SlideShare a Scribd company logo
1 of 58
Download to read offline
Dynamics
Dynamics
Newton’s Laws Of Motion
Dynamics
                    Newton’s Laws Of Motion
Law 1
“ Corpus omne perseverare in statu suo quiescendi vel movendi
  uniformiter, nisi quatenus a viribus impressis cogitur statum illum
  mutare.”
Dynamics
                    Newton’s Laws Of Motion
Law 1
“ Corpus omne perseverare in statu suo quiescendi vel movendi
  uniformiter, nisi quatenus a viribus impressis cogitur statum illum
  mutare.”
Everybody continues in its state of rest, or of uniform motion in a
right line, unless it is compelled to change that state by forces
impressed upon it.
Dynamics
                    Newton’s Laws Of Motion
Law 1
“ Corpus omne perseverare in statu suo quiescendi vel movendi
  uniformiter, nisi quatenus a viribus impressis cogitur statum illum
  mutare.”
Everybody continues in its state of rest, or of uniform motion in a
right line, unless it is compelled to change that state by forces
impressed upon it.
Law 2
“ Mutationem motus proportionalem esse vi motrici impressae, et
  fieri secundum rectam qua vis illa impritmitur.”
Dynamics
                    Newton’s Laws Of Motion
Law 1
“ Corpus omne perseverare in statu suo quiescendi vel movendi
  uniformiter, nisi quatenus a viribus impressis cogitur statum illum
  mutare.”
Everybody continues in its state of rest, or of uniform motion in a
right line, unless it is compelled to change that state by forces
impressed upon it.
Law 2
“ Mutationem motus proportionalem esse vi motrici impressae, et
  fieri secundum rectam qua vis illa impritmitur.”
The change of motion is proportional to the motive force
impressed, and it is made in the direction of the right line in which
that force is impressed.
Motive force  change in motion
Motive force  change in motion
          F acceleration
Motive force  change in motion
         F acceleration
         F  constant  acceleration
Motive force  change in motion
         F acceleration
         F  constant  acceleration
        F  ma            (constant = mass)
Motive force  change in motion
                     F acceleration
                     F  constant  acceleration
                    F  ma            (constant = mass)

Law 3
“ Actioni contrariam semper et aequalem esse reactionem: sive
  corporum duorum actions in se mutuo semper esse aequales et in
  partes contrarias dirigi.”
Motive force  change in motion
                     F acceleration
                     F  constant  acceleration
                    F  ma            (constant = mass)

Law 3
“ Actioni contrariam semper et aequalem esse reactionem: sive
  corporum duorum actions in se mutuo semper esse aequales et in
  partes contrarias dirigi.”


To every action there is always opposed an equal reaction: or, the
mutual actions of two bodies upon each other are always equal, and
directed in contrary parts.
Acceleration
Acceleration
     d 2x
  2
x
     dt
     dv
   
     dt
Acceleration
     d 2x
  2
x           (acceleration is a function of t)
     dt
     dv
   
     dt
Acceleration
     d 2x
  2
x                (acceleration is a function of t)
     dt
     dv
   
     dt
      d 1 2 
     v        (acceleration is a function of x)
     dx  2 
Acceleration
     d 2x
  2
x                (acceleration is a function of t)
     dt
     dv
   
     dt
      d 1 2 
     v        (acceleration is a function of x)
     dx  2 
     dv
  v             (acceleration is a function of v)
     dx
Acceleration
                          d 2x
                       2
                     x                (acceleration is a function of t)
                          dt
                          dv
                        
                          dt
                           d 1 2 
                          v        (acceleration is a function of x)
                          dx  2 
                          dv
                       v             (acceleration is a function of v)
                          dx
e.g. (1981)
Assume that the earth is a sphere of radius R and that, at a point r  R 
from the centre of the earth, the acceleration due to gravity is
proportional to 1 and is directed towards the earth’s centre.
                 r2
A body is projected vertically upwards from the surface of the earth with
initial speed V.
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.




    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.




    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.




        r  R, v  V ,    g
                       r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
        v0




        r  R, v  V ,    g
                       r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
        v0




        r  R, v  V ,    g
                       r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
        v0                         resultant
                              m
                               r
                                      force



        r  R, v  V ,    g
                       r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
        v0                         resultant
                              m
                               r
                                      force

                                    m
                                    r2
        r  R, v  V ,    g
                       r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
                                                         m
          v0                   resultant         m   2
                                                   r
                            m
                              r                           r
                                  force

                                  m
                                  r2
        r  R, v  V ,    g
                       r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
                                                          m
          v0                      resultant      m   2
                                                   r
                               m
                                 r                        r
                                     force              
                                                     2
                                                   r
                                    m                  r
                                     r2
         r  R, v  V ,    g
                        r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
                                                          m
          v0                      resultant      m   2
                                                   r
                               m
                                 r                         r
                                     force              
                                                     2
                                                   r
                                    m                  r
                                       2     when r  R,    g
                                                         r
                                     r
         r  R, v  V ,    g
                        r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
                                                            m
          v0                      resultant       m   2
                                                     r
                               m
                                 r                           r
                                     force               
                                                       2
                                                     r
                                    m                    r
                                       2     when r  R,    g
                                                           r
                                     r                    
         r  R, v  V ,    g
                        r                      i.e.  g  2
                                                           R
                                                   gR 2
    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
                                                            m
          v0                      resultant       m   2
                                                     r
                               m
                                 r                           r
                                     force               
                                                       2
                                                     r
                                    m                    r
                                       2     when r  R,    g
                                                           r
                                     r                    
         r  R, v  V ,    g
                        r                      i.e.  g  2
                                                           R
                                                   gR 2
    O                                                 gR 2
                                                   2
                                                 r
                                                       r
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
                                                            m
          v0                      resultant       m   2
                                                     r
                               m
                                 r                           r
                                     force               
                                                       2
                                                     r
                                    m                    r
                                       2     when r  R,    g
                                                           r
                                     r                    
         r  R, v  V ,    g
                        r                      i.e.  g  2
                                                           R
                                                   gR 2
    O                                                gR 2
                                                  2
                                                r
                                                      r
                                        d  1 2   gR 2
                                            v  2
                                        dr  2      r
1 2 gR 2
  v        c
2        r
       2 gR 2
  v2         c
          r
1 2 gR 2
   v        c
 2        r
        2 gR 2
   v2         c
           r
when r  R, v  V
1 2 gR 2
     v         c
  2         r
          2 gR 2
    v2          c
             r
when r  R, v  V
           2 gR 2
i.e. V 2         c
              R
       c  V 2  2 gR
1 2 gR 2
     v         c
  2         r
          2 gR 2
    v2          c
             r
when r  R, v  V
           2 gR 2
i.e. V 2         c
              R
       c  V 2  2 gR
     2 gR 2
v2          V 2  2 gR
        r
1 2 gR 2
     v         c
  2         r
          2 gR 2           If particle never stops then r  
    v2          c
             r
when r  R, v  V
           2 gR 2
i.e. V 2         c
              R
       c  V 2  2 gR
     2 gR 2
v2          V 2  2 gR
        r
1 2 gR 2
     v         c
  2         r
          2 gR 2           If particle never stops then r  
    v2          c
             r                               2 gR 2              
                             lim v 2  lim           V 2  2 gR 
when r  R, v  V            r       r 
                                             r                   
           2 gR 2                     V 2  2 gR
i.e. V 2         c
              R
       c  V 2  2 gR
     2 gR 2
v2          V 2  2 gR
        r
1 2 gR 2
    v          c
  2         r
          2 gR 2           If particle never stops then r  
    v2          c
             r                               2 gR 2              
                             lim v 2  lim           V 2  2 gR 
when r  R, v  V            r       r 
                                             r                   
           2 gR 2                     V 2  2 gR
i.e. V 2         c
              R
                             Now v 2  0
       c  V 2  2 gR
     2 gR 2
v2          V 2  2 gR
        r
1 2 gR 2
    v          c
  2         r
          2 gR 2           If particle never stops then r  
    v2          c
             r                               2 gR 2              
                             lim v 2  lim           V 2  2 gR 
when r  R, v  V            r       r 
                                             r                   
           2 gR 2                     V 2  2 gR
i.e. V 2         c
              R
                             Now v 2  0
       c  V 2  2 gR
                             V 2  2 gR  0
     2 gR 2
v2          V 2  2 gR
        r
1 2 gR 2
    v          c
  2         r
          2 gR 2           If particle never stops then r  
    v2          c
             r                               2 gR 2              
                             lim v 2  lim           V 2  2 gR 
when r  R, v  V            r       r 
                                             r                   
           2 gR 2                     V 2  2 gR
i.e. V 2         c
              R
                             Now v 2  0
       c  V 2  2 gR
                             V 2  2 gR  0
     2 gR 2                            V 2  2 gR
v2          V 2  2 gR
        r
1 2 gR 2
    v          c
  2         r
          2 gR 2              If particle never stops then r  
    v2          c
             r                                   2 gR 2              
                                 lim v 2  lim           V 2  2 gR 
when r  R, v  V                r       r 
                                                 r                   
           2 gR 2                         V 2  2 gR
i.e. V 2         c
              R
                                 Now v 2  0
       c  V 2  2 gR
                                 V 2  2 gR  0
     2 gR 2                                V 2  2 gR
v2          V 2  2 gR
        r
                           Thus if V  2 gR the particle never stops,
                           i.e. the particle escapes the earth.
(ii) If V  2 gR ,prove that the time taken to rise to a height R above
     the earth’s surface is;
                             1
                               4  2  R
                             3          g
(ii) If V  2 gR ,prove that the time taken to rise to a height R above
     the earth’s surface is;
                             1
                               4  2  R
                             3          g
         2 gR 2
    v2          V 2  2 gR
            r
(ii) If V  2 gR ,prove that the time taken to rise to a height R above
     the earth’s surface is;
                             1
                               4  2  R
                             3          g
         2 gR 2
    v2          V 2  2 gR
            r
  If V  2 gR ,
(ii) If V  2 gR ,prove that the time taken to rise to a height R above
     the earth’s surface is;
                             1
                               4  2  R
                             3          g
         2 gR 2
    v2          V 2  2 gR
            r
                          2 gR 2
  If V  2 gR , v                2 gR  2 gR
                      2

                             r
                          2 gR 2
                    v2 
                             r
(ii) If V  2 gR ,prove that the time taken to rise to a height R above
     the earth’s surface is;
                             1
                               4  2  R
                             3          g
         2 gR 2
    v2          V 2  2 gR
            r
                          2 gR 2
  If V  2 gR , v                2 gR  2 gR
                      2

                             r
                          2 gR 2
                    v2 
                             r
                       2 gR 2
                    v                 (cannot be –ve, as it does not return)
                          r
(ii) If V  2 gR ,prove that the time taken to rise to a height R above
     the earth’s surface is;
                             1
                               4  2  R
                             3          g
         2 gR 2
    v2          V 2  2 gR
            r
                          2 gR 2
  If V  2 gR , v                2 gR  2 gR
                      2

                             r
                          2 gR 2
                    v2 
                             r
                        2 gR 2
                    v                 (cannot be –ve, as it does not return)
                           r
                   dr   2 gR 2
                      
                   dt      r
(ii) If V  2 gR ,prove that the time taken to rise to a height R above
     the earth’s surface is;
                             1
                               4  2  R
                             3          g
         2 gR 2
    v2          V 2  2 gR
            r
                          2 gR 2
  If V  2 gR , v                2 gR  2 gR
                      2

                             r
                          2 gR 2
                    v2 
                             r
                        2 gR 2
                    v                 (cannot be –ve, as it does not return)
                           r
                   dr   2 gR 2
                      
                   dt      r
                   dt     r
                      
                   dr   2gR 2
2R
    1
t
   2 gR 2   
            R
                 r dr
2R
    1                   2 R                            
t
   2 gR 2       r dr     as travelling from R to 2 R 
            R           R                              
2R
    1                     2 R                            
t
   2 gR 2       r dr       as travelling from R to 2 R 
            R             R                              
                     2R
    1       2  3
           3 r 
                 2

   2 gR 2       R
2R
    1                        2 R                            
t
   2 gR 2       r dr          as travelling from R to 2 R 
            R                R                              
                     2R
    1       2  3
           3 r 
                 2

   2 gR 2       R

 
      2
        2
          2 R 2 R  R R 
   3 gR
2R
    1                         2 R                            
t
   2 gR 2        r dr          as travelling from R to 2 R 
             R                R                              
                       2R
    1        2   3
            3 r 
                   2

   2 gR 2        R

 
      2
        2
          2 R 2 R  R R 
   3 gR

 
       2
            2    2  1R R
     3R g
2R
    1                         2 R                            
t
   2 gR 2        r dr          as travelling from R to 2 R 
             R                R                              
                       2R
    1        2   3
            3 r 
                   2

   2 gR 2        R

 
      2
        2
          2 R 2 R  R R 
   3 gR

 
       2
            2    2  1R R
     3R g

 
       R
         4  2 
     3 g
2R
    1                         2 R                            
t
   2 gR 2        r dr          as travelling from R to 2 R 
             R                R                              
                       2R
    1        2   3
            3 r 
                   2

   2 gR 2        R

 
      2
        2
          2 R 2 R  R R 
   3 gR

 
       2
            2    2  1R R
     3R g

 
       R
         4  2 
     3 g

 
     1
       4  2  R
     3          g
2R
    1                           2 R                            
t
   2 gR 2        r dr            as travelling from R to 2 R 
             R                  R                              
                       2R
    1        2   3
            3 r 
                   2

   2 gR 2        R

 
      2
        2
          2 R 2 R  R R 
   3 gR

 
       2
            2    2  1R R
     3R g

 
       R
         4  2 
     3 g
                               time taken to rise to a height R above
 
     1
       4  2  R               earth' s surface is 4  2 
                                                   1         R
                                                               seconds
     3          g                                  3         g
Exercise 8C; 3, 15, 19

More Related Content

Similar to X2 T06 01 acceleration (2011)

X2 t06 01 acceleration (2013)
X2 t06 01 acceleration (2013)X2 t06 01 acceleration (2013)
X2 t06 01 acceleration (2013)Nigel Simmons
 
X2 t06 02 resisted motion (2013)
X2 t06 02 resisted motion (2013)X2 t06 02 resisted motion (2013)
X2 t06 02 resisted motion (2013)Nigel Simmons
 
IMPULS AND MOMENTUM
IMPULS AND MOMENTUMIMPULS AND MOMENTUM
IMPULS AND MOMENTUMNopiputri
 
Motion in two dimensions
Motion in two dimensionsMotion in two dimensions
Motion in two dimensionsmkhwanda
 
Gravitation
GravitationGravitation
GravitationEdnexa
 
X2 T07 01 Acceleration
X2 T07 01 AccelerationX2 T07 01 Acceleration
X2 T07 01 AccelerationNigel Simmons
 
Theory of relativity
Theory of relativityTheory of relativity
Theory of relativityKumar
 
physics430_lecture21 for students chemistry
physics430_lecture21 for students chemistryphysics430_lecture21 for students chemistry
physics430_lecture21 for students chemistryumarovagunnel
 

Similar to X2 T06 01 acceleration (2011) (9)

X2 t06 01 acceleration (2013)
X2 t06 01 acceleration (2013)X2 t06 01 acceleration (2013)
X2 t06 01 acceleration (2013)
 
X2 t06 02 resisted motion (2013)
X2 t06 02 resisted motion (2013)X2 t06 02 resisted motion (2013)
X2 t06 02 resisted motion (2013)
 
IMPULS AND MOMENTUM
IMPULS AND MOMENTUMIMPULS AND MOMENTUM
IMPULS AND MOMENTUM
 
Motion in two dimensions
Motion in two dimensionsMotion in two dimensions
Motion in two dimensions
 
Attitude Dynamics of Re-entry Vehicle
Attitude Dynamics of Re-entry VehicleAttitude Dynamics of Re-entry Vehicle
Attitude Dynamics of Re-entry Vehicle
 
Gravitation
GravitationGravitation
Gravitation
 
X2 T07 01 Acceleration
X2 T07 01 AccelerationX2 T07 01 Acceleration
X2 T07 01 Acceleration
 
Theory of relativity
Theory of relativityTheory of relativity
Theory of relativity
 
physics430_lecture21 for students chemistry
physics430_lecture21 for students chemistryphysics430_lecture21 for students chemistry
physics430_lecture21 for students chemistry
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 

Recently uploaded (20)

YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 

X2 T06 01 acceleration (2011)

  • 3. Dynamics Newton’s Laws Of Motion Law 1 “ Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter, nisi quatenus a viribus impressis cogitur statum illum mutare.”
  • 4. Dynamics Newton’s Laws Of Motion Law 1 “ Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter, nisi quatenus a viribus impressis cogitur statum illum mutare.” Everybody continues in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed upon it.
  • 5. Dynamics Newton’s Laws Of Motion Law 1 “ Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter, nisi quatenus a viribus impressis cogitur statum illum mutare.” Everybody continues in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed upon it. Law 2 “ Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum rectam qua vis illa impritmitur.”
  • 6. Dynamics Newton’s Laws Of Motion Law 1 “ Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter, nisi quatenus a viribus impressis cogitur statum illum mutare.” Everybody continues in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed upon it. Law 2 “ Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum rectam qua vis illa impritmitur.” The change of motion is proportional to the motive force impressed, and it is made in the direction of the right line in which that force is impressed.
  • 7. Motive force  change in motion
  • 8. Motive force  change in motion F acceleration
  • 9. Motive force  change in motion F acceleration F  constant  acceleration
  • 10. Motive force  change in motion F acceleration F  constant  acceleration  F  ma (constant = mass)
  • 11. Motive force  change in motion F acceleration F  constant  acceleration  F  ma (constant = mass) Law 3 “ Actioni contrariam semper et aequalem esse reactionem: sive corporum duorum actions in se mutuo semper esse aequales et in partes contrarias dirigi.”
  • 12. Motive force  change in motion F acceleration F  constant  acceleration  F  ma (constant = mass) Law 3 “ Actioni contrariam semper et aequalem esse reactionem: sive corporum duorum actions in se mutuo semper esse aequales et in partes contrarias dirigi.” To every action there is always opposed an equal reaction: or, the mutual actions of two bodies upon each other are always equal, and directed in contrary parts.
  • 14. Acceleration d 2x   2 x dt dv  dt
  • 15. Acceleration d 2x   2 x (acceleration is a function of t) dt dv  dt
  • 16. Acceleration d 2x   2 x (acceleration is a function of t) dt dv  dt d 1 2    v  (acceleration is a function of x) dx  2 
  • 17. Acceleration d 2x   2 x (acceleration is a function of t) dt dv  dt d 1 2    v  (acceleration is a function of x) dx  2  dv v (acceleration is a function of v) dx
  • 18. Acceleration d 2x   2 x (acceleration is a function of t) dt dv  dt d 1 2    v  (acceleration is a function of x) dx  2  dv v (acceleration is a function of v) dx e.g. (1981) Assume that the earth is a sphere of radius R and that, at a point r  R  from the centre of the earth, the acceleration due to gravity is proportional to 1 and is directed towards the earth’s centre. r2 A body is projected vertically upwards from the surface of the earth with initial speed V.
  • 19. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface.
  • 20. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. O
  • 21. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. O
  • 22. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. r  R, v  V ,    g r O
  • 23. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. v0 r  R, v  V ,    g r O
  • 24. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. v0 r  R, v  V ,    g r O
  • 25. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. v0 resultant m r force r  R, v  V ,    g r O
  • 26. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. v0 resultant m r force m r2 r  R, v  V ,    g r O
  • 27. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. m v0 resultant m   2 r m r r force m r2 r  R, v  V ,    g r O
  • 28. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. m v0 resultant m   2 r m r r force    2 r m r r2 r  R, v  V ,    g r O
  • 29. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. m v0 resultant m   2 r m r r force    2 r m r 2 when r  R,    g r r r  R, v  V ,    g r O
  • 30. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. m v0 resultant m   2 r m r r force    2 r m r 2 when r  R,    g r r  r  R, v  V ,    g r i.e.  g  2 R   gR 2 O
  • 31. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. m v0 resultant m   2 r m r r force    2 r m r 2 when r  R,    g r r  r  R, v  V ,    g r i.e.  g  2 R   gR 2 O  gR 2   2 r r
  • 32. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. m v0 resultant m   2 r m r r force    2 r m r 2 when r  R,    g r r  r  R, v  V ,    g r i.e.  g  2 R   gR 2 O  gR 2   2 r r d  1 2   gR 2  v  2 dr  2  r
  • 33. 1 2 gR 2 v  c 2 r 2 gR 2 v2  c r
  • 34. 1 2 gR 2 v  c 2 r 2 gR 2 v2  c r when r  R, v  V
  • 35. 1 2 gR 2 v  c 2 r 2 gR 2 v2  c r when r  R, v  V 2 gR 2 i.e. V 2  c R c  V 2  2 gR
  • 36. 1 2 gR 2 v  c 2 r 2 gR 2 v2  c r when r  R, v  V 2 gR 2 i.e. V 2  c R c  V 2  2 gR 2 gR 2 v2   V 2  2 gR r
  • 37. 1 2 gR 2 v  c 2 r 2 gR 2 If particle never stops then r   v2  c r when r  R, v  V 2 gR 2 i.e. V 2  c R c  V 2  2 gR 2 gR 2 v2   V 2  2 gR r
  • 38. 1 2 gR 2 v  c 2 r 2 gR 2 If particle never stops then r   v2  c r  2 gR 2  lim v 2  lim  V 2  2 gR  when r  R, v  V r  r   r  2 gR 2  V 2  2 gR i.e. V 2  c R c  V 2  2 gR 2 gR 2 v2   V 2  2 gR r
  • 39. 1 2 gR 2 v  c 2 r 2 gR 2 If particle never stops then r   v2  c r  2 gR 2  lim v 2  lim  V 2  2 gR  when r  R, v  V r  r   r  2 gR 2  V 2  2 gR i.e. V 2  c R Now v 2  0 c  V 2  2 gR 2 gR 2 v2   V 2  2 gR r
  • 40. 1 2 gR 2 v  c 2 r 2 gR 2 If particle never stops then r   v2  c r  2 gR 2  lim v 2  lim  V 2  2 gR  when r  R, v  V r  r   r  2 gR 2  V 2  2 gR i.e. V 2  c R Now v 2  0 c  V 2  2 gR V 2  2 gR  0 2 gR 2 v2   V 2  2 gR r
  • 41. 1 2 gR 2 v  c 2 r 2 gR 2 If particle never stops then r   v2  c r  2 gR 2  lim v 2  lim  V 2  2 gR  when r  R, v  V r  r   r  2 gR 2  V 2  2 gR i.e. V 2  c R Now v 2  0 c  V 2  2 gR V 2  2 gR  0 2 gR 2 V 2  2 gR v2   V 2  2 gR r
  • 42. 1 2 gR 2 v  c 2 r 2 gR 2 If particle never stops then r   v2  c r  2 gR 2  lim v 2  lim  V 2  2 gR  when r  R, v  V r  r   r  2 gR 2  V 2  2 gR i.e. V 2  c R Now v 2  0 c  V 2  2 gR V 2  2 gR  0 2 gR 2 V 2  2 gR v2   V 2  2 gR r Thus if V  2 gR the particle never stops, i.e. the particle escapes the earth.
  • 43. (ii) If V  2 gR ,prove that the time taken to rise to a height R above the earth’s surface is; 1 4  2  R 3 g
  • 44. (ii) If V  2 gR ,prove that the time taken to rise to a height R above the earth’s surface is; 1 4  2  R 3 g 2 gR 2 v2   V 2  2 gR r
  • 45. (ii) If V  2 gR ,prove that the time taken to rise to a height R above the earth’s surface is; 1 4  2  R 3 g 2 gR 2 v2   V 2  2 gR r If V  2 gR ,
  • 46. (ii) If V  2 gR ,prove that the time taken to rise to a height R above the earth’s surface is; 1 4  2  R 3 g 2 gR 2 v2   V 2  2 gR r 2 gR 2 If V  2 gR , v   2 gR  2 gR 2 r 2 gR 2 v2  r
  • 47. (ii) If V  2 gR ,prove that the time taken to rise to a height R above the earth’s surface is; 1 4  2  R 3 g 2 gR 2 v2   V 2  2 gR r 2 gR 2 If V  2 gR , v   2 gR  2 gR 2 r 2 gR 2 v2  r 2 gR 2 v (cannot be –ve, as it does not return) r
  • 48. (ii) If V  2 gR ,prove that the time taken to rise to a height R above the earth’s surface is; 1 4  2  R 3 g 2 gR 2 v2   V 2  2 gR r 2 gR 2 If V  2 gR , v   2 gR  2 gR 2 r 2 gR 2 v2  r 2 gR 2 v (cannot be –ve, as it does not return) r dr 2 gR 2  dt r
  • 49. (ii) If V  2 gR ,prove that the time taken to rise to a height R above the earth’s surface is; 1 4  2  R 3 g 2 gR 2 v2   V 2  2 gR r 2 gR 2 If V  2 gR , v   2 gR  2 gR 2 r 2 gR 2 v2  r 2 gR 2 v (cannot be –ve, as it does not return) r dr 2 gR 2  dt r dt r  dr 2gR 2
  • 50. 2R 1 t 2 gR 2  R r dr
  • 51. 2R 1 2 R  t 2 gR 2  r dr   as travelling from R to 2 R  R R 
  • 52. 2R 1 2 R  t 2 gR 2  r dr   as travelling from R to 2 R  R R  2R 1 2  3  3 r  2 2 gR 2  R
  • 53. 2R 1 2 R  t 2 gR 2  r dr   as travelling from R to 2 R  R R  2R 1 2  3  3 r  2 2 gR 2  R  2 2 2 R 2 R  R R  3 gR
  • 54. 2R 1 2 R  t 2 gR 2  r dr   as travelling from R to 2 R  R R  2R 1 2  3  3 r  2 2 gR 2  R  2 2 2 R 2 R  R R  3 gR  2 2 2  1R R 3R g
  • 55. 2R 1 2 R  t 2 gR 2  r dr   as travelling from R to 2 R  R R  2R 1 2  3  3 r  2 2 gR 2  R  2 2 2 R 2 R  R R  3 gR  2 2 2  1R R 3R g  R 4  2  3 g
  • 56. 2R 1 2 R  t 2 gR 2  r dr   as travelling from R to 2 R  R R  2R 1 2  3  3 r  2 2 gR 2  R  2 2 2 R 2 R  R R  3 gR  2 2 2  1R R 3R g  R 4  2  3 g  1 4  2  R 3 g
  • 57. 2R 1 2 R  t 2 gR 2  r dr   as travelling from R to 2 R  R R  2R 1 2  3  3 r  2 2 gR 2  R  2 2 2 R 2 R  R R  3 gR  2 2 2  1R R 3R g  R 4  2  3 g  time taken to rise to a height R above  1 4  2  R earth' s surface is 4  2  1 R seconds 3 g 3 g
  • 58. Exercise 8C; 3, 15, 19