SlideShare a Scribd company logo
Inverse Functions
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
A function and its inverse function are reflections of each other in
the line y = x.
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
A function and its inverse function are reflections of each other in
the line y = x.
If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x 
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
A function and its inverse function are reflections of each other in
the line y = x.
If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x 
The domain of y  f  x  is the range of y  f 1  x 
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
A function and its inverse function are reflections of each other in
the line y = x.
If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x 
The domain of y  f  x  is the range of y  f 1  x 
The range of y  f  x  is the domain of y  f 1  x 
Testing For Inverse Functions
Testing For Inverse Functions
(1) Use a horizontal line test
Testing For Inverse Functions
(1) Use a horizontal line test


e.g.
 i  y  x 2   y



                           x
Testing For Inverse Functions
(1) Use a horizontal line test


e.g.
 i  y  x 2   y



                           x


   Only has an inverse relation
Testing For Inverse Functions
(1) Use a horizontal line test


e.g.
 i  y  x 2   y                 ii  y  x 3   y



                           x                          x


   Only has an inverse relation
Testing For Inverse Functions
(1) Use a horizontal line test


e.g.
 i  y  x 2   y                 ii  y  x 3    y



                           x                                  x


   Only has an inverse relation            Has an inverse function
Testing For Inverse Functions
(1) Use a horizontal line test
                OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
Testing For Inverse Functions
(1) Use a horizontal line test
                OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
             OR
    x  y2
Testing For Inverse Functions
(1) Use a horizontal line test
                OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
             OR
    x  y2
    y x
    NOT UNIQUE
Testing For Inverse Functions
(1) Use a horizontal line test
              OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
             OR                                                OR
    x  y2                                            x  y3
    y x
    NOT UNIQUE
Testing For Inverse Functions
(1) Use a horizontal line test
              OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
             OR                                                OR
    x  y2                                            x  y3
    y x                                             y3 x
    NOT UNIQUE                                        UNIQUE
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
inverse function), then;
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
inverse function), then;

       f 1  f  x   x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
inverse function), then;

       f 1  f  x   x   AND       f  f 1  x   x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.            2x 1
        f x 
                3  2x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.            2x 1
        f x 
                3  2x
     2x 1      2 y 1
y          x
     3  2x     3 2y
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.            2x 1
        f x 
                3  2x
     2x 1           2 y 1
y          x
     3  2x          3 2y
       3  2 y x  2 y  1
         3 x  2 xy  2 y  1
        2 x  2  y  3 x  1
                       3x  1
                   y
                       2x  2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND         f  f 1  x   x

e.g.            2x 1                          2x 1  
        f x                               3         1
                3  2x                          3  2x 
                            f 1  f  x   
                                               2x 1 
   2x 1            2 y 1                   2        2
y         x                                 3  2x 
   3  2x           3 2y
     3  2 y x  2 y  1
      3 x  2 xy  2 y  1
     2 x  2  y  3 x  1
                    3x  1
                y
                    2x  2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND          f  f 1  x   x

e.g.            2x 1                           2x 1  
        f x                                3         1
                3  2x                           3  2x 
                            f 1  f  x   
                                                2x 1 
   2x 1            2 y 1                    2        2
y         x                                  3  2x 
   3  2x           3 2y
     3  2 y x  2 y  1                    6x  3  3  2x
                                            
      3 x  2 xy  2 y  1                    4x  2  6  4x
     2 x  2  y  3 x  1                 
                                              8x
                    3x  1                     8
                y                          x
                    2x  2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x    AND          f  f 1  x   x

e.g.            2x 1                           2x 1                         3x  1  
        f x                                3         1                   2          1
                3  2x
                                                             f  f 1  x   
                                                 3  2x                          2x  2 
                            f 1  f  x   
                                                2x 1                             3x  1 
   2x 1            2 y 1                    2         2                  3  2         
y         x                                  3  2x                            2x  2 
   3  2x           3 2y
     3  2 y x  2 y  1                    6x  3  3  2x
                                            
      3 x  2 xy  2 y  1                    4x  2  6  4x
     2 x  2  y  3 x  1                 
                                              8x
                    3x  1                     8
                y                          x
                    2x  2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x    AND           f  f 1  x   x

e.g.            2x 1                           2x 1                          3x  1  
        f x                                3         1                    2          1
                3  2x
                                                             f  f 1  x   
                                                 3  2x                           2x  2 
                            f 1  f  x   
                                                2x 1                              3x  1 
   2x 1            2 y 1                    2         2                   3  2         
y         x                                  3  2x                             2x  2 
   3  2x           3 2y
     3  2 y x  2 y  1                    6x  3  3  2x                 6x  2  2x  2
                                                                          
      3 x  2 xy  2 y  1                    4x  2  6  4x                 6x  6  6x  2
     2 x  2  y  3 x  1                 
                                              8x
                                                                           
                                                                             8x
                    3x  1                     8                              8
                y                          x                             x
                    2x  2
Restricting The Domain
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
                                                            y  x3

                                                              x
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y
                                                              x
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y

  f 1 : x  y 3                                              x
                1
     y  x     3
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y

  f 1 : x  y 3                                              x
                1
     y  x     3


       Domain: all real x
       Range: all real y
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y

  f 1 : x  y 3                                              x
                1
     y  x     3


       Domain: all real x
       Range: all real y
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y

  f 1 : x  y 3                                              x
                1
                                                   1
     y  x     3
                                             yx   3

       Domain: all real x
       Range: all real y
y  ex
ii  y  e x
                y

                1

                        x
y  ex
ii  y  e x
                         y
    Domain: all real x
   Range: y > 0          1
y  ex
    ii  y  e x
                               y
          Domain: all real x
         Range: y > 0          1

    1                                 x
f        :xe   y


      y  log x
y  ex
    ii  y  e x
                               y
          Domain: all real x
         Range: y > 0          1

    1                                 x
f        :xe   y


      y  log x

          Domain: x > 0
          Range: all real y
y  ex
    ii  y  e x
                               y
          Domain: all real x
         Range: y > 0          1

    1                                 x
f        :xe   y


      y  log x

          Domain: x > 0
          Range: all real y
y  ex
    ii  y  e x
                               y
          Domain: all real x                y  log x
         Range: y > 0          1
                                   1       x
    1
f        :xe   y


      y  log x

          Domain: x > 0
          Range: all real y
iii  y  x 2   y  x2   y



                              x
iii  y  x 2           y  x2   y
    Domain: all real x
    Range: y  0
                                      x
iii  y  x 2           y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                        x
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2


   Domain: x  0
   Range: y  0
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2


   Domain: x  0
   Range: y  0
iii  y  x 2                 y  x2                 1
                                        y
    Domain: all real x                          yx   2


    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2


   Domain: x  0
   Range: y  0
iii  y  x 2                   y  x2                              1
                                               y
    Domain: all real x                                         yx   2


    Range: y  0
    NO INVERSE                                             x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2


   Domain: x  0                         Book 2
                         Exercise 1A; 2, 4bdf, 7, 9, 13, 14, 16, 19
   Range: y  0

More Related Content

What's hot

Inverse functions and relations
Inverse functions and relationsInverse functions and relations
Inverse functions and relationsJessica Garcia
 
4.1 inverse functions
4.1 inverse functions4.1 inverse functions
4.1 inverse functionsmath260
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
Jerica Morgan
 
Jan. 6 Inverse Functions
Jan. 6 Inverse FunctionsJan. 6 Inverse Functions
Jan. 6 Inverse FunctionsRyanWatt
 
Algebra 2 Section 5-3
Algebra 2 Section 5-3Algebra 2 Section 5-3
Algebra 2 Section 5-3
Jimbo Lamb
 
Inverse functions
Inverse functionsInverse functions
Inverse functionsgregcross22
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
PLeach
 
Inverse Functions
Inverse FunctionsInverse Functions
Inverse Functionsswartzje
 
7.7 one to_one_functions_-_inverse_functions
7.7 one to_one_functions_-_inverse_functions7.7 one to_one_functions_-_inverse_functions
7.7 one to_one_functions_-_inverse_functions
arvin gutierrez
 
Functions
FunctionsFunctions
Functions
JJkedst
 
Inverse composite functions
Inverse composite functionsInverse composite functions
Inverse composite functionsDebra Wallace
 
Inverse functions 13
Inverse functions 13Inverse functions 13
Inverse functions 13
Shaun Wilson
 
Comp inverse
Comp inverseComp inverse
Comp inverse
IsmaNurokim
 
4 5 inverse functions
4 5 inverse functions4 5 inverse functions
4 5 inverse functionshisema01
 
Differentiation by first principles
Differentiation by first principlesDifferentiation by first principles
Differentiation by first principles
sumanmathews
 
Inverse Functions
Inverse FunctionsInverse Functions
Inverse Functionstschmucker
 
Partial derivative1
Partial derivative1Partial derivative1
Partial derivative1Nidhu Sharma
 
Partial differentiation B tech
Partial differentiation B techPartial differentiation B tech
Partial differentiation B tech
Raj verma
 

What's hot (20)

Inverse functions and relations
Inverse functions and relationsInverse functions and relations
Inverse functions and relations
 
4.1 inverse functions
4.1 inverse functions4.1 inverse functions
4.1 inverse functions
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
Jan. 6 Inverse Functions
Jan. 6 Inverse FunctionsJan. 6 Inverse Functions
Jan. 6 Inverse Functions
 
Algebra 2 Section 5-3
Algebra 2 Section 5-3Algebra 2 Section 5-3
Algebra 2 Section 5-3
 
Inverse functions (2)
Inverse functions (2)Inverse functions (2)
Inverse functions (2)
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
Calc 5.3
Calc 5.3Calc 5.3
Calc 5.3
 
Inverse Functions
Inverse FunctionsInverse Functions
Inverse Functions
 
7.7 one to_one_functions_-_inverse_functions
7.7 one to_one_functions_-_inverse_functions7.7 one to_one_functions_-_inverse_functions
7.7 one to_one_functions_-_inverse_functions
 
Functions
FunctionsFunctions
Functions
 
Inverse composite functions
Inverse composite functionsInverse composite functions
Inverse composite functions
 
Inverse functions 13
Inverse functions 13Inverse functions 13
Inverse functions 13
 
Comp inverse
Comp inverseComp inverse
Comp inverse
 
4 5 inverse functions
4 5 inverse functions4 5 inverse functions
4 5 inverse functions
 
Differentiation by first principles
Differentiation by first principlesDifferentiation by first principles
Differentiation by first principles
 
Inverse Functions
Inverse FunctionsInverse Functions
Inverse Functions
 
Partial derivative1
Partial derivative1Partial derivative1
Partial derivative1
 
Partial differentiation B tech
Partial differentiation B techPartial differentiation B tech
Partial differentiation B tech
 

Viewers also liked

Math130 ch09
Math130 ch09Math130 ch09
Math130 ch09
Putrace
 
12 x1 t05 05 integration with inverse trig (2013)
12 x1 t05 05 integration with inverse trig (2013)12 x1 t05 05 integration with inverse trig (2013)
12 x1 t05 05 integration with inverse trig (2013)Nigel Simmons
 
Presentation 2 (1)
Presentation 2 (1)Presentation 2 (1)
Presentation 2 (1)
bona4444
 
Presentation 2 (1)
Presentation 2 (1)Presentation 2 (1)
Presentation 2 (1)
bona4444
 
Web Services: Dje - Sot
Web Services: Dje - Sot Web Services: Dje - Sot
Web Services: Dje - Sot
Betim Drenica
 
Intro to logarithms (rev1)
Intro to logarithms (rev1)Intro to logarithms (rev1)
Intro to logarithms (rev1)Inez Hofner
 
Mjedisi armela-braka
Mjedisi armela-brakaMjedisi armela-braka
Mjedisi armela-braka
Megi Braka
 
Mjedisi
MjedisiMjedisi
Mjedisi
Klarisa Klara
 
PROJEKT-Ndotja e Mjedisit
PROJEKT-Ndotja e MjedisitPROJEKT-Ndotja e Mjedisit
PROJEKT-Ndotja e Mjedisit
xhulia osmanllari
 

Viewers also liked (10)

Math130 ch09
Math130 ch09Math130 ch09
Math130 ch09
 
12 x1 t05 05 integration with inverse trig (2013)
12 x1 t05 05 integration with inverse trig (2013)12 x1 t05 05 integration with inverse trig (2013)
12 x1 t05 05 integration with inverse trig (2013)
 
Presentation 2 (1)
Presentation 2 (1)Presentation 2 (1)
Presentation 2 (1)
 
Presentation 2 (1)
Presentation 2 (1)Presentation 2 (1)
Presentation 2 (1)
 
Web Services: Dje - Sot
Web Services: Dje - Sot Web Services: Dje - Sot
Web Services: Dje - Sot
 
Intro to logarithms (rev1)
Intro to logarithms (rev1)Intro to logarithms (rev1)
Intro to logarithms (rev1)
 
Mjedisi armela-braka
Mjedisi armela-brakaMjedisi armela-braka
Mjedisi armela-braka
 
Mjedisi
MjedisiMjedisi
Mjedisi
 
PROJEKT-Ndotja e Mjedisit
PROJEKT-Ndotja e MjedisitPROJEKT-Ndotja e Mjedisit
PROJEKT-Ndotja e Mjedisit
 
Mjedisi
MjedisiMjedisi
Mjedisi
 

Similar to 12X1 T05 01 inverse functions (2010)

11 x1 t02 08 inverse functions (2012)
11 x1 t02 08 inverse functions (2012)11 x1 t02 08 inverse functions (2012)
11 x1 t02 08 inverse functions (2012)Nigel Simmons
 
11X1 T02 08 inverse functions (2011)
11X1 T02 08 inverse functions (2011)11X1 T02 08 inverse functions (2011)
11X1 T02 08 inverse functions (2011)Nigel Simmons
 
11 X1 T02 08 inverse functions (2010)
11 X1 T02 08 inverse functions (2010)11 X1 T02 08 inverse functions (2010)
11 X1 T02 08 inverse functions (2010)Nigel Simmons
 
11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)Nigel Simmons
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
Matthew Leingang
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
Matthew Leingang
 
7.4 inverse functions
7.4 inverse functions7.4 inverse functions
7.4 inverse functionshisema01
 
4.1 Inverse Functions
4.1 Inverse Functions4.1 Inverse Functions
4.1 Inverse Functions
smiller5
 
4.1 Inverse Functions
4.1 Inverse Functions4.1 Inverse Functions
4.1 Inverse Functions
smiller5
 
Chapter 1 (functions).
Chapter 1 (functions).Chapter 1 (functions).
Chapter 1 (functions).
Eko Wijayanto
 
Universal algebra (1)
Universal algebra (1)Universal algebra (1)
Universal algebra (1)
Lucy Peña Huaynate
 
Analytic Geometry
Analytic GeometryAnalytic Geometry
Analytic Geometry
Nicko Salazar
 
Module 3 exponential and logarithmic functions
Module 3   exponential and logarithmic functionsModule 3   exponential and logarithmic functions
Module 3 exponential and logarithmic functions
dionesioable
 
1.9 Inverse Functions.ppt
1.9 Inverse Functions.ppt1.9 Inverse Functions.ppt
1.9 Inverse Functions.ppt
RACHELPAQUITCAADA
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)Nigel Simmons
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and divisionNigel Simmons
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)Nigel Simmons
 
29 inverse functions x
29 inverse functions  x29 inverse functions  x
29 inverse functions x
math260
 

Similar to 12X1 T05 01 inverse functions (2010) (20)

11 x1 t02 08 inverse functions (2012)
11 x1 t02 08 inverse functions (2012)11 x1 t02 08 inverse functions (2012)
11 x1 t02 08 inverse functions (2012)
 
11X1 T02 08 inverse functions (2011)
11X1 T02 08 inverse functions (2011)11X1 T02 08 inverse functions (2011)
11X1 T02 08 inverse functions (2011)
 
11 X1 T02 08 inverse functions (2010)
11 X1 T02 08 inverse functions (2010)11 X1 T02 08 inverse functions (2010)
11 X1 T02 08 inverse functions (2010)
 
11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
 
7.4 inverse functions
7.4 inverse functions7.4 inverse functions
7.4 inverse functions
 
Ch07
Ch07Ch07
Ch07
 
4.1 Inverse Functions
4.1 Inverse Functions4.1 Inverse Functions
4.1 Inverse Functions
 
4.1 Inverse Functions
4.1 Inverse Functions4.1 Inverse Functions
4.1 Inverse Functions
 
Chapter 1 (functions).
Chapter 1 (functions).Chapter 1 (functions).
Chapter 1 (functions).
 
Universal algebra (1)
Universal algebra (1)Universal algebra (1)
Universal algebra (1)
 
Analytic Geometry
Analytic GeometryAnalytic Geometry
Analytic Geometry
 
Module 3 exponential and logarithmic functions
Module 3   exponential and logarithmic functionsModule 3   exponential and logarithmic functions
Module 3 exponential and logarithmic functions
 
1.9 Inverse Functions.ppt
1.9 Inverse Functions.ppt1.9 Inverse Functions.ppt
1.9 Inverse Functions.ppt
 
Lesson 51
Lesson 51Lesson 51
Lesson 51
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)
 
29 inverse functions x
29 inverse functions  x29 inverse functions  x
29 inverse functions x
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
GeoBlogs
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
TechSoup
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Po-Chuan Chen
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 

Recently uploaded (20)

Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 

12X1 T05 01 inverse functions (2010)

  • 2. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value.
  • 3. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y)
  • 4. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y
  • 5. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x 
  • 6. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x  A function and its inverse function are reflections of each other in the line y = x.
  • 7. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x  A function and its inverse function are reflections of each other in the line y = x. If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x 
  • 8. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x  A function and its inverse function are reflections of each other in the line y = x. If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x  The domain of y  f  x  is the range of y  f 1  x 
  • 9. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x  A function and its inverse function are reflections of each other in the line y = x. If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x  The domain of y  f  x  is the range of y  f 1  x  The range of y  f  x  is the domain of y  f 1  x 
  • 10. Testing For Inverse Functions
  • 11. Testing For Inverse Functions (1) Use a horizontal line test
  • 12. Testing For Inverse Functions (1) Use a horizontal line test e.g. i  y  x 2 y x
  • 13. Testing For Inverse Functions (1) Use a horizontal line test e.g. i  y  x 2 y x Only has an inverse relation
  • 14. Testing For Inverse Functions (1) Use a horizontal line test e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation
  • 15. Testing For Inverse Functions (1) Use a horizontal line test e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function
  • 16. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function
  • 17. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function OR x  y2
  • 18. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function OR x  y2 y x NOT UNIQUE
  • 19. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function OR OR x  y2 x  y3 y x NOT UNIQUE
  • 20. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function OR OR x  y2 x  y3 y x y3 x NOT UNIQUE UNIQUE
  • 21. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then;
  • 22. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x
  • 23. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x
  • 24. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1 f x  3  2x
  • 25. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1 f x  3  2x 2x 1 2 y 1 y x 3  2x 3 2y
  • 26. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1 f x  3  2x 2x 1 2 y 1 y x 3  2x 3 2y 3  2 y x  2 y  1 3 x  2 xy  2 y  1 2 x  2  y  3 x  1 3x  1 y 2x  2
  • 27. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1  2x 1   f x  3  1 3  2x 3  2x  f 1  f  x     2x 1  2x 1 2 y 1 2 2 y x  3  2x  3  2x 3 2y 3  2 y x  2 y  1 3 x  2 xy  2 y  1 2 x  2  y  3 x  1 3x  1 y 2x  2
  • 28. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1  2x 1   f x  3  1 3  2x 3  2x  f 1  f  x     2x 1  2x 1 2 y 1 2 2 y x  3  2x  3  2x 3 2y 3  2 y x  2 y  1 6x  3  3  2x  3 x  2 xy  2 y  1 4x  2  6  4x 2 x  2  y  3 x  1  8x 3x  1 8 y x 2x  2
  • 29. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1  2x 1    3x  1   f x  3  1 2  1 3  2x f  f 1  x    3  2x  2x  2  f 1  f  x     2x 1   3x  1  2x 1 2 y 1 2  2 3  2  y x  3  2x   2x  2  3  2x 3 2y 3  2 y x  2 y  1 6x  3  3  2x  3 x  2 xy  2 y  1 4x  2  6  4x 2 x  2  y  3 x  1  8x 3x  1 8 y x 2x  2
  • 30. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1  2x 1    3x  1   f x  3  1 2  1 3  2x f  f 1  x    3  2x  2x  2  f 1  f  x     2x 1   3x  1  2x 1 2 y 1 2  2 3  2  y x  3  2x   2x  2  3  2x 3 2y 3  2 y x  2 y  1 6x  3  3  2x 6x  2  2x  2   3 x  2 xy  2 y  1 4x  2  6  4x 6x  6  6x  2 2 x  2  y  3 x  1  8x  8x 3x  1 8 8 y x x 2x  2
  • 32. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function.
  • 33. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible.
  • 34. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y y  x3 x
  • 35. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y x
  • 36. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y f 1 : x  y 3 x 1 y  x 3
  • 37. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y f 1 : x  y 3 x 1 y  x 3 Domain: all real x Range: all real y
  • 38. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y f 1 : x  y 3 x 1 y  x 3 Domain: all real x Range: all real y
  • 39. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y f 1 : x  y 3 x 1 1 y  x 3 yx 3 Domain: all real x Range: all real y
  • 40. y  ex ii  y  e x y 1 x
  • 41. y  ex ii  y  e x y Domain: all real x Range: y > 0 1
  • 42. y  ex ii  y  e x y Domain: all real x Range: y > 0 1 1 x f :xe y  y  log x
  • 43. y  ex ii  y  e x y Domain: all real x Range: y > 0 1 1 x f :xe y  y  log x Domain: x > 0 Range: all real y
  • 44. y  ex ii  y  e x y Domain: all real x Range: y > 0 1 1 x f :xe y  y  log x Domain: x > 0 Range: all real y
  • 45. y  ex ii  y  e x y Domain: all real x y  log x Range: y > 0 1 1 x 1 f :xe y  y  log x Domain: x > 0 Range: all real y
  • 46. iii  y  x 2 y  x2 y x
  • 47. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 x
  • 48. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x
  • 49. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0
  • 50. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0
  • 51. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2
  • 52. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2 Domain: x  0 Range: y  0
  • 53. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2 Domain: x  0 Range: y  0
  • 54. iii  y  x 2 y  x2 1 y Domain: all real x yx 2 Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2 Domain: x  0 Range: y  0
  • 55. iii  y  x 2 y  x2 1 y Domain: all real x yx 2 Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2 Domain: x  0 Book 2 Exercise 1A; 2, 4bdf, 7, 9, 13, 14, 16, 19 Range: y  0