, b and c respectively.
(i) Show that TSP  TPS
   RQP  RPT                           alternate segment theorem 
   TSP  RQP  SPQ                    exterior ,SPQ 
2008 Extension 2 Question 7b)




In the diagram, the points P, Q and R lie on a circle. The tangent at P
and the secant QR intersect at T. The bisector of PQR meets QR at S
so that QPS  RPS   . The intervals RS, SQ and PT have lengths
a, b and c respectively.
(i) Show that TSP  TPS
   RQP  RPT                           alternate segment theorem 
   TSP  RQP  SPQ                    exterior ,SPQ 
   TSP  RPT  
SPT  RPT  
SPT  RPT      common 
SPT  RPT      common 
SPT  TSP
SPT  RPT                    common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
SPT  RPT                    common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
SPT  RPT                                 common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles

           SPT  RPT  




                 2 = 's 
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles         2 = 's 



           SPT  RPT  
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles         2 = 's 
                                  ST  c



           SPT  RPT  
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles           2 = 's 
                                  ST  c           = sides in isosceles  


           SPT  RPT  
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles           2 = 's 
                                  ST  c           = sides in isosceles  
                             PT 2  QT  RT


           SPT  RPT  
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles           2 = 's 
                                  ST  c           = sides in isosceles  
                             PT 2  QT  RT
                              square of tangents=products of intercepts 
           SPT  RPT  
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles           2 = 's 
                                  ST  c           = sides in isosceles  
                              PT 2  QT  RT
                            square of tangents=products of intercepts 
           SPT  RPT                c 2   c  b  c  a 
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles           2 = 's 
                                  ST  c           = sides in isosceles  
                              PT 2  QT  RT
                            square of tangents=products of intercepts 
           SPT  RPT                c 2   c  b  c  a 
                                           c 2  c 2  ac  bc  ab
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles           2 = 's 
                                  ST  c           = sides in isosceles  
                              PT 2  QT  RT
                            square of tangents=products of intercepts 
           SPT  RPT                c 2   c  b  c  a 
                                           c 2  c 2  ac  bc  ab
                                           bc  ac  ab
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles           2 = 's 
                                  ST  c           = sides in isosceles  
                              PT 2  QT  RT
                            square of tangents=products of intercepts 
           SPT  RPT                c 2   c  b  c  a 
                                           c 2  c 2  ac  bc  ab
                                           bc  ac  ab
                                            1 1 1
                                              
                                            a b c
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles           2 = 's 
                                  ST  c           = sides in isosceles  
                              PT 2  QT  RT
                            square of tangents=products of intercepts 
           SPT  RPT                c 2   c  b  c  a 
                                           c 2  c 2  ac  bc  ab
                                           bc  ac  ab
         Past HSC Papers                    1 1 1
                                              
                                            a b c
          Exercise 10C*

More Related Content

What's hot

Triangles
TrianglesTriangles
Triangles
Nishant Rohatgi
 
areas of triangles and parallelograms
areas of triangles and parallelogramsareas of triangles and parallelograms
areas of triangles and parallelograms
AkshitBhateja
 
R.TANUJ Maths Triangles for Class IX
R.TANUJ Maths Triangles for Class IXR.TANUJ Maths Triangles for Class IX
R.TANUJ Maths Triangles for Class IX
Tanuj Rajkumar
 
Area of triangles and IIgm
Area of triangles and IIgmArea of triangles and IIgm
Area of triangles and IIgm
Haniesh Juneja
 
GE 4.3 proving triangles congruent 12-2
GE 4.3 proving triangles congruent   12-2GE 4.3 proving triangles congruent   12-2
GE 4.3 proving triangles congruent 12-2
bbarch
 
Spherical trigonometry
Spherical trigonometrySpherical trigonometry
Spherical trigonometry
Solo Hermelin
 
Maths sa 2 synopsis
Maths sa 2 synopsisMaths sa 2 synopsis
Maths sa 2 synopsis
Abdallahawesome
 
Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...
Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...
Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...
Harish Chandra Rajpoot
 
Triangles class 9 Introduction 2
Triangles class 9 Introduction 2Triangles class 9 Introduction 2
Triangles class 9 Introduction 2
Kanchan Shende
 
Triangle
TriangleTriangle
Triangle
RitikaKainth
 
Gch8 l2
Gch8 l2Gch8 l2
Geometry unit 4.6
Geometry unit 4.6Geometry unit 4.6
Geometry unit 4.6
Mark Ryder
 
Slideshare
SlideshareSlideshare
Slideshare
letsenjoy
 
spherical triangles
spherical trianglesspherical triangles
spherical triangles
Arjuna Senanayake
 

What's hot (14)

Triangles
TrianglesTriangles
Triangles
 
areas of triangles and parallelograms
areas of triangles and parallelogramsareas of triangles and parallelograms
areas of triangles and parallelograms
 
R.TANUJ Maths Triangles for Class IX
R.TANUJ Maths Triangles for Class IXR.TANUJ Maths Triangles for Class IX
R.TANUJ Maths Triangles for Class IX
 
Area of triangles and IIgm
Area of triangles and IIgmArea of triangles and IIgm
Area of triangles and IIgm
 
GE 4.3 proving triangles congruent 12-2
GE 4.3 proving triangles congruent   12-2GE 4.3 proving triangles congruent   12-2
GE 4.3 proving triangles congruent 12-2
 
Spherical trigonometry
Spherical trigonometrySpherical trigonometry
Spherical trigonometry
 
Maths sa 2 synopsis
Maths sa 2 synopsisMaths sa 2 synopsis
Maths sa 2 synopsis
 
Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...
Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...
Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...
 
Triangles class 9 Introduction 2
Triangles class 9 Introduction 2Triangles class 9 Introduction 2
Triangles class 9 Introduction 2
 
Triangle
TriangleTriangle
Triangle
 
Gch8 l2
Gch8 l2Gch8 l2
Gch8 l2
 
Geometry unit 4.6
Geometry unit 4.6Geometry unit 4.6
Geometry unit 4.6
 
Slideshare
SlideshareSlideshare
Slideshare
 
spherical triangles
spherical trianglesspherical triangles
spherical triangles
 

Viewers also liked

12X1 T04 02 growth & decay (2011)
12X1 T04 02 growth & decay (2011)12X1 T04 02 growth & decay (2011)
12X1 T04 02 growth & decay (2011)
Nigel Simmons
 
X2 T07 07 other graphs (2011)
X2 T07 07 other graphs (2011)X2 T07 07 other graphs (2011)
X2 T07 07 other graphs (2011)
Nigel Simmons
 
11X1 T12 03 parametric coordinates (2011)
11X1 T12 03 parametric coordinates (2011)11X1 T12 03 parametric coordinates (2011)
11X1 T12 03 parametric coordinates (2011)
Nigel Simmons
 
11X1 T13 01 definitions & chord theorems (2011)
11X1 T13 01 definitions & chord theorems (2011)11X1 T13 01 definitions & chord theorems (2011)
11X1 T13 01 definitions & chord theorems (2011)
Nigel Simmons
 
12X1 T03 03 differentiating trig (2011)
12X1 T03 03 differentiating trig (2011)12X1 T03 03 differentiating trig (2011)
12X1 T03 03 differentiating trig (2011)Nigel Simmons
 
11X1 T07 08 products to sums etc (2011)
11X1 T07 08 products to sums etc (2011)11X1 T07 08 products to sums etc (2011)
11X1 T07 08 products to sums etc (2011)Nigel Simmons
 
X2 T04 04 reduction formula (2011)
X2 T04 04 reduction formula (2011)X2 T04 04 reduction formula (2011)
X2 T04 04 reduction formula (2011)
Nigel Simmons
 
11X1 T14 02 geometric series (2011)
11X1 T14 02 geometric series (2011)11X1 T14 02 geometric series (2011)
11X1 T14 02 geometric series (2011)
Nigel Simmons
 
X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)
Nigel Simmons
 
11X1 T07 03 angle between two lines (2011)
11X1 T07 03 angle between two lines (2011)11X1 T07 03 angle between two lines (2011)
11X1 T07 03 angle between two lines (2011)
Nigel Simmons
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]
Nigel Simmons
 
X2 T03 06 chord of contact & properties [2011]
X2 T03 06 chord of contact & properties [2011]X2 T03 06 chord of contact & properties [2011]
X2 T03 06 chord of contact & properties [2011]
Nigel Simmons
 
11X1 T10 04 concavity (2011)
11X1 T10 04 concavity (2011)11X1 T10 04 concavity (2011)
11X1 T10 04 concavity (2011)
Nigel Simmons
 
11X1 T08 02 triangle theorems (2011)
11X1 T08 02 triangle theorems (2011)11X1 T08 02 triangle theorems (2011)
11X1 T08 02 triangle theorems (2011)
Nigel Simmons
 
X2 T01 07 nth roots of unity (2011)
X2 T01 07 nth roots of unity (2011)X2 T01 07 nth roots of unity (2011)
X2 T01 07 nth roots of unity (2011)
Nigel Simmons
 
11X1 T01 05 cubics (2011)
11X1 T01 05 cubics (2011)11X1 T01 05 cubics (2011)
11X1 T01 05 cubics (2011)Nigel Simmons
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
Nigel Simmons
 
11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)
Nigel Simmons
 
11X1 T15 02 sketching polynomials (2011)
11X1 T15 02 sketching polynomials (2011)11X1 T15 02 sketching polynomials (2011)
11X1 T15 02 sketching polynomials (2011)
Nigel Simmons
 
11 x1 t02 04 rationalising the denominator (2012)
11 x1 t02 04 rationalising the denominator (2012)11 x1 t02 04 rationalising the denominator (2012)
11 x1 t02 04 rationalising the denominator (2012)
Nigel Simmons
 

Viewers also liked (20)

12X1 T04 02 growth & decay (2011)
12X1 T04 02 growth & decay (2011)12X1 T04 02 growth & decay (2011)
12X1 T04 02 growth & decay (2011)
 
X2 T07 07 other graphs (2011)
X2 T07 07 other graphs (2011)X2 T07 07 other graphs (2011)
X2 T07 07 other graphs (2011)
 
11X1 T12 03 parametric coordinates (2011)
11X1 T12 03 parametric coordinates (2011)11X1 T12 03 parametric coordinates (2011)
11X1 T12 03 parametric coordinates (2011)
 
11X1 T13 01 definitions & chord theorems (2011)
11X1 T13 01 definitions & chord theorems (2011)11X1 T13 01 definitions & chord theorems (2011)
11X1 T13 01 definitions & chord theorems (2011)
 
12X1 T03 03 differentiating trig (2011)
12X1 T03 03 differentiating trig (2011)12X1 T03 03 differentiating trig (2011)
12X1 T03 03 differentiating trig (2011)
 
11X1 T07 08 products to sums etc (2011)
11X1 T07 08 products to sums etc (2011)11X1 T07 08 products to sums etc (2011)
11X1 T07 08 products to sums etc (2011)
 
X2 T04 04 reduction formula (2011)
X2 T04 04 reduction formula (2011)X2 T04 04 reduction formula (2011)
X2 T04 04 reduction formula (2011)
 
11X1 T14 02 geometric series (2011)
11X1 T14 02 geometric series (2011)11X1 T14 02 geometric series (2011)
11X1 T14 02 geometric series (2011)
 
X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)
 
11X1 T07 03 angle between two lines (2011)
11X1 T07 03 angle between two lines (2011)11X1 T07 03 angle between two lines (2011)
11X1 T07 03 angle between two lines (2011)
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]
 
X2 T03 06 chord of contact & properties [2011]
X2 T03 06 chord of contact & properties [2011]X2 T03 06 chord of contact & properties [2011]
X2 T03 06 chord of contact & properties [2011]
 
11X1 T10 04 concavity (2011)
11X1 T10 04 concavity (2011)11X1 T10 04 concavity (2011)
11X1 T10 04 concavity (2011)
 
11X1 T08 02 triangle theorems (2011)
11X1 T08 02 triangle theorems (2011)11X1 T08 02 triangle theorems (2011)
11X1 T08 02 triangle theorems (2011)
 
X2 T01 07 nth roots of unity (2011)
X2 T01 07 nth roots of unity (2011)X2 T01 07 nth roots of unity (2011)
X2 T01 07 nth roots of unity (2011)
 
11X1 T01 05 cubics (2011)
11X1 T01 05 cubics (2011)11X1 T01 05 cubics (2011)
11X1 T01 05 cubics (2011)
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
 
11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)
 
11X1 T15 02 sketching polynomials (2011)
11X1 T15 02 sketching polynomials (2011)11X1 T15 02 sketching polynomials (2011)
11X1 T15 02 sketching polynomials (2011)
 
11 x1 t02 04 rationalising the denominator (2012)
11 x1 t02 04 rationalising the denominator (2012)11 x1 t02 04 rationalising the denominator (2012)
11 x1 t02 04 rationalising the denominator (2012)
 

Similar to X2 T08 01 circle geometry

X2 t08 01 circle geometry (2013)
X2 t08 01 circle geometry (2013)X2 t08 01 circle geometry (2013)
X2 t08 01 circle geometry (2013)
Nigel Simmons
 
11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)
Nigel Simmons
 
11X1 T07 04 converse theorems
11X1 T07 04 converse theorems11X1 T07 04 converse theorems
11X1 T07 04 converse theorems
Nigel Simmons
 
11X1 T13 04 converse theorems (2011)
11X1 T13 04 converse theorems (2011)11X1 T13 04 converse theorems (2011)
11X1 T13 04 converse theorems (2011)
Nigel Simmons
 
11 x1 t13 04 converse theorems (2012)
11 x1 t13 04 converse theorems (2012)11 x1 t13 04 converse theorems (2012)
11 x1 t13 04 converse theorems (2012)
Nigel Simmons
 
Modern Geometry Topics
Modern Geometry TopicsModern Geometry Topics
Modern Geometry Topics
Menchie Magistrado
 
Math unit33 congruence and similarity
Math unit33 congruence and similarityMath unit33 congruence and similarity
Math unit33 congruence and similarity
eLearningJa
 
11 X1 T06 03 Congruent Triangles
11 X1 T06 03 Congruent Triangles11 X1 T06 03 Congruent Triangles
11 X1 T06 03 Congruent Triangles
Nigel Simmons
 
Pythagorean theorem
Pythagorean theoremPythagorean theorem
Pythagorean theorem
reshmasreenath
 
11X1 T07 01 definitions & chord theorems
11X1 T07 01 definitions & chord theorems11X1 T07 01 definitions & chord theorems
11X1 T07 01 definitions & chord theorems
Nigel Simmons
 
Putter King Education - Math (Level 3)
Putter King Education - Math (Level 3)Putter King Education - Math (Level 3)
Putter King Education - Math (Level 3)
putterking
 
Triangles and its all types
Triangles and its all typesTriangles and its all types
Triangles and its all types
mirabubakar1
 
Triangles X CLASS CBSE NCERT
Triangles X CLASS CBSE NCERTTriangles X CLASS CBSE NCERT
Triangles X CLASS CBSE NCERT
avin2611
 
Triangles
TrianglesTriangles
Triangles
Geetanjali
 
Project report on maths
Project report on mathsProject report on maths
Project report on maths
vineeta yadav
 
Triangles
TrianglesTriangles
Triangles
Punita Verma
 
Chapter activity plus-in-mathematics-10
Chapter activity plus-in-mathematics-10Chapter activity plus-in-mathematics-10
Chapter activity plus-in-mathematics-10
International advisers
 
C1 g9-s1-t7-2
C1 g9-s1-t7-2C1 g9-s1-t7-2
C1 g9-s1-t7-2
Al Muktadir Hussain
 
Maths Circle PPT Class10
Maths Circle PPT Class10Maths Circle PPT Class10
Maths Circle PPT Class10
Abhey Gupta
 
Archimedes and geometry
Archimedes and geometryArchimedes and geometry
Archimedes and geometry
Katherine Bautista
 

Similar to X2 T08 01 circle geometry (20)

X2 t08 01 circle geometry (2013)
X2 t08 01 circle geometry (2013)X2 t08 01 circle geometry (2013)
X2 t08 01 circle geometry (2013)
 
11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)
 
11X1 T07 04 converse theorems
11X1 T07 04 converse theorems11X1 T07 04 converse theorems
11X1 T07 04 converse theorems
 
11X1 T13 04 converse theorems (2011)
11X1 T13 04 converse theorems (2011)11X1 T13 04 converse theorems (2011)
11X1 T13 04 converse theorems (2011)
 
11 x1 t13 04 converse theorems (2012)
11 x1 t13 04 converse theorems (2012)11 x1 t13 04 converse theorems (2012)
11 x1 t13 04 converse theorems (2012)
 
Modern Geometry Topics
Modern Geometry TopicsModern Geometry Topics
Modern Geometry Topics
 
Math unit33 congruence and similarity
Math unit33 congruence and similarityMath unit33 congruence and similarity
Math unit33 congruence and similarity
 
11 X1 T06 03 Congruent Triangles
11 X1 T06 03 Congruent Triangles11 X1 T06 03 Congruent Triangles
11 X1 T06 03 Congruent Triangles
 
Pythagorean theorem
Pythagorean theoremPythagorean theorem
Pythagorean theorem
 
11X1 T07 01 definitions & chord theorems
11X1 T07 01 definitions & chord theorems11X1 T07 01 definitions & chord theorems
11X1 T07 01 definitions & chord theorems
 
Putter King Education - Math (Level 3)
Putter King Education - Math (Level 3)Putter King Education - Math (Level 3)
Putter King Education - Math (Level 3)
 
Triangles and its all types
Triangles and its all typesTriangles and its all types
Triangles and its all types
 
Triangles X CLASS CBSE NCERT
Triangles X CLASS CBSE NCERTTriangles X CLASS CBSE NCERT
Triangles X CLASS CBSE NCERT
 
Triangles
TrianglesTriangles
Triangles
 
Project report on maths
Project report on mathsProject report on maths
Project report on maths
 
Triangles
TrianglesTriangles
Triangles
 
Chapter activity plus-in-mathematics-10
Chapter activity plus-in-mathematics-10Chapter activity plus-in-mathematics-10
Chapter activity plus-in-mathematics-10
 
C1 g9-s1-t7-2
C1 g9-s1-t7-2C1 g9-s1-t7-2
C1 g9-s1-t7-2
 
Maths Circle PPT Class10
Maths Circle PPT Class10Maths Circle PPT Class10
Maths Circle PPT Class10
 
Archimedes and geometry
Archimedes and geometryArchimedes and geometry
Archimedes and geometry
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
danishmna97
 
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
Neo4j
 
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
Neo4j
 
Artificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopmentArtificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopment
Octavian Nadolu
 
Cosa hanno in comune un mattoncino Lego e la backdoor XZ?
Cosa hanno in comune un mattoncino Lego e la backdoor XZ?Cosa hanno in comune un mattoncino Lego e la backdoor XZ?
Cosa hanno in comune un mattoncino Lego e la backdoor XZ?
Speck&Tech
 
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
Neo4j
 
Microsoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdfMicrosoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdf
Uni Systems S.M.S.A.
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
Alpen-Adria-Universität
 
20240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 202420240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 2024
Matthew Sinclair
 
Presentation of the OECD Artificial Intelligence Review of Germany
Presentation of the OECD Artificial Intelligence Review of GermanyPresentation of the OECD Artificial Intelligence Review of Germany
Presentation of the OECD Artificial Intelligence Review of Germany
innovationoecd
 
Programming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup SlidesProgramming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup Slides
Zilliz
 
How to use Firebase Data Connect For Flutter
How to use Firebase Data Connect For FlutterHow to use Firebase Data Connect For Flutter
How to use Firebase Data Connect For Flutter
Daiki Mogmet Ito
 
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdfUnlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Malak Abu Hammad
 
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdfUni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems S.M.S.A.
 
“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”
Claudio Di Ciccio
 
Infrastructure Challenges in Scaling RAG with Custom AI models
Infrastructure Challenges in Scaling RAG with Custom AI modelsInfrastructure Challenges in Scaling RAG with Custom AI models
Infrastructure Challenges in Scaling RAG with Custom AI models
Zilliz
 
UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6
DianaGray10
 
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy SurveyTrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc
 
Best 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERPBest 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERP
Pixlogix Infotech
 
Driving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success StoryDriving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success Story
Safe Software
 

Recently uploaded (20)

How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
 
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
 
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
 
Artificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopmentArtificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopment
 
Cosa hanno in comune un mattoncino Lego e la backdoor XZ?
Cosa hanno in comune un mattoncino Lego e la backdoor XZ?Cosa hanno in comune un mattoncino Lego e la backdoor XZ?
Cosa hanno in comune un mattoncino Lego e la backdoor XZ?
 
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
 
Microsoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdfMicrosoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdf
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
 
20240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 202420240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 2024
 
Presentation of the OECD Artificial Intelligence Review of Germany
Presentation of the OECD Artificial Intelligence Review of GermanyPresentation of the OECD Artificial Intelligence Review of Germany
Presentation of the OECD Artificial Intelligence Review of Germany
 
Programming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup SlidesProgramming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup Slides
 
How to use Firebase Data Connect For Flutter
How to use Firebase Data Connect For FlutterHow to use Firebase Data Connect For Flutter
How to use Firebase Data Connect For Flutter
 
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdfUnlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
 
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdfUni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdf
 
“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”
 
Infrastructure Challenges in Scaling RAG with Custom AI models
Infrastructure Challenges in Scaling RAG with Custom AI modelsInfrastructure Challenges in Scaling RAG with Custom AI models
Infrastructure Challenges in Scaling RAG with Custom AI models
 
UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6
 
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy SurveyTrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy Survey
 
Best 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERPBest 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERP
 
Driving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success StoryDriving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success Story
 

X2 T08 01 circle geometry

  • 1. Harder Extension 1 Circle Geometry
  • 2. Harder Extension 1 Circle Geometry Converse Circle Theorems
  • 3. Harder Extension 1 Circle Geometry Converse Circle Theorems (1) The circle whose diameter is the hypotenuse of a right angled triangle passes through the third vertex.
  • 4. Harder Extension 1 Circle Geometry Converse Circle Theorems (1) The circle whose diameter is the hypotenuse of a right angled triangle passes through the third vertex. C A B
  • 5. Harder Extension 1 Circle Geometry Converse Circle Theorems (1) The circle whose diameter is the hypotenuse of a right angled triangle passes through the third vertex. C ABC are concyclic with AB diameter A B
  • 6. Harder Extension 1 Circle Geometry Converse Circle Theorems (1) The circle whose diameter is the hypotenuse of a right angled triangle passes through the third vertex. C ABC are concyclic with AB diameter  in a semicircle  90   A B
  • 7. Harder Extension 1 Circle Geometry Converse Circle Theorems (1) The circle whose diameter is the hypotenuse of a right angled triangle passes through the third vertex. C ABC are concyclic with AB diameter  in a semicircle  90   A B (2) If an interval AB subtends the same angle at two points P and Q on the same side of AB, then A,B,P,Q are concyclic.
  • 8. Harder Extension 1 Circle Geometry Converse Circle Theorems (1) The circle whose diameter is the hypotenuse of a right angled triangle passes through the third vertex. C ABC are concyclic with AB diameter  in a semicircle  90   A B (2) If an interval AB subtends the same angle at two points P and Q on the same side of AB, then A,B,P,Q are concyclic. P Q   A B
  • 9. Harder Extension 1 Circle Geometry Converse Circle Theorems (1) The circle whose diameter is the hypotenuse of a right angled triangle passes through the third vertex. C ABC are concyclic with AB diameter  in a semicircle  90   A B (2) If an interval AB subtends the same angle at two points P and Q on the same side of AB, then A,B,P,Q are concyclic. P Q   ABQP is a cyclic quadrilateral A B
  • 10. Harder Extension 1 Circle Geometry Converse Circle Theorems (1) The circle whose diameter is the hypotenuse of a right angled triangle passes through the third vertex. C ABC are concyclic with AB diameter  in a semicircle  90   A B (2) If an interval AB subtends the same angle at two points P and Q on the same side of AB, then A,B,P,Q are concyclic. P Q   ABQP is a cyclic quadrilateral s in same segment are   A B
  • 11. (3) If a pair of opposite angles in a quadrilateral are supplementary (or if an exterior angle equals the opposite interior angle) then the quadrilateral is cyclic.
  • 12. (3) If a pair of opposite angles in a quadrilateral are supplementary (or if an exterior angle equals the opposite interior angle) then the quadrilateral is cyclic. The Four Centres Of A Triangle
  • 13. (3) If a pair of opposite angles in a quadrilateral are supplementary (or if an exterior angle equals the opposite interior angle) then the quadrilateral is cyclic. The Four Centres Of A Triangle (1) The angle bisectors of the vertices are concurrent at the incentre which is the centre of the incircle, tangent to all three sides.
  • 14. (3) If a pair of opposite angles in a quadrilateral are supplementary (or if an exterior angle equals the opposite interior angle) then the quadrilateral is cyclic. The Four Centres Of A Triangle (1) The angle bisectors of the vertices are concurrent at the incentre which is the centre of the incircle, tangent to all three sides.
  • 15. (3) If a pair of opposite angles in a quadrilateral are supplementary (or if an exterior angle equals the opposite interior angle) then the quadrilateral is cyclic. The Four Centres Of A Triangle (1) The angle bisectors of the vertices are concurrent at the incentre which is the centre of the incircle, tangent to all three sides.     incentre 
  • 16. (3) If a pair of opposite angles in a quadrilateral are supplementary (or if an exterior angle equals the opposite interior angle) then the quadrilateral is cyclic. The Four Centres Of A Triangle (1) The angle bisectors of the vertices are concurrent at the incentre which is the centre of the incircle, tangent to all three sides.     incentre incircle 
  • 17. (2) The perpendicular bisectors of the sides are concurrent at the circumcentre which is the centre of the circumcircle, passing through all three vertices.
  • 18. (2) The perpendicular bisectors of the sides are concurrent at the circumcentre which is the centre of the circumcircle, passing through all three vertices.
  • 19. (2) The perpendicular bisectors of the sides are concurrent at the circumcentre which is the centre of the circumcircle, passing through all three vertices. circumcentre
  • 20. (2) The perpendicular bisectors of the sides are concurrent at the circumcentre which is the centre of the circumcircle, passing through all three vertices. circumcentre circumcircle
  • 21. (2) The perpendicular bisectors of the sides are concurrent at the circumcentre which is the centre of the circumcircle, passing through all three vertices. circumcentre circumcircle (3) The medians are concurrent at the centroid, and the centroid trisects each median.
  • 22. (2) The perpendicular bisectors of the sides are concurrent at the circumcentre which is the centre of the circumcircle, passing through all three vertices. circumcentre circumcircle (3) The medians are concurrent at the centroid, and the centroid trisects each median.
  • 23. (2) The perpendicular bisectors of the sides are concurrent at the circumcentre which is the centre of the circumcircle, passing through all three vertices. circumcentre circumcircle (3) The medians are concurrent at the centroid, and the centroid trisects each median. centroid
  • 24. (4) The altitudes are concurrent at the orthocentre.
  • 25. (4) The altitudes are concurrent at the orthocentre.
  • 26. (4) The altitudes are concurrent at the orthocentre. orthocentre
  • 27. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry
  • 28. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry a b c    diameter if circumcircle sin A sin B sin C
  • 29. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry a b c    diameter if circumcircle sin A sin B sin C Proof: A B C
  • 30. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry a b c    diameter if circumcircle sin A sin B sin C Proof: A P O B C
  • 31. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry a b c    diameter if circumcircle sin A sin B sin C Proof: A A  P  in same segment  P O B C
  • 32. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry a b c    diameter if circumcircle sin A sin B sin C Proof: A A  P  in same segment  P sin A  sin P O B C
  • 33. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry a b c    diameter if circumcircle sin A sin B sin C Proof: A A  P  in same segment  P sin A  sin P PBC  90 O B C
  • 34. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry a b c    diameter if circumcircle sin A sin B sin C Proof: A A  P  in same segment  P sin A  sin P PBC  90  in semicircle  90   O B C
  • 35. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry a b c    diameter if circumcircle sin A sin B sin C Proof: A A  P  in same segment  P sin A  sin P PBC  90  in semicircle  90   BC O B  sin P PC C
  • 36. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry a b c    diameter if circumcircle sin A sin B sin C Proof: A A  P  in same segment  P sin A  sin P PBC  90  in semicircle  90   BC O B  sin P PC BC  PC C sin P
  • 37. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry a b c    diameter if circumcircle sin A sin B sin C Proof: A A  P  in same segment  P sin A  sin P PBC  90  in semicircle  90   BC O B  sin P PC BC BC  PC  PC  sin P sin A C
  • 38. e.g. (1990) In the diagram, AB is a fixed chord of a circle, P a variable point in the circle and AC and BD are perpendicular to BP and AP respectively.
  • 39. e.g. (1990) In the diagram, AB is a fixed chord of a circle, P a variable point in the circle and AC and BD are perpendicular to BP and AP respectively. (i) Show that ABCD is a cyclic quadrilateral on a circle with AB as diameter.
  • 40. e.g. (1990) In the diagram, AB is a fixed chord of a circle, P a variable point in the circle and AC and BD are perpendicular to BP and AP respectively. (i) Show that ABCD is a cyclic quadrilateral on a circle with AB as diameter. BDA  ACB  90
  • 41. e.g. (1990) In the diagram, AB is a fixed chord of a circle, P a variable point in the circle and AC and BD are perpendicular to BP and AP respectively. (i) Show that ABCD is a cyclic quadrilateral on a circle with AB as diameter. BDA  ACB  90 given 
  • 42. e.g. (1990) In the diagram, AB is a fixed chord of a circle, P a variable point in the circle and AC and BD are perpendicular to BP and AP respectively. (i) Show that ABCD is a cyclic quadrilateral on a circle with AB as diameter. BDA  ACB  90 given   ABCD is a cyclic quadrilateral
  • 43. e.g. (1990) In the diagram, AB is a fixed chord of a circle, P a variable point in the circle and AC and BD are perpendicular to BP and AP respectively. (i) Show that ABCD is a cyclic quadrilateral on a circle with AB as diameter. BDA  ACB  90 given   ABCD is a cyclic quadrilateral s in same segment are 
  • 44. e.g. (1990) In the diagram, AB is a fixed chord of a circle, P a variable point in the circle and AC and BD are perpendicular to BP and AP respectively. (i) Show that ABCD is a cyclic quadrilateral on a circle with AB as diameter. BDA  ACB  90 given   ABCD is a cyclic quadrilateral s in same segment are  AB is diameter as  in semicircle  90
  • 45. (ii) Show that triangles PCD and APB are similar
  • 46. (ii) Show that triangles PCD and APB are similar APB  DPC
  • 47. (ii) Show that triangles PCD and APB are similar APB  DPC common s 
  • 48. (ii) Show that triangles PCD and APB are similar APB  DPC common s  PDC  PBA
  • 49. (ii) Show that triangles PCD and APB are similar APB  DPC common s  PDC  PBA exterior cyclic quadrilateral
  • 50. (ii) Show that triangles PCD and APB are similar APB  DPC common s  PDC  PBA exterior cyclic quadrilateral  PDC ||| PBA
  • 51. (ii) Show that triangles PCD and APB are similar APB  DPC common s  PDC  PBA exterior cyclic quadrilateral  PDC ||| PBA equiangular 
  • 52. (iii) Show that as P varies, the segment CD has constant length.
  • 53. P P A B C D (iii) Show that as P varies, the segment CD has constant length.
  • 54. P P A B C D (iii) Show that as P varies, the segment CD has constant length. CD PC  AB AP
  • 55. P P A B C D (iii) Show that as P varies, the segment CD has constant length. CD PC  ratio of sides in ||| s  AB AP
  • 56. P P A B C D (iii) Show that as P varies, the segment CD has constant length. CD PC  ratio of sides in ||| s  AB AP PC In PCA,  cos P AP
  • 57. P P A B C D (iii) Show that as P varies, the segment CD has constant length. CD PC  ratio of sides in ||| s  AB AP PC In PCA,  cos P AP CD   cos P AB
  • 58. P P A B C D (iii) Show that as P varies, the segment CD has constant length. CD PC  ratio of sides in ||| s  AB AP PC In PCA,  cos P AP CD   cos P AB CD  AB cos P
  • 59. P P A B C D (iii) Show that as P varies, the segment CD has constant length. CD PC  ratio of sides in ||| s  AB AP PC In PCA,  cos P AP CD   cos P AB CD  AB cos P Now, P is constant
  • 60. P P A B C D (iii) Show that as P varies, the segment CD has constant length. CD PC  ratio of sides in ||| s  AB AP PC In PCA,  cos P AP CD   cos P AB CD  AB cos P Now, P is constant s in same segment are 
  • 61. P P A B C D (iii) Show that as P varies, the segment CD has constant length. CD PC  ratio of sides in ||| s  AB AP PC In PCA,  cos P AP CD   cos P AB CD  AB cos P Now, P is constant s in same segment are  and AB is fixed
  • 62. P P A B C D (iii) Show that as P varies, the segment CD has constant length. CD PC  ratio of sides in ||| s  AB AP PC In PCA,  cos P AP CD   cos P AB CD  AB cos P Now, P is constant s in same segment are  and AB is fixed given 
  • 63. P P A B C D (iii) Show that as P varies, the segment CD has constant length. CD PC  ratio of sides in ||| s  AB AP PC In PCA,  cos P AP CD   cos P AB CD  AB cos P Now, P is constant s in same segment are  and AB is fixed given  CD is constant
  • 64. (iv) Find the locus of the midpoint of CD.
  • 65. (iv) Find the locus of the midpoint of CD. ABCD is a cyclic quadrilateral with AB diameter. D C A B
  • 66. (iv) Find the locus of the midpoint of CD. ABCD is a cyclic quadrilateral with AB diameter. M D C Let M be the midpoint of CD A B
  • 67. (iv) Find the locus of the midpoint of CD. ABCD is a cyclic quadrilateral with AB diameter. M D C Let M be the midpoint of CD O is the midpoint of AB A B O
  • 68. (iv) Find the locus of the midpoint of CD. ABCD is a cyclic quadrilateral with AB diameter. M D C Let M be the midpoint of CD O is the midpoint of AB OM is constant A B O
  • 69. (iv) Find the locus of the midpoint of CD. ABCD is a cyclic quadrilateral with AB diameter. M D C Let M be the midpoint of CD O is the midpoint of AB OM is constant A O B  chords are equidistant from the centre
  • 70. (iv) Find the locus of the midpoint of CD. ABCD is a cyclic quadrilateral with AB diameter. M D C Let M be the midpoint of CD O is the midpoint of AB OM is constant A O B  chords are equidistant from the centre  M is a fixed distance from O
  • 71. (iv) Find the locus of the midpoint of CD. ABCD is a cyclic quadrilateral with AB diameter. M D C Let M be the midpoint of CD O is the midpoint of AB OM is constant A O B  chords are equidistant from the centre  M is a fixed distance from O OM 2  OC 2  MC 2
  • 72. (iv) Find the locus of the midpoint of CD. ABCD is a cyclic quadrilateral with AB diameter. M D C Let M be the midpoint of CD O is the midpoint of AB OM is constant A O B  chords are equidistant from the centre  M is a fixed distance from O OM 2  OC 2  MC 2 2 2 1  1    AB    AB cos P  2  2  1 1  AB  AB 2 cos 2 P 2 4 4 1  AB 2 sin 2 P 4
  • 73. (iv) Find the locus of the midpoint of CD. ABCD is a cyclic quadrilateral with AB diameter. M D C Let M be the midpoint of CD O is the midpoint of AB OM is constant A O B  chords are equidistant from the centre  M is a fixed distance from O OM 2  OC 2  MC 2 2 2 1  1    AB    AB cos P  2  2  1 1  AB  AB 2 cos 2 P 2 4 4 1  AB 2 sin 2 P 4 1 OM  AB sin P 2
  • 74. (iv) Find the locus of the midpoint of CD. ABCD is a cyclic quadrilateral with AB diameter. M D C Let M be the midpoint of CD O is the midpoint of AB OM is constant A O B  chords are equidistant from the centre  M is a fixed distance from O  locus is circle, centre O OM 2  OC 2  MC 2 1 2 2 and radius  AB sin P 1  1    AB    AB cos P  2 2  2  1 1  AB  AB 2 cos 2 P 2 4 4 1  AB 2 sin 2 P 4 1 OM  AB sin P 2
  • 75. 2008 Extension 2 Question 7b) In the diagram, the points P, Q and R lie on a circle. The tangent at P and the secant QR intersect at T. The bisector of PQR meets QR at S so that QPS  RPS   . The intervals RS, SQ and PT have lengths a, b and c respectively.
  • 76. 2008 Extension 2 Question 7b) In the diagram, the points P, Q and R lie on a circle. The tangent at P and the secant QR intersect at T. The bisector of PQR meets QR at S so that QPS  RPS   . The intervals RS, SQ and PT have lengths a, b and c respectively. (i) Show that TSP  TPS
  • 77. 2008 Extension 2 Question 7b) In the diagram, the points P, Q and R lie on a circle. The tangent at P and the secant QR intersect at T. The bisector of PQR meets QR at S so that QPS  RPS   . The intervals RS, SQ and PT have lengths a, b and c respectively. (i) Show that TSP  TPS RQP  RPT
  • 78. 2008 Extension 2 Question 7b) In the diagram, the points P, Q and R lie on a circle. The tangent at P and the secant QR intersect at T. The bisector of PQR meets QR at S so that QPS  RPS   . The intervals RS, SQ and PT have lengths a, b and c respectively. (i) Show that TSP  TPS RQP  RPT  alternate segment theorem 
  • 79. 2008 Extension 2 Question 7b) In the diagram, the points P, Q and R lie on a circle. The tangent at P and the secant QR intersect at T. The bisector of PQR meets QR at S so that QPS  RPS   . The intervals RS, SQ and PT have lengths a, b and c respectively. (i) Show that TSP  TPS RQP  RPT  alternate segment theorem  TSP  RQP  SPQ
  • 80. 2008 Extension 2 Question 7b) In the diagram, the points P, Q and R lie on a circle. The tangent at P and the secant QR intersect at T. The bisector of PQR meets QR at S so that QPS  RPS   . The intervals RS, SQ and PT have lengths a, b and c respectively. (i) Show that TSP  TPS RQP  RPT  alternate segment theorem  TSP  RQP  SPQ  exterior ,SPQ 
  • 81. 2008 Extension 2 Question 7b) In the diagram, the points P, Q and R lie on a circle. The tangent at P and the secant QR intersect at T. The bisector of PQR meets QR at S so that QPS  RPS   . The intervals RS, SQ and PT have lengths a, b and c respectively. (i) Show that TSP  TPS RQP  RPT  alternate segment theorem  TSP  RQP  SPQ  exterior ,SPQ  TSP  RPT  
  • 82. SPT  RPT  
  • 83. SPT  RPT    common 
  • 84. SPT  RPT    common  SPT  TSP
  • 85. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c
  • 86. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c
  • 87. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles
  • 88. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles SPT  RPT    2 = 's 
  • 89. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles  2 = 's  SPT  RPT  
  • 90. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles  2 = 's   ST  c SPT  RPT  
  • 91. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles  2 = 's   ST  c  = sides in isosceles   SPT  RPT  
  • 92. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles  2 = 's   ST  c  = sides in isosceles   PT 2  QT  RT SPT  RPT  
  • 93. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles  2 = 's   ST  c  = sides in isosceles   PT 2  QT  RT  square of tangents=products of intercepts  SPT  RPT  
  • 94. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles  2 = 's   ST  c  = sides in isosceles   PT 2  QT  RT  square of tangents=products of intercepts  SPT  RPT   c 2   c  b  c  a 
  • 95. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles  2 = 's   ST  c  = sides in isosceles   PT 2  QT  RT  square of tangents=products of intercepts  SPT  RPT   c 2   c  b  c  a  c 2  c 2  ac  bc  ab
  • 96. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles  2 = 's   ST  c  = sides in isosceles   PT 2  QT  RT  square of tangents=products of intercepts  SPT  RPT   c 2   c  b  c  a  c 2  c 2  ac  bc  ab bc  ac  ab
  • 97. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles  2 = 's   ST  c  = sides in isosceles   PT 2  QT  RT  square of tangents=products of intercepts  SPT  RPT   c 2   c  b  c  a  c 2  c 2  ac  bc  ab bc  ac  ab 1 1 1   a b c
  • 98. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles  2 = 's   ST  c  = sides in isosceles   PT 2  QT  RT  square of tangents=products of intercepts  SPT  RPT   c 2   c  b  c  a  c 2  c 2  ac  bc  ab bc  ac  ab Past HSC Papers 1 1 1   a b c Exercise 10C*