SlideShare a Scribd company logo
1 of 54
Download to read offline
Inequalities & Graphs
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2      Oblique asymptote:
Inequalities & Graphs
                 x2
e.g. i  Solve     1                       x2         4
                x2      Oblique asymptote:      x2
                                            x2        x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1                       x2         4
                x2      Oblique asymptote:      x2
                                            x2        x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1                       x2         4
                x2      Oblique asymptote:      x2
                                            x2        x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1         x2
                x2                1
                              x2
                             x2  x  2
                           x2  x  2  0
                          x  2 x  1  0
                         x  2 or x  1
Inequalities & Graphs
                 x2
e.g. i  Solve     1          x2
                x2                 1
                               x2
                              x2  x  2
                            x2  x  2  0
                           x  2 x  1  0
                           x  2 or x  1

                                x2
                                    1
                               x2
                         x  2 or  1  x  2
(ii) (1990)




Consider the graph y  x
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x
   dy     1
      
   dx 2 x
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x
   dy     1
      
   dx 2 x
  dy
  0 for x  0
  dx
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x                              at x  0, y  0
 dy   1
    
 dx 2 x
 dy
  0 for x  0
 dx
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x                              at x  0, y  0
   dy     1                            when x  0, y  0
      
   dx 2 x
  dy
  0 for x  0
  dx
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x                              at x  0, y  0
   dy     1                            when x  0, y  0
      
   dx 2 x
  dy
  0 for x  0                   curve is increasing for x  0
  dx
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3


             As x is increasing;
             Area outer rectangles  Area under curve
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3


             As x is increasing;
             Area outer rectangles  Area under curve
                                    n
                  1  2    n   xdx
                                    0
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3


             As x is increasing;
             Area outer rectangles  Area under curve
                                     n
                  1  2    n   xdx
                                     0
                                           n
                                    2 x x
                                   
                                    3    0
                                          
                                    2
                                    n n
                                    3
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3


             As x is increasing;
             Area outer rectangles  Area under curve
                                     n
                  1  2    n   xdx
                                     0
                                           n
                                    2 x x
                                   
                                    3    0
                                          
                                    2
                                    n n
                                    3
                                    n
                                       2
               1  2    n   xdx  n n
                                0
                                       3
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
 L.H .S  1
        1
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                      41  3
 L.H .S  1                                   R.H .S          1
                                                         6
        1
                                                      7
                                                    
                                                      6
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                      41  3
 L.H .S  1                                   R.H .S          1
                                                         6
        1
                                                      7
                                                    
                                                      6
                         L.H .S  R.H .S
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                      41  3
 L.H .S  1                                   R.H .S          1
                                                         6
        1
                                                      7
                                                    
                                                      6
                       L.H .S  R.H .S
                   Hence the result is true for n = 1
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                       41  3
 L.H .S  1                                   R.H .S           1
                                                          6
        1
                                                       7
                                                     
                                                       6
                        L.H .S  R.H .S
                    Hence the result is true for n = 1
Assume the result is true for n  k where k is a positive integer
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                       41  3
 L.H .S  1                                   R.H .S           1
                                                          6
        1
                                                       7
                                                     
                                                       6
                        L.H .S  R.H .S
                    Hence the result is true for n = 1
Assume the result is true for n  k where k is a positive integer
                                        4k  3
              i.e. 1  2    k                 k
                                           6
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                       41  3
 L.H .S  1                                   R.H .S           1
                                                          6
        1
                                                       7
                                                     
                                                       6
                        L.H .S  R.H .S
                    Hence the result is true for n = 1
Assume the result is true for n  k where k is a positive integer
                                        4k  3
               i.e. 1  2    k                k
                                           6
Prove the result is true for n  k  1
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                       41  3
 L.H .S  1                                   R.H .S           1
                                                          6
        1
                                                       7
                                                     
                                                       6
                        L.H .S  R.H .S
                    Hence the result is true for n = 1
Assume the result is true for n  k where k is a positive integer
                                        4k  3
                i.e. 1  2    k               k
                                           6
Prove the result is true for n  k  1
                                            4k  7
        i.e. Prove 1  2    k  1                k 1
                                               6
Proof:
Proof:   1  2  k 1  1  2  k  k 1
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                k  k 1
                            6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                 k  k 1
                            6
                        
                           4k  3 k  6 k  1
                                   2


                                     6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                 k  k 1
                            6
                        
                           4k  3 k  6 k  1
                                    2


                                      6
                           16k 3  24k 2  9k  6 k  1
                        
                                        6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                  k  k 1
                            6
                        
                           4k  3 k  6 k  1
                                     2


                                       6
                           16k 3  24k 2  9k  6 k  1
                        
                                         6
                            k  116k 2  8k  1  1  6 k  1
                        
                                             6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                  k  k 1
                            6
                        
                           4k  3 k  6 k  1
                                     2


                                       6
                           16k 3  24k 2  9k  6 k  1
                        
                                         6
                            k  116k 2  8k  1  1  6 k  1
                        
                                             6
                         
                            k  14k  12  1  6 k  1
                                          6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                  k  k 1
                            6
                        
                           4k  3 k  6 k  1
                                     2


                                       6
                           16k 3  24k 2  9k  6 k  1
                        
                                         6
                            k  116k 2  8k  1  1  6 k  1
                        
                                              6
                         
                            k  14k  12  1  6 k  1
                                           6
                         
                            k  14k  1  6 k  1
                                            2


                                         6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                   k  k 1
                             6
                        
                            4k  3 k  6 k  1
                                      2


                                        6
                            16k 3  24k 2  9k  6 k  1
                        
                                           6
                             k  116k 2  8k  1  1  6 k  1
                        
                                               6
                         
                             k  14k  12  1  6 k  1
                                            6
                         
                             k  14k  1  6 k  1
                                             2


                                          6
                           4k  1 k  1  6 k  1
                         
                                          6
                         
                           4k  7  k  1
                                    6
Hence the result is true for n = k +1 if it is also true for n =k
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
   1  2    10000 to the nearest hundred
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
   1  2    10000 to the nearest hundred
           2                          4n  3
             n n  1  2  n              n
           3                            6
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
    1  2    10000 to the nearest hundred
            2                          4n  3
              n n  1  2  n               n
            3                            6
2                                          410000  3
  10000 10000  1  2    10000                    10000
3                                                6
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
    1  2    10000 to the nearest hundred
            2                          4n  3
              n n  1  2  n               n
            3                            6
2                                          410000  3
  10000 10000  1  2    10000                    10000
3                                                6
          666700  1  2    10000  666700
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
    1  2    10000 to the nearest hundred
            2                          4n  3
              n n  1  2  n               n
            3                            6
2                                          410000  3
  10000 10000  1  2    10000                    10000
3                                                6
          666700  1  2    10000  666700
 1  2    10000  666700 to the nearest hundred
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
    1  2    10000 to the nearest hundred
            2                          4n  3
              n n  1  2  n               n
            3                            6
2                                          410000  3
  10000 10000  1  2    10000                    10000
3                                                6
          666700  1  2    10000  666700
 1  2    10000  666700 to the nearest hundred


                            Exercise 10F

More Related Content

What's hot (15)

1003 ch 10 day 3
1003 ch 10 day 31003 ch 10 day 3
1003 ch 10 day 3
 
Unexpected ineq
Unexpected ineqUnexpected ineq
Unexpected ineq
 
1008 ch 10 day 8
1008 ch 10 day 81008 ch 10 day 8
1008 ch 10 day 8
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
iTute Notes MM
iTute Notes MMiTute Notes MM
iTute Notes MM
 
Day 6 multiplying binomials
Day 6 multiplying binomialsDay 6 multiplying binomials
Day 6 multiplying binomials
 
09 trial melaka_s2
09 trial melaka_s209 trial melaka_s2
09 trial melaka_s2
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
Sol Purcell Ingles
Sol Purcell InglesSol Purcell Ingles
Sol Purcell Ingles
 
Slides September 16
Slides September 16Slides September 16
Slides September 16
 
Day 1 adding polynomials
Day 1 adding polynomialsDay 1 adding polynomials
Day 1 adding polynomials
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencial
 
Lesson 54
Lesson 54Lesson 54
Lesson 54
 
Chapter 16
Chapter 16Chapter 16
Chapter 16
 
0308 ch 3 day 8
0308 ch 3 day 80308 ch 3 day 8
0308 ch 3 day 8
 

Viewers also liked

Xavier trias sube los precios de tmb
Xavier trias sube los precios de tmbXavier trias sube los precios de tmb
Xavier trias sube los precios de tmbhollin
 
xbrl overview by liv watson
 xbrl overview by  liv watson xbrl overview by  liv watson
xbrl overview by liv watsonWorkiva
 
Proyectos emprendedores de Portugal, Polonia, Noruega, Alemania,
Proyectos emprendedores de Portugal, Polonia, Noruega,  Alemania, Proyectos emprendedores de Portugal, Polonia, Noruega,  Alemania,
Proyectos emprendedores de Portugal, Polonia, Noruega, Alemania, Daniel Abreu
 
Xaraktiristika Epeksergastwn
Xaraktiristika EpeksergastwnXaraktiristika Epeksergastwn
Xaraktiristika Epeksergastwnnikwnas13
 
Xavier Ruiz
Xavier RuizXavier Ruiz
Xavier RuizJSe
 
Xen app65stepbystep仮想デスクトップ環境の構築
Xen app65stepbystep仮想デスクトップ環境の構築Xen app65stepbystep仮想デスクトップ環境の構築
Xen app65stepbystep仮想デスクトップ環境の構築Citrix Systems Japan
 
18 tendencias de consumo actuales
18 tendencias de consumo actuales18 tendencias de consumo actuales
18 tendencias de consumo actualesDavid Veloso
 

Viewers also liked (9)

Xavier trias sube los precios de tmb
Xavier trias sube los precios de tmbXavier trias sube los precios de tmb
Xavier trias sube los precios de tmb
 
X 09 Mwy 101 1
X 09  Mwy 101 1X 09  Mwy 101 1
X 09 Mwy 101 1
 
xbrl overview by liv watson
 xbrl overview by  liv watson xbrl overview by  liv watson
xbrl overview by liv watson
 
Proyectos emprendedores de Portugal, Polonia, Noruega, Alemania,
Proyectos emprendedores de Portugal, Polonia, Noruega,  Alemania, Proyectos emprendedores de Portugal, Polonia, Noruega,  Alemania,
Proyectos emprendedores de Portugal, Polonia, Noruega, Alemania,
 
Xabalina
XabalinaXabalina
Xabalina
 
Xaraktiristika Epeksergastwn
Xaraktiristika EpeksergastwnXaraktiristika Epeksergastwn
Xaraktiristika Epeksergastwn
 
Xavier Ruiz
Xavier RuizXavier Ruiz
Xavier Ruiz
 
Xen app65stepbystep仮想デスクトップ環境の構築
Xen app65stepbystep仮想デスクトップ環境の構築Xen app65stepbystep仮想デスクトップ環境の構築
Xen app65stepbystep仮想デスクトップ環境の構築
 
18 tendencias de consumo actuales
18 tendencias de consumo actuales18 tendencias de consumo actuales
18 tendencias de consumo actuales
 

Similar to X2 T08 03 inequalities & graphs (2011)

Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Septiko Aji
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16derry92
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)Nigel Simmons
 
11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)Nigel Simmons
 
X2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphsX2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphsNigel Simmons
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)Nigel Simmons
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)Nigel Simmons
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)Nigel Simmons
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)Nigel Simmons
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]Nigel Simmons
 
Stationary Points Handout
Stationary Points HandoutStationary Points Handout
Stationary Points Handoutcoburgmaths
 
Differential equations
Differential equationsDifferential equations
Differential equationsjanetvmiller
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integralsTarun Gehlot
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integralsTarun Gehlot
 
11X1 T10 01 first derivative (2011)
11X1 T10 01 first derivative (2011)11X1 T10 01 first derivative (2011)
11X1 T10 01 first derivative (2011)Nigel Simmons
 
11 x1 t10 01 first derivative (2012)
11 x1 t10 01 first derivative (2012)11 x1 t10 01 first derivative (2012)
11 x1 t10 01 first derivative (2012)Nigel Simmons
 
11X1 T12 01 first derivative (2010)
11X1 T12 01 first derivative (2010)11X1 T12 01 first derivative (2010)
11X1 T12 01 first derivative (2010)Nigel Simmons
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometryphysics101
 
STUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberSTUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberAPEX INSTITUTE
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)Nigel Simmons
 

Similar to X2 T08 03 inequalities & graphs (2011) (20)

Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)
 
11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)
 
X2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphsX2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphs
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]
 
Stationary Points Handout
Stationary Points HandoutStationary Points Handout
Stationary Points Handout
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
11X1 T10 01 first derivative (2011)
11X1 T10 01 first derivative (2011)11X1 T10 01 first derivative (2011)
11X1 T10 01 first derivative (2011)
 
11 x1 t10 01 first derivative (2012)
11 x1 t10 01 first derivative (2012)11 x1 t10 01 first derivative (2012)
11 x1 t10 01 first derivative (2012)
 
11X1 T12 01 first derivative (2010)
11X1 T12 01 first derivative (2010)11X1 T12 01 first derivative (2010)
11X1 T12 01 first derivative (2010)
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometry
 
STUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberSTUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex number
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...M56BOOKSTORE PRODUCT/SERVICE
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 

Recently uploaded (20)

Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 

X2 T08 03 inequalities & graphs (2011)

  • 2. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 3. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 4. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 5. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 6. Inequalities & Graphs x2 e.g. i  Solve 1 x2 Oblique asymptote:
  • 7. Inequalities & Graphs x2 e.g. i  Solve 1 x2 4 x2 Oblique asymptote:  x2 x2 x2
  • 8. Inequalities & Graphs x2 e.g. i  Solve 1 x2 4 x2 Oblique asymptote:  x2 x2 x2
  • 9. Inequalities & Graphs x2 e.g. i  Solve 1 x2 4 x2 Oblique asymptote:  x2 x2 x2
  • 10. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 11. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 12. Inequalities & Graphs x2 e.g. i  Solve 1 x2 x2 1 x2 x2  x  2 x2  x  2  0  x  2 x  1  0 x  2 or x  1
  • 13. Inequalities & Graphs x2 e.g. i  Solve 1 x2 x2 1 x2 x2  x  2 x2  x  2  0  x  2 x  1  0 x  2 or x  1 x2 1 x2 x  2 or  1  x  2
  • 14. (ii) (1990) Consider the graph y  x
  • 15. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0
  • 16. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx
  • 17. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x dy 1  dx 2 x
  • 18. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x dy 1  dx 2 x dy   0 for x  0 dx
  • 19. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x at x  0, y  0 dy 1  dx 2 x dy   0 for x  0 dx
  • 20. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x at x  0, y  0 dy 1 when x  0, y  0  dx 2 x dy   0 for x  0 dx
  • 21. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x at x  0, y  0 dy 1 when x  0, y  0  dx 2 x dy   0 for x  0  curve is increasing for x  0 dx
  • 22. b) Hence show that; n 2 1  2    n   xdx  n n 0 3
  • 23. b) Hence show that; n 2 1  2    n   xdx  n n 0 3
  • 24. b) Hence show that; n 2 1  2    n   xdx  n n 0 3 As x is increasing; Area outer rectangles  Area under curve
  • 25. b) Hence show that; n 2 1  2    n   xdx  n n 0 3 As x is increasing; Area outer rectangles  Area under curve n 1  2    n   xdx 0
  • 26. b) Hence show that; n 2 1  2    n   xdx  n n 0 3 As x is increasing; Area outer rectangles  Area under curve n 1  2    n   xdx 0 n 2 x x  3 0  2  n n 3
  • 27. b) Hence show that; n 2 1  2    n   xdx  n n 0 3 As x is increasing; Area outer rectangles  Area under curve n 1  2    n   xdx 0 n 2 x x  3 0  2  n n 3 n 2  1  2    n   xdx  n n 0 3
  • 28. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6
  • 29. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1
  • 30. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 L.H .S  1 1
  • 31. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6
  • 32. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S
  • 33. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1
  • 34. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1 Assume the result is true for n  k where k is a positive integer
  • 35. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1 Assume the result is true for n  k where k is a positive integer 4k  3 i.e. 1  2    k  k 6
  • 36. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1 Assume the result is true for n  k where k is a positive integer 4k  3 i.e. 1  2    k  k 6 Prove the result is true for n  k  1
  • 37. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1 Assume the result is true for n  k where k is a positive integer 4k  3 i.e. 1  2    k  k 6 Prove the result is true for n  k  1 4k  7 i.e. Prove 1  2    k  1  k 1 6
  • 39. Proof: 1  2  k 1  1  2  k  k 1
  • 40. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6
  • 41. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6
  • 42. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6 16k 3  24k 2  9k  6 k  1  6
  • 43. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6 16k 3  24k 2  9k  6 k  1  6 k  116k 2  8k  1  1  6 k  1  6
  • 44. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6 16k 3  24k 2  9k  6 k  1  6 k  116k 2  8k  1  1  6 k  1  6  k  14k  12  1  6 k  1 6
  • 45. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6 16k 3  24k 2  9k  6 k  1  6 k  116k 2  8k  1  1  6 k  1  6  k  14k  12  1  6 k  1 6  k  14k  1  6 k  1 2 6
  • 46. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6 16k 3  24k 2  9k  6 k  1  6 k  116k 2  8k  1  1  6 k  1  6  k  14k  12  1  6 k  1 6  k  14k  1  6 k  1 2 6 4k  1 k  1  6 k  1  6  4k  7  k  1 6
  • 47. Hence the result is true for n = k +1 if it is also true for n =k
  • 48. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n
  • 49. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred
  • 50. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1  2  n  n 3 6
  • 51. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1  2  n  n 3 6 2 410000  3 10000 10000  1  2    10000  10000 3 6
  • 52. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1  2  n  n 3 6 2 410000  3 10000 10000  1  2    10000  10000 3 6 666700  1  2    10000  666700
  • 53. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1  2  n  n 3 6 2 410000  3 10000 10000  1  2    10000  10000 3 6 666700  1  2    10000  666700  1  2    10000  666700 to the nearest hundred
  • 54. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1  2  n  n 3 6 2 410000  3 10000 10000  1  2    10000  10000 3 6 666700  1  2    10000  666700  1  2    10000  666700 to the nearest hundred Exercise 10F