SlideShare a Scribd company logo
Equations Reducible To Quadratics
Equations Reducible To Quadratics
e.g. (i ) x 4  4 x 2  12  0
Equations Reducible To Quadratics
e.g. (i ) x 4  4 x 2  12  0
             let m  x 2
Equations Reducible To Quadratics
e.g. (i ) x 4  4 x 2  12  0
             let m  x 2
               m2  x 4
Equations Reducible To Quadratics
e.g. (i ) x 4  4 x 2  12  0
             let m  x 2
               m2  x 4
         m 2  4m  12  0
Equations Reducible To Quadratics
e.g. (i ) x 4  4 x 2  12  0
            let m  x 2
               m2  x 4
        m 2  4m  12  0
       m  6  m  2   0
Equations Reducible To Quadratics
e.g. (i ) x 4  4 x 2  12  0
            let m  x 2
               m2  x 4
        m 2  4m  12  0
       m  6  m  2   0
     m6       or m  2
Equations Reducible To Quadratics
e.g. (i ) x 4  4 x 2  12  0
            let m  x 2
               m2  x 4
        m 2  4m  12  0
       m  6  m  2   0
     m6       or m  2
    x2  6     or x 2  2
Equations Reducible To Quadratics
e.g. (i ) x 4  4 x 2  12  0
            let m  x 2
               m2  x 4
        m 2  4m  12  0
       m  6  m  2   0
     m6       or m  2
    x2  6     or x 2  2
    x 6
Equations Reducible To Quadratics
e.g. (i ) x 4  4 x 2  12  0
            let m  x 2
               m2  x 4
        m 2  4m  12  0
       m  6  m  2   0
     m6       or m  2
    x2  6     or x 2  2
    x 6         no real solutions
Equations Reducible To Quadratics
e.g. (i ) x 4  4 x 2  12  0
            let m  x 2
               m2  x 4
        m 2  4m  12  0
       m  6  m  2   0
     m6       or m  2
    x2  6     or x 2  2
    x 6         no real solutions

          x   6
Equations Reducible To Quadratics
e.g. (i ) x 4  4 x 2  12  0        (ii ) 9 x  4  3x   3  0
            let m  x 2
               m2  x 4
        m 2  4m  12  0
       m  6  m  2   0
     m6       or m  2
    x2  6     or x 2  2
    x 6         no real solutions

          x   6
Equations Reducible To Quadratics
e.g. (i ) x 4  4 x 2  12  0        (ii ) 9 x  4  3x   3  0
            let m  x 2                           let m  3x
               m2  x 4
        m 2  4m  12  0
       m  6  m  2   0
     m6       or m  2
    x2  6     or x 2  2
    x 6         no real solutions

          x   6
Equations Reducible To Quadratics
e.g. (i ) x 4  4 x 2  12  0        (ii ) 9 x  4  3x   3  0
            let m  x 2                       let m  3x
               m2  x 4                 m  3   3  3   9x
                                         2    x 2    2x  2 x


        m 2  4m  12  0
       m  6  m  2   0
     m6       or m  2
    x2  6     or x 2  2
    x 6         no real solutions

          x   6
Equations Reducible To Quadratics
e.g. (i ) x 4  4 x 2  12  0        (ii ) 9 x  4  3x   3  0
            let m  x 2                       let m  3x
               m2  x 4                 m  3   3  3   9x
                                         2    x 2    2x  2 x


        m 2  4m  12  0                     m 2  4m  3  0
       m  6  m  2   0
     m6       or m  2
    x2  6     or x 2  2
    x 6         no real solutions

          x   6
Equations Reducible To Quadratics
e.g. (i ) x 4  4 x 2  12  0        (ii ) 9 x  4  3x   3  0
            let m  x 2                       let m  3x
               m2  x 4                 m  3   3  3   9x
                                         2    x 2    2x  2 x


        m 2  4m  12  0                     m 2  4m  3  0
       m  6  m  2   0                m  3 m  1  0
     m6       or m  2
    x2  6     or x 2  2
    x 6         no real solutions

          x   6
Equations Reducible To Quadratics
e.g. (i ) x 4  4 x 2  12  0        (ii ) 9 x  4  3x   3  0
            let m  x 2                       let m  3x
               m2  x 4                 m  3   3  3   9x
                                         2    x 2    2x  2 x


        m 2  4m  12  0                     m 2  4m  3  0
       m  6  m  2   0                m  3 m  1  0
     m6       or m  2                   m  3 or m  1
    x2  6     or x 2  2
    x 6         no real solutions

          x   6
Equations Reducible To Quadratics
e.g. (i ) x 4  4 x 2  12  0        (ii ) 9 x  4  3x   3  0
            let m  x 2                       let m  3x
               m2  x 4                 m  3   3  3   9x
                                         2    x 2    2x  2 x


        m 2  4m  12  0                     m 2  4m  3  0
       m  6  m  2   0                m  3 m  1  0
     m6       or m  2                   m  3 or m  1
    x2  6     or x 2  2                3x  3 or 3x  1
    x 6         no real solutions

          x   6
Equations Reducible To Quadratics
e.g. (i ) x 4  4 x 2  12  0        (ii ) 9 x  4  3x   3  0
            let m  x 2                       let m  3x
               m2  x 4                 m  3   3  3   9x
                                         2    x 2    2x  2 x


        m 2  4m  12  0                     m 2  4m  3  0
       m  6  m  2   0                m  3 m  1  0
     m6       or m  2                   m  3 or m  1
    x2  6     or x 2  2               3x  3 or 3x  1
    x 6         no real solutions      x 1

          x   6
Equations Reducible To Quadratics
e.g. (i ) x 4  4 x 2  12  0        (ii ) 9 x  4  3x   3  0
            let m  x 2                       let m  3x
               m2  x 4                 m  3   3  3   9x
                                         2    x 2    2x  2 x


        m 2  4m  12  0                     m 2  4m  3  0
       m  6  m  2   0                m  3 m  1  0
     m6       or m  2                   m  3 or m  1
    x2  6     or x 2  2                3x  3 or 3x  1
    x 6         no real solutions       x  1 or x  0

          x   6
Exercise 8D; 1, 2ad, 3b, 4ab, 5ac, 6a, 8abi, 9a*

More Related Content

What's hot

3.2.nenoteiktais integraalis
3.2.nenoteiktais integraalis3.2.nenoteiktais integraalis
3.2.nenoteiktais integraalisMaija Liepa
 
Logaritamske jednacine i_nejednacine
Logaritamske jednacine i_nejednacineLogaritamske jednacine i_nejednacine
Logaritamske jednacine i_nejednacineJelena Dobrivojevic
 
12X1 T05 05 integration with inverse trig (2010)
12X1 T05 05 integration with inverse trig (2010)12X1 T05 05 integration with inverse trig (2010)
12X1 T05 05 integration with inverse trig (2010)Nigel Simmons
 
Formulas
FormulasFormulas
Formulas
Drradz Maths
 
11X1 T01 10 matrices
11X1 T01 10 matrices11X1 T01 10 matrices
11X1 T01 10 matricesNigel Simmons
 
Calculus :Tutorial 3
Calculus :Tutorial 3Calculus :Tutorial 3
Calculus :Tutorial 3Nuril Ekma
 
Limites funciones ii
Limites funciones iiLimites funciones ii
Limites funciones iimgarmon965
 
Integral parsial tanzalin2
Integral parsial tanzalin2Integral parsial tanzalin2
Integral parsial tanzalin2Efuansyah Fizr
 
Matran 1 bookbooming
Matran 1   bookboomingMatran 1   bookbooming
Matran 1 bookboomingbookbooming
 
Hephuongtrinh bookbooming
Hephuongtrinh   bookboomingHephuongtrinh   bookbooming
Hephuongtrinh bookboomingbookbooming
 

What's hot (11)

3.2.nenoteiktais integraalis
3.2.nenoteiktais integraalis3.2.nenoteiktais integraalis
3.2.nenoteiktais integraalis
 
Logaritamske jednacine i_nejednacine
Logaritamske jednacine i_nejednacineLogaritamske jednacine i_nejednacine
Logaritamske jednacine i_nejednacine
 
12X1 T05 05 integration with inverse trig (2010)
12X1 T05 05 integration with inverse trig (2010)12X1 T05 05 integration with inverse trig (2010)
12X1 T05 05 integration with inverse trig (2010)
 
Int prac
Int pracInt prac
Int prac
 
Formulas
FormulasFormulas
Formulas
 
11X1 T01 10 matrices
11X1 T01 10 matrices11X1 T01 10 matrices
11X1 T01 10 matrices
 
Calculus :Tutorial 3
Calculus :Tutorial 3Calculus :Tutorial 3
Calculus :Tutorial 3
 
Limites funciones ii
Limites funciones iiLimites funciones ii
Limites funciones ii
 
Integral parsial tanzalin2
Integral parsial tanzalin2Integral parsial tanzalin2
Integral parsial tanzalin2
 
Matran 1 bookbooming
Matran 1   bookboomingMatran 1   bookbooming
Matran 1 bookbooming
 
Hephuongtrinh bookbooming
Hephuongtrinh   bookboomingHephuongtrinh   bookbooming
Hephuongtrinh bookbooming
 

Viewers also liked

11 x1 t13 03 angle theorems 2 (2013)
11 x1 t13 03 angle theorems 2 (2013)11 x1 t13 03 angle theorems 2 (2013)
11 x1 t13 03 angle theorems 2 (2013)
Nigel Simmons
 
12 x1 t03 01 arcs & sectors (2013)
12 x1 t03 01 arcs & sectors (2013)12 x1 t03 01 arcs & sectors (2013)
12 x1 t03 01 arcs & sectors (2013)
Nigel Simmons
 
11 x1 t08 06 trig equations (2012)
11 x1 t08 06 trig equations (2012)11 x1 t08 06 trig equations (2012)
11 x1 t08 06 trig equations (2012)Nigel Simmons
 
11 x1 t10 01 graphing quadratics (2012)
11 x1 t10 01 graphing quadratics (2012)11 x1 t10 01 graphing quadratics (2012)
11 x1 t10 01 graphing quadratics (2012)
Nigel Simmons
 
11X1 T08 07 asinx + bcosx = c (2010)
11X1 T08 07 asinx + bcosx = c (2010)11X1 T08 07 asinx + bcosx = c (2010)
11X1 T08 07 asinx + bcosx = c (2010)
Nigel Simmons
 
11X1 T08 08 products to sums (2010)
11X1 T08 08 products to sums (2010)11X1 T08 08 products to sums (2010)
11X1 T08 08 products to sums (2010)Nigel Simmons
 
11 x1 t13 02 angle theorems 1 (2013)
11 x1 t13 02 angle theorems 1 (2013)11 x1 t13 02 angle theorems 1 (2013)
11 x1 t13 02 angle theorems 1 (2013)
Nigel Simmons
 
11 x1 t13 04 converse theorems (2012)
11 x1 t13 04 converse theorems (2012)11 x1 t13 04 converse theorems (2012)
11 x1 t13 04 converse theorems (2012)
Nigel Simmons
 
11 x1 t13 01 definitions & chord theorems (2013)
11 x1 t13 01 definitions & chord theorems (2013)11 x1 t13 01 definitions & chord theorems (2013)
11 x1 t13 01 definitions & chord theorems (2013)
Nigel Simmons
 
11 x1 t13 05 tangent theorems 1 (2012)
11 x1 t13 05 tangent theorems 1 (2012)11 x1 t13 05 tangent theorems 1 (2012)
11 x1 t13 05 tangent theorems 1 (2012)
Nigel Simmons
 
11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)Nigel Simmons
 
11 x1 t08 02 sum & difference of angles (2012)
11 x1 t08 02 sum & difference of angles (2012)11 x1 t08 02 sum & difference of angles (2012)
11 x1 t08 02 sum & difference of angles (2012)Nigel Simmons
 
11 x1 t08 04 double angles (2012)
11 x1 t08 04 double angles (2012)11 x1 t08 04 double angles (2012)
11 x1 t08 04 double angles (2012)Nigel Simmons
 
11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)
Nigel Simmons
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 

Viewers also liked (15)

11 x1 t13 03 angle theorems 2 (2013)
11 x1 t13 03 angle theorems 2 (2013)11 x1 t13 03 angle theorems 2 (2013)
11 x1 t13 03 angle theorems 2 (2013)
 
12 x1 t03 01 arcs & sectors (2013)
12 x1 t03 01 arcs & sectors (2013)12 x1 t03 01 arcs & sectors (2013)
12 x1 t03 01 arcs & sectors (2013)
 
11 x1 t08 06 trig equations (2012)
11 x1 t08 06 trig equations (2012)11 x1 t08 06 trig equations (2012)
11 x1 t08 06 trig equations (2012)
 
11 x1 t10 01 graphing quadratics (2012)
11 x1 t10 01 graphing quadratics (2012)11 x1 t10 01 graphing quadratics (2012)
11 x1 t10 01 graphing quadratics (2012)
 
11X1 T08 07 asinx + bcosx = c (2010)
11X1 T08 07 asinx + bcosx = c (2010)11X1 T08 07 asinx + bcosx = c (2010)
11X1 T08 07 asinx + bcosx = c (2010)
 
11X1 T08 08 products to sums (2010)
11X1 T08 08 products to sums (2010)11X1 T08 08 products to sums (2010)
11X1 T08 08 products to sums (2010)
 
11 x1 t13 02 angle theorems 1 (2013)
11 x1 t13 02 angle theorems 1 (2013)11 x1 t13 02 angle theorems 1 (2013)
11 x1 t13 02 angle theorems 1 (2013)
 
11 x1 t13 04 converse theorems (2012)
11 x1 t13 04 converse theorems (2012)11 x1 t13 04 converse theorems (2012)
11 x1 t13 04 converse theorems (2012)
 
11 x1 t13 01 definitions & chord theorems (2013)
11 x1 t13 01 definitions & chord theorems (2013)11 x1 t13 01 definitions & chord theorems (2013)
11 x1 t13 01 definitions & chord theorems (2013)
 
11 x1 t13 05 tangent theorems 1 (2012)
11 x1 t13 05 tangent theorems 1 (2012)11 x1 t13 05 tangent theorems 1 (2012)
11 x1 t13 05 tangent theorems 1 (2012)
 
11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)
 
11 x1 t08 02 sum & difference of angles (2012)
11 x1 t08 02 sum & difference of angles (2012)11 x1 t08 02 sum & difference of angles (2012)
11 x1 t08 02 sum & difference of angles (2012)
 
11 x1 t08 04 double angles (2012)
11 x1 t08 04 double angles (2012)11 x1 t08 04 double angles (2012)
11 x1 t08 04 double angles (2012)
 
11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 

More from Nigel Simmons

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

11X1 T10 03 equations reducible to quadratics (2010)

  • 2. Equations Reducible To Quadratics e.g. (i ) x 4  4 x 2  12  0
  • 3. Equations Reducible To Quadratics e.g. (i ) x 4  4 x 2  12  0 let m  x 2
  • 4. Equations Reducible To Quadratics e.g. (i ) x 4  4 x 2  12  0 let m  x 2 m2  x 4
  • 5. Equations Reducible To Quadratics e.g. (i ) x 4  4 x 2  12  0 let m  x 2 m2  x 4 m 2  4m  12  0
  • 6. Equations Reducible To Quadratics e.g. (i ) x 4  4 x 2  12  0 let m  x 2 m2  x 4 m 2  4m  12  0  m  6  m  2   0
  • 7. Equations Reducible To Quadratics e.g. (i ) x 4  4 x 2  12  0 let m  x 2 m2  x 4 m 2  4m  12  0  m  6  m  2   0 m6 or m  2
  • 8. Equations Reducible To Quadratics e.g. (i ) x 4  4 x 2  12  0 let m  x 2 m2  x 4 m 2  4m  12  0  m  6  m  2   0 m6 or m  2 x2  6 or x 2  2
  • 9. Equations Reducible To Quadratics e.g. (i ) x 4  4 x 2  12  0 let m  x 2 m2  x 4 m 2  4m  12  0  m  6  m  2   0 m6 or m  2 x2  6 or x 2  2 x 6
  • 10. Equations Reducible To Quadratics e.g. (i ) x 4  4 x 2  12  0 let m  x 2 m2  x 4 m 2  4m  12  0  m  6  m  2   0 m6 or m  2 x2  6 or x 2  2 x 6 no real solutions
  • 11. Equations Reducible To Quadratics e.g. (i ) x 4  4 x 2  12  0 let m  x 2 m2  x 4 m 2  4m  12  0  m  6  m  2   0 m6 or m  2 x2  6 or x 2  2 x 6 no real solutions x   6
  • 12. Equations Reducible To Quadratics e.g. (i ) x 4  4 x 2  12  0 (ii ) 9 x  4  3x   3  0 let m  x 2 m2  x 4 m 2  4m  12  0  m  6  m  2   0 m6 or m  2 x2  6 or x 2  2 x 6 no real solutions x   6
  • 13. Equations Reducible To Quadratics e.g. (i ) x 4  4 x 2  12  0 (ii ) 9 x  4  3x   3  0 let m  x 2 let m  3x m2  x 4 m 2  4m  12  0  m  6  m  2   0 m6 or m  2 x2  6 or x 2  2 x 6 no real solutions x   6
  • 14. Equations Reducible To Quadratics e.g. (i ) x 4  4 x 2  12  0 (ii ) 9 x  4  3x   3  0 let m  x 2 let m  3x m2  x 4 m  3   3  3   9x 2 x 2 2x 2 x m 2  4m  12  0  m  6  m  2   0 m6 or m  2 x2  6 or x 2  2 x 6 no real solutions x   6
  • 15. Equations Reducible To Quadratics e.g. (i ) x 4  4 x 2  12  0 (ii ) 9 x  4  3x   3  0 let m  x 2 let m  3x m2  x 4 m  3   3  3   9x 2 x 2 2x 2 x m 2  4m  12  0 m 2  4m  3  0  m  6  m  2   0 m6 or m  2 x2  6 or x 2  2 x 6 no real solutions x   6
  • 16. Equations Reducible To Quadratics e.g. (i ) x 4  4 x 2  12  0 (ii ) 9 x  4  3x   3  0 let m  x 2 let m  3x m2  x 4 m  3   3  3   9x 2 x 2 2x 2 x m 2  4m  12  0 m 2  4m  3  0  m  6  m  2   0  m  3 m  1  0 m6 or m  2 x2  6 or x 2  2 x 6 no real solutions x   6
  • 17. Equations Reducible To Quadratics e.g. (i ) x 4  4 x 2  12  0 (ii ) 9 x  4  3x   3  0 let m  x 2 let m  3x m2  x 4 m  3   3  3   9x 2 x 2 2x 2 x m 2  4m  12  0 m 2  4m  3  0  m  6  m  2   0  m  3 m  1  0 m6 or m  2 m  3 or m  1 x2  6 or x 2  2 x 6 no real solutions x   6
  • 18. Equations Reducible To Quadratics e.g. (i ) x 4  4 x 2  12  0 (ii ) 9 x  4  3x   3  0 let m  x 2 let m  3x m2  x 4 m  3   3  3   9x 2 x 2 2x 2 x m 2  4m  12  0 m 2  4m  3  0  m  6  m  2   0  m  3 m  1  0 m6 or m  2 m  3 or m  1 x2  6 or x 2  2 3x  3 or 3x  1 x 6 no real solutions x   6
  • 19. Equations Reducible To Quadratics e.g. (i ) x 4  4 x 2  12  0 (ii ) 9 x  4  3x   3  0 let m  x 2 let m  3x m2  x 4 m  3   3  3   9x 2 x 2 2x 2 x m 2  4m  12  0 m 2  4m  3  0  m  6  m  2   0  m  3 m  1  0 m6 or m  2 m  3 or m  1 x2  6 or x 2  2 3x  3 or 3x  1 x 6 no real solutions x 1 x   6
  • 20. Equations Reducible To Quadratics e.g. (i ) x 4  4 x 2  12  0 (ii ) 9 x  4  3x   3  0 let m  x 2 let m  3x m2  x 4 m  3   3  3   9x 2 x 2 2x 2 x m 2  4m  12  0 m 2  4m  3  0  m  6  m  2   0  m  3 m  1  0 m6 or m  2 m  3 or m  1 x2  6 or x 2  2 3x  3 or 3x  1 x 6 no real solutions  x  1 or x  0 x   6
  • 21. Exercise 8D; 1, 2ad, 3b, 4ab, 5ac, 6a, 8abi, 9a*