SlideShare a Scribd company logo
1 of 21
Download to read offline
Calculus Rules
Calculus Rules
                   d  u  vu   uv
                       
3. Quotient Rule
                   dx  v     v2
Calculus Rules
                   d  u  vu   uv
                       
3. Quotient Rule
                   dx  v     v2
“SQUARE the BOTTOM, write down the BOTTOM and DIFF the
 TOP, MINUS write down the TOP and DIFF the BOTTOM”
Calculus Rules
                     d  u  vu   uv
                         
  3. Quotient Rule
                     dx  v     v2
  “SQUARE the BOTTOM, write down the BOTTOM and DIFF the
   TOP, MINUS write down the TOP and DIFF the BOTTOM”
                 x
e.g.  i  y 
               1 2x
Calculus Rules   d  u  vu   uv
                                 
  3. Quotient Rule
                             dx  v      v2
  “SQUARE the BOTTOM, write down the BOTTOM and DIFF the
   TOP, MINUS write down the TOP and DIFF the BOTTOM”
                  x
e.g.  i  y 
               1 2x
 dy 1  2 x 1   x  2 
    
              1  2 x 
                         2
 dx
Calculus Rules   d  u  vu   uv
                                 
  3. Quotient Rule
                             dx  v      v2
  “SQUARE the BOTTOM, write down the BOTTOM and DIFF the
   TOP, MINUS write down the TOP and DIFF the BOTTOM”
                  x
e.g.  i  y 
               1 2x
 dy 1  2 x 1   x  2 
    
              1  2 x 
                         2
 dx
     1 2x  2x
   
      1 2x
              2
Calculus Rulesd  u  vu   uv
                                 
  3. Quotient Rule
                             dx  v      v2
  “SQUARE the BOTTOM, write down the BOTTOM and DIFF the
   TOP, MINUS write down the TOP and DIFF the BOTTOM”
                  x
e.g.  i  y 
               1 2x
 dy 1  2 x 1   x  2 
    
              1  2 x 
                         2
 dx
     1 2x  2x
   
      1 2x
                 2


         1
   
     1  2x 
               2
Calculus Rulesd  u  vu   uv
                                 
  3. Quotient Rule
                             dx  v         v2
  “SQUARE the BOTTOM, write down the BOTTOM and DIFF the
   TOP, MINUS write down the TOP and DIFF the BOTTOM”
                  x                              2x
e.g.  i  y                       ii  y  2
               1 2x                            x 4
 dy 1  2 x 1   x  2 
    
              1  2 x 
                         2
 dx
     1 2x  2x
   
      1 2x
                 2


         1
   
     1  2x 
               2
Calculus Rulesd  u  vu   uv
                                 
  3. Quotient Rule
                             dx  v         v2
  “SQUARE the BOTTOM, write down the BOTTOM and DIFF the
   TOP, MINUS write down the TOP and DIFF the BOTTOM”
                    x                            2x
e.g.  i  y                       ii  y  2
               1 2x                            x 4
 dy 1  2 x 1   x  2                                 1 2              
                                                   1                       1
                                            x  4      2  x  4   
                                                                         
                                                   2 2  2x
    
                                              2                            2 2x

              1  2 x                                                        
                         2
 dx                                 dy
                                         
        1 2x  2x                  dx                    x2  4
     
          1 2x
                    2


            1
    
        1  2x 
                  2
Calculus Rules
                              d  u  vu   uv
                                 
   3. Quotient Rule
                             dx  v         v2
  “SQUARE the BOTTOM, write down the BOTTOM and DIFF the
   TOP, MINUS write down the TOP and DIFF the BOTTOM”
                     x                             2x
e.g.  i  y                       ii  y  2
                1 2x                             x 4
 dy 1  2 x 1   x  2                                       1 2            
                                                     1                         1
                                            x  4      2  x  4   
                                                                             
                                                     2 2  2x
    
                                              2                                2 2x

               1  2 x                                                           
                          2
 dx                                 dy
                                         
        1 2x  2x                  dx                         x 2  4  1
                                                      1

          1  2 x 
                     2
                                           2  x  42  2 x2  x2  4 2
                                                2

                                         
    
             1                                          x2  4
        1  2x 
                   2
Calculus Rules
                              d  u  vu   uv
                                 
   3. Quotient Rule
                             dx  v          v2
  “SQUARE the BOTTOM, write down the BOTTOM and DIFF the
   TOP, MINUS write down the TOP and DIFF the BOTTOM”
                     x                               2x
e.g.  i  y                       ii  y  2
                1 2x                               x 4
 dy 1  2 x 1   x  2                                          1 2            
                                                       1                          1
                                            x  4      2  x  4   
                                                                                
                                                       2 2  2x
    
                                               2                                  2 2x

               1  2 x                                                              
                          2
 dx                                 dy
                                         
        1 2x  2x                  dx                            x 2  4  1
                                                         1

          1  2 x 
                     2
                                           2  x  42  2 x2  x2  4 2
                                                  2

                                         
    
             1                                             x2  4
        1  2x 
                   2
                                           2  x 2  4  2  x 2  4   x 2 
                                                           1
                                                         

                                         
                                                          x2  4
Calculus Rules
                              d  u  vu   uv
                                 
   3. Quotient Rule
                             dx  v          v2
  “SQUARE the BOTTOM, write down the BOTTOM and DIFF the
   TOP, MINUS write down the TOP and DIFF the BOTTOM”
                     x                               2x
e.g.  i  y                       ii  y  2
                1 2x                               x 4
 dy 1  2 x 1   x  2                                          1 2            
                                                       1                          1
                                            x  4      2  x  4   
                                                                                
                                                       2 2  2x
    
                                               2                                  2 2x

               1  2 x                                                              
                          2
 dx                                 dy
                                         
        1 2x  2x                  dx                            x 2  4  1
                                                         1

          1  2 x 
                     2
                                            2  x  42  2 x2  x2  4 2
                                                  2

                                         
    
             1                                             x2  4
        1  2x 
                   2
                                           2  x 2  4  2  x 2  4   x 2 
                                                           1
                                                         

                                         
                                                     8
                                                          x2  4
                                         
                                            x2  4 x2  4
d  k   kv
4. Reciprocal Rule        2
                     dx  v  v
d  k   kv
4. Reciprocal Rule        2
                     dx  v  v

  “MINUS the DERIVATIVE on the FUNCTION SQUARED”
d  k   kv
4. Reciprocal Rule         2
                      dx  v  v

    “MINUS the DERIVATIVE on the FUNCTION SQUARED”
                 1
e.g.  i  y 
                 x2
d  k   kv
4. Reciprocal Rule        2
                     dx  v  v

    “MINUS the DERIVATIVE on the FUNCTION SQUARED”
           1
e.g.  i  y 
           x2
        dy 2 x
           4
        dx x
d  k   kv
4. Reciprocal Rule        2
                     dx  v  v

    “MINUS the DERIVATIVE on the FUNCTION SQUARED”
            1
e.g.  i  y 
           x2
        dy 2 x
           4
        dx x
           2
           3
           x
d  k   kv
4. Reciprocal Rule        2
                     dx  v  v

    “MINUS the DERIVATIVE on the FUNCTION SQUARED”
            1                                  6
e.g.  i  y                   ii  y 
           x2                               4 x2  3
        dy 2 x
           4
        dx x
           2
           3
           x
d  k   kv
4. Reciprocal Rule        2
                     dx  v  v

    “MINUS the DERIVATIVE on the FUNCTION SQUARED”
            1                                  6
e.g.  i  y                   ii  y 
           x2                               4 x2  3
        dy 2 x                      dy       6  8 x 
           4                           
        dx x                         dx  4 x 2  32
           2
           3
           x
d  k   kv
4. Reciprocal Rule        2
                     dx  v  v

    “MINUS the DERIVATIVE on the FUNCTION SQUARED”
            1                                  6
e.g.  i  y                   ii  y 
           x2                               4 x2  3
        dy 2 x                      dy       6  8 x 
           4                           
        dx x                         dx  4 x 2  32
           2                                 48 x
           3                           
                                           4 x  3
                                                     2
           x                                   2
d  k   kv
4. Reciprocal Rule          2
                       dx  v  v

    “MINUS the DERIVATIVE on the FUNCTION SQUARED”
            1                                     6
e.g.  i  y                      ii  y 
           x2                                  4 x2  3
        dy 2 x                        dy        6  8 x 
           4                             
        dx x                           dx  4 x 2  32
           2                                   48 x
           3                             
                                             4 x  3
                                                       2
           x                                     2




                  Exercise 7G; 1aceg, 2, 4a, 6a, 8a

More Related Content

Viewers also liked

11X1 T05 05 arrangements in a circle (2011)
11X1 T05 05 arrangements in a circle (2011)11X1 T05 05 arrangements in a circle (2011)
11X1 T05 05 arrangements in a circle (2011)Nigel Simmons
 
11 x1 t04 07 3d trigonometry (2012)
11 x1 t04 07 3d trigonometry (2012)11 x1 t04 07 3d trigonometry (2012)
11 x1 t04 07 3d trigonometry (2012)Nigel Simmons
 
11X1 T12 09 locus problems (2011)
11X1 T12 09 locus problems (2011)11X1 T12 09 locus problems (2011)
11X1 T12 09 locus problems (2011)Nigel Simmons
 
11X1 T07 05 t results (2011)
11X1 T07 05 t results (2011)11X1 T07 05 t results (2011)
11X1 T07 05 t results (2011)Nigel Simmons
 
X2 T06 02 resisted motion (2011)
X2 T06 02 resisted motion (2011)X2 T06 02 resisted motion (2011)
X2 T06 02 resisted motion (2011)Nigel Simmons
 
11X1 T05 01 permutations I (2011)
11X1 T05 01 permutations I (2011)11X1 T05 01 permutations I (2011)
11X1 T05 01 permutations I (2011)Nigel Simmons
 
11X1 T06 06 line through pt of intersection
11X1 T06 06 line through pt of intersection11X1 T06 06 line through pt of intersection
11X1 T06 06 line through pt of intersectionNigel Simmons
 
X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)Nigel Simmons
 
X2 T04 03 t results (2011)
X2 T04 03 t results (2011)X2 T04 03 t results (2011)
X2 T04 03 t results (2011)Nigel Simmons
 
X2 T05 02 cylindrical shells (2011)
X2 T05 02 cylindrical shells (2011)X2 T05 02 cylindrical shells (2011)
X2 T05 02 cylindrical shells (2011)Nigel Simmons
 
11X1 T09 05 product rule (2011)
11X1 T09 05 product rule (2011)11X1 T09 05 product rule (2011)
11X1 T09 05 product rule (2011)Nigel Simmons
 
11X1 T16 05 volumes (2011)
11X1 T16 05 volumes (2011)11X1 T16 05 volumes (2011)
11X1 T16 05 volumes (2011)Nigel Simmons
 
11X1 T06 05 perpendicular distance (2011)
11X1 T06 05 perpendicular distance (2011)11X1 T06 05 perpendicular distance (2011)
11X1 T06 05 perpendicular distance (2011)Nigel Simmons
 
12X1 T05 05 integration with inverse trig (2011)
12X1 T05 05 integration with inverse trig (2011)12X1 T05 05 integration with inverse trig (2011)
12X1 T05 05 integration with inverse trig (2011)Nigel Simmons
 
11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)Nigel Simmons
 
X2 T03 05 rectangular hyperbola (2011)
X2 T03 05 rectangular hyperbola (2011)X2 T03 05 rectangular hyperbola (2011)
X2 T03 05 rectangular hyperbola (2011)Nigel Simmons
 
X2 T01 05 de moivres theorem (2011)
X2 T01 05 de moivres theorem (2011)X2 T01 05 de moivres theorem (2011)
X2 T01 05 de moivres theorem (2011)Nigel Simmons
 
11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)Nigel Simmons
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)Nigel Simmons
 
11X1 T15 02 finance formulas V2
11X1 T15 02 finance formulas V211X1 T15 02 finance formulas V2
11X1 T15 02 finance formulas V2Nigel Simmons
 

Viewers also liked (20)

11X1 T05 05 arrangements in a circle (2011)
11X1 T05 05 arrangements in a circle (2011)11X1 T05 05 arrangements in a circle (2011)
11X1 T05 05 arrangements in a circle (2011)
 
11 x1 t04 07 3d trigonometry (2012)
11 x1 t04 07 3d trigonometry (2012)11 x1 t04 07 3d trigonometry (2012)
11 x1 t04 07 3d trigonometry (2012)
 
11X1 T12 09 locus problems (2011)
11X1 T12 09 locus problems (2011)11X1 T12 09 locus problems (2011)
11X1 T12 09 locus problems (2011)
 
11X1 T07 05 t results (2011)
11X1 T07 05 t results (2011)11X1 T07 05 t results (2011)
11X1 T07 05 t results (2011)
 
X2 T06 02 resisted motion (2011)
X2 T06 02 resisted motion (2011)X2 T06 02 resisted motion (2011)
X2 T06 02 resisted motion (2011)
 
11X1 T05 01 permutations I (2011)
11X1 T05 01 permutations I (2011)11X1 T05 01 permutations I (2011)
11X1 T05 01 permutations I (2011)
 
11X1 T06 06 line through pt of intersection
11X1 T06 06 line through pt of intersection11X1 T06 06 line through pt of intersection
11X1 T06 06 line through pt of intersection
 
X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)
 
X2 T04 03 t results (2011)
X2 T04 03 t results (2011)X2 T04 03 t results (2011)
X2 T04 03 t results (2011)
 
X2 T05 02 cylindrical shells (2011)
X2 T05 02 cylindrical shells (2011)X2 T05 02 cylindrical shells (2011)
X2 T05 02 cylindrical shells (2011)
 
11X1 T09 05 product rule (2011)
11X1 T09 05 product rule (2011)11X1 T09 05 product rule (2011)
11X1 T09 05 product rule (2011)
 
11X1 T16 05 volumes (2011)
11X1 T16 05 volumes (2011)11X1 T16 05 volumes (2011)
11X1 T16 05 volumes (2011)
 
11X1 T06 05 perpendicular distance (2011)
11X1 T06 05 perpendicular distance (2011)11X1 T06 05 perpendicular distance (2011)
11X1 T06 05 perpendicular distance (2011)
 
12X1 T05 05 integration with inverse trig (2011)
12X1 T05 05 integration with inverse trig (2011)12X1 T05 05 integration with inverse trig (2011)
12X1 T05 05 integration with inverse trig (2011)
 
11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)11 x1 t02 06 relations & functions (2012)
11 x1 t02 06 relations & functions (2012)
 
X2 T03 05 rectangular hyperbola (2011)
X2 T03 05 rectangular hyperbola (2011)X2 T03 05 rectangular hyperbola (2011)
X2 T03 05 rectangular hyperbola (2011)
 
X2 T01 05 de moivres theorem (2011)
X2 T01 05 de moivres theorem (2011)X2 T01 05 de moivres theorem (2011)
X2 T01 05 de moivres theorem (2011)
 
11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
 
11X1 T15 02 finance formulas V2
11X1 T15 02 finance formulas V211X1 T15 02 finance formulas V2
11X1 T15 02 finance formulas V2
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

11X1 T09 06 quotient & reciprocal rules (2011)

  • 2. Calculus Rules d  u  vu   uv   3. Quotient Rule dx  v  v2
  • 3. Calculus Rules d  u  vu   uv   3. Quotient Rule dx  v  v2 “SQUARE the BOTTOM, write down the BOTTOM and DIFF the TOP, MINUS write down the TOP and DIFF the BOTTOM”
  • 4. Calculus Rules d  u  vu   uv   3. Quotient Rule dx  v  v2 “SQUARE the BOTTOM, write down the BOTTOM and DIFF the TOP, MINUS write down the TOP and DIFF the BOTTOM” x e.g.  i  y  1 2x
  • 5. Calculus Rules d  u  vu   uv   3. Quotient Rule dx  v  v2 “SQUARE the BOTTOM, write down the BOTTOM and DIFF the TOP, MINUS write down the TOP and DIFF the BOTTOM” x e.g.  i  y  1 2x dy 1  2 x 1   x  2   1  2 x  2 dx
  • 6. Calculus Rules d  u  vu   uv   3. Quotient Rule dx  v  v2 “SQUARE the BOTTOM, write down the BOTTOM and DIFF the TOP, MINUS write down the TOP and DIFF the BOTTOM” x e.g.  i  y  1 2x dy 1  2 x 1   x  2   1  2 x  2 dx 1 2x  2x  1 2x 2
  • 7. Calculus Rulesd  u  vu   uv   3. Quotient Rule dx  v  v2 “SQUARE the BOTTOM, write down the BOTTOM and DIFF the TOP, MINUS write down the TOP and DIFF the BOTTOM” x e.g.  i  y  1 2x dy 1  2 x 1   x  2   1  2 x  2 dx 1 2x  2x  1 2x 2 1  1  2x  2
  • 8. Calculus Rulesd  u  vu   uv   3. Quotient Rule dx  v  v2 “SQUARE the BOTTOM, write down the BOTTOM and DIFF the TOP, MINUS write down the TOP and DIFF the BOTTOM” x 2x e.g.  i  y   ii  y  2 1 2x x 4 dy 1  2 x 1   x  2   1  2 x  2 dx 1 2x  2x  1 2x 2 1  1  2x  2
  • 9. Calculus Rulesd  u  vu   uv   3. Quotient Rule dx  v  v2 “SQUARE the BOTTOM, write down the BOTTOM and DIFF the TOP, MINUS write down the TOP and DIFF the BOTTOM” x 2x e.g.  i  y   ii  y  2 1 2x x 4 dy 1  2 x 1   x  2  1 2  1 1  x  4      2  x  4     2 2  2x  2 2 2x 1  2 x    2 dx dy  1 2x  2x dx  x2  4  1 2x 2 1  1  2x  2
  • 10. Calculus Rules d  u  vu   uv   3. Quotient Rule dx  v  v2 “SQUARE the BOTTOM, write down the BOTTOM and DIFF the TOP, MINUS write down the TOP and DIFF the BOTTOM” x 2x e.g.  i  y   ii  y  2 1 2x x 4 dy 1  2 x 1   x  2  1 2  1 1  x  4      2  x  4     2 2  2x  2 2 2x 1  2 x    2 dx dy  1 2x  2x dx  x 2  4  1  1 1  2 x  2 2  x  42  2 x2  x2  4 2 2   1  x2  4 1  2x  2
  • 11. Calculus Rules d  u  vu   uv   3. Quotient Rule dx  v  v2 “SQUARE the BOTTOM, write down the BOTTOM and DIFF the TOP, MINUS write down the TOP and DIFF the BOTTOM” x 2x e.g.  i  y   ii  y  2 1 2x x 4 dy 1  2 x 1   x  2  1 2  1 1  x  4      2  x  4     2 2  2x  2 2 2x 1  2 x    2 dx dy  1 2x  2x dx  x 2  4  1  1 1  2 x  2 2  x  42  2 x2  x2  4 2 2   1  x2  4 1  2x  2 2  x 2  4  2  x 2  4   x 2  1    x2  4
  • 12. Calculus Rules d  u  vu   uv   3. Quotient Rule dx  v  v2 “SQUARE the BOTTOM, write down the BOTTOM and DIFF the TOP, MINUS write down the TOP and DIFF the BOTTOM” x 2x e.g.  i  y   ii  y  2 1 2x x 4 dy 1  2 x 1   x  2  1 2  1 1  x  4      2  x  4     2 2  2x  2 2 2x 1  2 x    2 dx dy  1 2x  2x dx  x 2  4  1  1 1  2 x  2 2  x  42  2 x2  x2  4 2 2   1  x2  4 1  2x  2 2  x 2  4  2  x 2  4   x 2  1   8  x2  4   x2  4 x2  4
  • 13. d  k   kv 4. Reciprocal Rule   2 dx  v  v
  • 14. d  k   kv 4. Reciprocal Rule   2 dx  v  v “MINUS the DERIVATIVE on the FUNCTION SQUARED”
  • 15. d  k   kv 4. Reciprocal Rule   2 dx  v  v “MINUS the DERIVATIVE on the FUNCTION SQUARED” 1 e.g.  i  y  x2
  • 16. d  k   kv 4. Reciprocal Rule   2 dx  v  v “MINUS the DERIVATIVE on the FUNCTION SQUARED” 1 e.g.  i  y  x2 dy 2 x  4 dx x
  • 17. d  k   kv 4. Reciprocal Rule   2 dx  v  v “MINUS the DERIVATIVE on the FUNCTION SQUARED” 1 e.g.  i  y  x2 dy 2 x  4 dx x 2  3 x
  • 18. d  k   kv 4. Reciprocal Rule   2 dx  v  v “MINUS the DERIVATIVE on the FUNCTION SQUARED” 1 6 e.g.  i  y   ii  y  x2 4 x2  3 dy 2 x  4 dx x 2  3 x
  • 19. d  k   kv 4. Reciprocal Rule   2 dx  v  v “MINUS the DERIVATIVE on the FUNCTION SQUARED” 1 6 e.g.  i  y   ii  y  x2 4 x2  3 dy 2 x dy 6  8 x   4  dx x dx  4 x 2  32 2  3 x
  • 20. d  k   kv 4. Reciprocal Rule   2 dx  v  v “MINUS the DERIVATIVE on the FUNCTION SQUARED” 1 6 e.g.  i  y   ii  y  x2 4 x2  3 dy 2 x dy 6  8 x   4  dx x dx  4 x 2  32 2 48 x  3   4 x  3 2 x 2
  • 21. d  k   kv 4. Reciprocal Rule   2 dx  v  v “MINUS the DERIVATIVE on the FUNCTION SQUARED” 1 6 e.g.  i  y   ii  y  x2 4 x2  3 dy 2 x dy 6  8 x   4  dx x dx  4 x 2  32 2 48 x  3   4 x  3 2 x 2 Exercise 7G; 1aceg, 2, 4a, 6a, 8a