SlideShare a Scribd company logo
1 of 16
SOAL HUKUM 1,2, 3 NEWTON
1. Perhatikan gambar berikut!
Benda bermassa m = 10 kg berada di atas lantai kasar ditarik oleh gaya F = 12 N ke arah
kanan. Jika koefisien gesekan statis antara benda dan lantai adalah 0,2 dengan koefisien
gesekan kinetis 0,1 tentukan besarnya :
a) Gaya normal
b) Gaya gesek antara benda dan lantai
c) Percepatan gerak benda
Pembahasan
Gaya-gaya pada benda diperlihatkan gambar berikut:
a) Gaya normal
Σ Fy = 0
N − W = 0
N − mg = 0
N − (10)(10) = 0
N = 100 N
b) Gaya gesek antara benda dan lantai
Cek terlebih dahulu gaya gesek statis maksimum yang bisa terjadi antara benda dan
lantai:
fsmaks = μs N
fsmaks = (0,2)(100) = 20 N
Ternyata gaya gesek statis maksimum masih lebih besar dari gaya yang menarik benda
(F) sehingga benda masih berada dalam keadaan diam. Sesuai dengan hukum Newton
untuk benda diam :
Σ Fx = 0
F − fges = 0
12 − fges = 0
fges = 12 N
c) Percepatan gerak benda
Benda dalam keadaan diam, percepatan benda NOL
2. Perhatikan gambar berikut, benda mula-mula dalam kondisi rehat!
Benda bermassa m = 10 kg berada di atas lantai kasar ditarik oleh gaya F = 25 N ke arah
kanan. Jika koefisien gesekan statis antara benda dan lantai adalah 0,2 dengan koefisien
gesekan kinetis 0,1 tentukan besarnya :
a) Gaya normal
b) Gaya gesek antara benda dan lantai
c) Percepatan gerak benda
d) Jarak yang ditempuh benda setelah 2 sekon
Pembahasan
Gaya-gaya pada benda diperlihatkan gambar berikut:
a) Gaya normal
Σ Fy = 0
N − W = 0
N − mg = 0
N − (10)(10) = 0
N = 100 N
b) Gaya gesek antara benda dan lantai
Cek terlebih dahulu gaya gesek statis maksimum yang bisa terjadi antara benda dan
lantai:
fsmaks = μs N
fsmaks = (0,2)(100) = 20 N
Ternyata gaya yang gesek statis maksimum (20 N) lebih kecil dari gaya yang menarik
benda (25 N), Sehingga benda bergerak. Untuk benda yang bergerak gaya geseknya
adalah gaya gesek dengan koefisien gesek kinetis :
fges = fk = μk N
fges = (0,1)(100) = 10 N
c) Percepatan gerak benda
Hukum Newton II :
Σ Fx = ma
F − fges = ma
25 − 10 = 10a
a = 15/10 = 1,5 m/s2
d) Jarak yang ditempuh benda setelah 2 sekon
S = Vo t + 1/2 at2
S = 0 + 1/2(1,5)(22)
S = 3 meter
3. Perhatikan gambar berikut, benda 5 kg mula-mula dalam kondisi tidak bergerak!
Jika sudut yang terbentuk antara gaya F = 25 N dengan garis mendatar adalah 37o,
koefisien gesek kinetis permukaan lantai adalah 0,1 dan percepatan gravitasi bumi 10
m/s2 tentukan nilai:
a) Gaya normal
b) Gaya gesek
c) Percepatan gerak benda
(sin 37o = 0,6 dan cos 37o = 0,8)
Pembahasan
Gaya-gaya pada benda diperlihatkan gambar berikut:
a) Gaya normal
Σ Fy = 0
N + F sin θ − W = 0
N = W − F sin θ = (5)(10) − (25)(0,6) = 35 N
b) Gaya gesek
Jika dalam soal hanya diketahui koefisien gesek kinetis, maka dipastikan benda bisa
bergerak, sehingga fges = fk :
fges = μk N
fges = (0,1)(35) = 3,5 N
c) Percepatan gerak benda
Σ Fx = ma
F cos θ − fges = ma
(25)(0,8) − 3,5 = 5a
5a = 16,5
a = 3,3 m/s2
4. Perhatikan gambar berikut, balok 100 kg diluncurkan dari sebuah bukit!
Anggap lereng bukit rata dan memiliki koefisien gesek 0,125. Percepatan gravitasi bumi 10
m/s2 dan sin 53o = 0,8, cos 53o = 0,6. Tentukan nilai dari :
a) Gaya normal pada balok
b) Gaya gesek antara lereng dan balok
c) Percepatan gerak balok
Pembahasan
Gaya-gaya pada balok diperlihatkan gambar berikut:
a) Gaya normal pada balok
Σ Fy = 0
N − W cos θ = 0
N − mg cos 53o = 0
N − (100)(10)(0,6) = 0
N = 600 Newton
b) Gaya gesek antara lereng dan balok
fges = μk N
fges = (0,125)(600) = 75 newton
c) Percepatan gerak balok
Σ Fx = ma
W sin θ − fges = ma
mg sin 53o − fges = ma
(100)(10)(0,8) − 75 = 100a
a = 725/100 = 7,25 m/s2
5. Balok A massa 40 kg dan balok B massa 20 kg berada di atas permukaan licin didorong oleh
gaya F sebesar 120 N seperti diperlihatkan gambar berikut!
Tentukan :
a) Percepatan gerak kedua balok
b) Gaya kontak yang terjadi antara balok A dan B
Pembahasan
a) Percepatan gerak kedua balok
Tinjau sistem :
Σ F = ma
120 = (40 + 20) a
a = 120/60 m/s2
b) Gaya kontak yang terjadi antara balok A dan B
Cara pertama, Tinjau benda A :
Σ F = ma
F − Fkontak = mA a
120 − Fkontak = 40(2)
Fkontak = 120 − 80 = 40 Newton
Cara kedua, Tinjau benda B :
Σ F = ma
Fkontak = mB a
Fkontak = 20(2) = 40 Newton
6. . Balok mengalami gaya tarik F1 = 15 N ke kanan dan gaya F2 ke kiri. Jika benda tetap diam
berapa besar F2?
Jawaban
Karena benda tetap diam, sesuai dengan Hukum I Newton
ΣF = 0
F1 – F2 = 0
F2 = F1
= 15 N
7. Balok meluncur ke kanan dengan kecepatan tetap 4 ms-1. Jika F1 = 10 N; F2 = 20 N, berapa
besar F3?
Jawaban
Sesuai dengan Hukum I Newton, gaya yang bergerak lurus beraturan (kecepatan tetap) adalah
nol.
ΣF = 0
F1 + F3 – F2 = 0
F3 = F2 – F1
F3 = 20 – 10
F3 = 10 N
8. Balok B massanya 2 kg ditarik dengan gaya F yang besarnya 6 Newton. Berapa percepatan
yang dialami beban?
Jawaban
Berdasarkan Hukum II Newton
F = m.a (dengan F = 6 N dan m = 2 kg)
6 = 2a
a = 2 / 6 → a = 3 ms-2
9. Balok B dengan massa 2 kg mengalami dua gaya masing-masing F1 = 25 N dan F2 = 20 N
seperti ditunjukkan pada gambar. Berapa percepatan balok B?
Jawaban
Dari Hukum II Newton
ΣF = m.a
F1 – F2 Cos 60 = m.a
25 – 20. 0,5 = 2.a
a = 7,5 ms-2
10. Jika balok B yang massanya 2 kg mengalami percepatan 5 ms-2 ke kanan, berapa besar F3?
Jawaban
Karena ΣF = m.a
F1 + F2 – F3 = m.a
10 + 40 – F3= 2,5
F3 = 40 N
11. Berapakah berat benda yang memiiki massa 2 kg dan g = 9,8 ms-2 ?
Jawaban
w = m g
w = 2. 9,8
w = 19,6 Newton.
12. Sebuah balok yang massanya 6 kg meluncur ke bawah pada sebuah papan licin yang
dimiringkan 30° dari lantai. Jika jarak lantai dengan balok 10 m dan besarnya gaya gravitasi
ditempat itu 10 ms-2, maka tentukan percepatan dan waktu yang diperlukan balok untuk sampai
di lantai!
Jawaban
Gaya berat balok diuraikan pada sumbu X (bidang miring) dan sumbu Y (garis tegak lurus bidang
miring). Benda meluncur dengan gaya F = w sin 30°.
Menurut hukum II Newton
F = m × a
w sin 30° = m × a
m × g sin 30° = m × a
6 × 10 × 0,5 = 6 a → a = 5 ms-2
13.Beban m yang mengalami 5 kg dan percepatan gravitasi 10 ms-2 terletak di atas bidang miring
dengan sudut kemiringan 370 (Sin 37 = 0,6). Beban mengakhiri gaya F mendatar sebesar 20 N
Tentukan berapa percepatan m!
Jawaban
Uraikan dahulu gaya pada beban m sehingga tampak gaya-gaya mana saja yang mempengaruhi
gerakan m turun.
Setelah menguraikan gaya pada beban m maka tampak gaya-gaya yang mempengaruhi gerakan
m adalah gaya mg Sin 370 dan F Cos 370. Sesuai dengan Hukum II Newton:
ΣF = Σ m.a
m.g Sin 370 – Cos 370 = m.a
5.10.0,6 – 20.0,8 = 5.a
5 a = 30 – 16
a = 2,8 ms-2
14.Sebuah balok 10 kg diam di atas lantai datar. Koefisien gesekan statis μs= 0,4 dan koefisien
gesekan kinetis μk= 0,3. Tentukanlah gaya gesekan yang bekerja pada balok jika gaya
luar F diberikan dalam arah horizontal sebesar
a. 0 N,
b. 20 N, dan
c. 42 N.
Jawaban
Gaya-gaya yang bekerja pada benda seperti diperlihatkan pada gambar. Karena pada sumbu
vertikal tidak ada gerak, berlaku
ΣFy = 0
N – w = 0
N = w = mg = (10 kg)(10 m/s) = 100 N
a. Oleh karena F = 0 maka Fgesek = 0,
b. Gaya gesekan statik fs = μs N = (0,4)(100 N) = 40 N.
Karena F = 10 N < fs maka benda masih diam (F = 20 N tidak cukup untuk menggerakkan
benda).
Oleh karena itu,
ΣFx = F – Fgesek = 0
sehingga diperoleh Fgesek = F = 20 N
c. F = 42 N > fs = 40 N maka benda bergerak. Jadi, pada benda bekerja gaya gesekan
kinetik sebesar
Fgesek = Fk = μk N
= (0,3)(100 N) = 30 N.
15. Suatu balok bermassa 200 gram berada di bidang miring dengan kemiringan 30° terhadap bidang
datar.
Jika koefisien gesek statis dan kinetis antara balok dan bidang miring 0,25 dan 0,1, serta nilai
percepatan gravitasi 10 m/s2, maka tentukan gaya gesek yang bekerja pada balok!
Jawaban
Langkah 1 :
Gambarkan peruraian gayanya
Langkah 2 :
Tentukan gaya gesek statis maksimumnya :
fsmak = μs . N
fsmak = μs . w cos 30°
fsmak = μs . m . g . cos 30°
fsmak = 0,433 N
Langkah 3 :
Tentukan gaya penggeraknya :
Fmiring = w sin 30°
Fmiring = m . g. sin 30°
Fmiring = 0,2 . 10 . 0,5
Fmiring = 1 N
Langkah 4 :
Membandingkan gaya penggerak terhadap gaya gesek statis maksimumnya. Ternyata gaya
penggeraknya lebih besar dibanding gaya gesek statis maksimumnya, sehingga benda bergerak.
Gaya gesek yang digunakan adalah gaya gesek kinetis.
fk = μk . N
fk = μk . w cos 30°
fk = μk . m . g . cos 30°
fk = 0,173 N
16. Dua buah benda digantungkan dengan seutas tali pada katrol silinder yang licin tanpa gesekan
seperti pada gambar. Massa m1 dan m2 masing- masing 5 kg dan 3 kg. Tentukan:
a. Percepatan beban
b. Tegangan tali
Jawaban
Benda m1 karena massanya lebih besar turun, sedangkan benda m2 naik. Gaya tegangan tali di
mana-mana sama karena katrol licin tanpa gesekan.
a. Tinjau benda m1
Σ F = m1 . a
w1 – T = m1 . a
5 . 10 – T = 5 . a
T = 50 – 5a
Tinjau benda m2:
Σ F = m2 . a
T – W2 = m2 . a
T – 3.10 = 3 . a
T = 30 + 3a
Disubstitusikan harga T sama.
T = T
50 – 5a = 30 + 3a
8 a = 20
a = 2,5 m/s2
b. Untuk mencari besar T pilihlah salah satu persamaan.
T = 30 + 3a
T = 30 + 3 x 2,5
T = 30 + 7,5
T = 37,5 N
17. Pesawat Atwood seperti pada gambar, terdiri dari katrol silinder yang licin tanpa gesekan. Jika
m1 = 50 kg , m2 = 200kg dan g = 10 m/det2 antara balok m1 dan bidang datar ada gaya gesek
dengan μ = 0,1. massa katrol 10 kg. hitunglah:
a. percepatan sistem
b. gaya tegang tali
Jawaban
a. Tinjau m1:
Σ F = m . a
T – fk = m . a
T – μk . N = m1 . a
T – 0,1 . m1 . g = m1 . a
T – 0,1 50 . 10 = 50 . a
T = 50 + 50a
Tinjau m2 (dan substitusikan nilai T):
Σ F = m . a
w2 – T = m2 . a
m2 . g – T = m2 . a
200 . 10 – (50 + 50a) = 200 . a
2000 – 50 – 50a = 200 . a
1950 = 250 . a
a = 7,8 m/s2.
b. Hitunglah nilai T
T = 50 + 50a
T = 50 + 50 x 7,8
T = 50 + 390
T = 440 N
18. Bidang miring dengan sudut kemiringan q = 30º, koefisien gesek 0,2. Ujung bidang miring
dilengkapi katrol tanpa gesekan. Ujung tali diatas bidang miring diberi beban 4 kg. Ujung tali
yang tergantung vertikal diberi beban dengan massa 10 kg. Tentukanlah percepatan dan tegangan
tali sistem tersebut!
Jawaban
Tinjau m1 : Σ F1 = m1 . a
T – fk – w1 sin 30 = m1 . a
T – μk . N – m1 g sin 30 = m1 . a
T – μk . m1 . g . cos 30 – m1 . g sin 30 = m1 . a
T – 0,2 . 4 . 10 . ½ 3 - 4 . 10 . ½ = 4 . a
T – 4 3 - 20 = 4a
T = 26,928 + 4a
Tinjau m2 :
Σ F = m2 . a
w2 – T = m2 . a
w2 . g – T = m2 . a
10 .10 – T = 10 .a
T = 100 – 10a
Substitusi: T = T
26,928 + 4a = 100 – 10a
14 a = 73,072
a = 5,148 m/s2.
Jadi gaya tegangan tali sebesar:
T = 100 – 10 . 5,148
= 48,52 N
19 Seseorang yang bermassa 30 kg berdiri di dalam sebuah lift yang bergerak dengan percepatan 3
m/s2. Jika gravitasi bumi 10 ms-2, maka tentukan berat orang tersebut saat lift bergerak ke atas
dipercepat dan bergerak ke bawah dipercepat!
Jawaban
a. Lift bergerak ke atas
w = N = mg + m × a
= 30 × 10 + 30 ×3
= 300 + 90
= 390 N
Jadi, berat orang tersebut saat lift bergerak ke atas dipercepat adalah 390 N.
b. Lift bergerak ke bawah
w = N = mg – m × a
= 30 × 10 – 30 × 3
= 300 – 90
= 210 N
Jadi, berat orang tersebut saat lift bergerak ke bawah dipercepat adalah 210 N.
20.
Kereta M dipercepat ke kanan dengan percepatan . Abaikan semua gesekan,
massa katrol, dan juga massa tali. Anggap g = 10 m/s2
. Jika maka
tegangan tali T pada sistem …. (Simak UI 2010)
(A) 8 N
(B) 12 N
(C) 15 N
(D) 20 N
(E) 25 N
SOLUSI:
Karena yang mengalami percepatan adalah kereta M, maka kotak yang juga mengalami
percepatan yang nilai dan arahnya sama adalah kotak 3 karena terletak secara vertikal
tepat di sebelah kanan, serta kotak 2 karena terhubung dengan kotak 3. Percepatan pada
kotak satu tidak sama dengan nilai percepatan pada kotak 2 dan 3.
Persamaan Hukum Newton 2 pada kotak 1 secara horizontal dapat ditullis dengan:
tidak dapat dihitung.
Persamaan pada kotak 2 secara horizontal dapat ditullis dengan:
Persamaan pada kotak 3 secara vertikal dapat ditullis dengan:
disubstitusikan dengan persamaan kotak 2.
Kita dapat mencari nilai sebesar:
Jadi, tegangan tali T pada sistem sebesar
Jawaban: B

More Related Content

What's hot

Kesetimbangan Benda Tegar
Kesetimbangan Benda TegarKesetimbangan Benda Tegar
Kesetimbangan Benda Tegar
Bayulibels
 
Laporan praktikum fisika dasar tetapan pegas
Laporan praktikum fisika dasar tetapan pegasLaporan praktikum fisika dasar tetapan pegas
Laporan praktikum fisika dasar tetapan pegas
Nurul Hanifah
 
Matematika Teknik 1: Matriks
Matematika Teknik 1: MatriksMatematika Teknik 1: Matriks
Matematika Teknik 1: Matriks
Dadang Hamzah
 
Matematika Teknik - Matriks
Matematika Teknik - MatriksMatematika Teknik - Matriks
Matematika Teknik - Matriks
Reski Aprilia
 
Sistem Persamaan Linear
 Sistem Persamaan Linear Sistem Persamaan Linear
Sistem Persamaan Linear
Rizky Wulansari
 
Persamaandifferensial
PersamaandifferensialPersamaandifferensial
Persamaandifferensial
Meiky Ayah
 
Soal dan penyelesaian kesetimbangan benda
Soal dan penyelesaian kesetimbangan benda Soal dan penyelesaian kesetimbangan benda
Soal dan penyelesaian kesetimbangan benda
Ilham A
 
Ppt gerak harmonik sederhana
Ppt gerak harmonik sederhanaPpt gerak harmonik sederhana
Ppt gerak harmonik sederhana
Ahmad Yansah
 

What's hot (20)

Fungsi Kompleks (pada bilangan kompleks)
Fungsi Kompleks (pada bilangan kompleks)Fungsi Kompleks (pada bilangan kompleks)
Fungsi Kompleks (pada bilangan kompleks)
 
Kesetimbangan Benda Tegar
Kesetimbangan Benda TegarKesetimbangan Benda Tegar
Kesetimbangan Benda Tegar
 
Laporan praktikum fisika dasar tetapan pegas
Laporan praktikum fisika dasar tetapan pegasLaporan praktikum fisika dasar tetapan pegas
Laporan praktikum fisika dasar tetapan pegas
 
Matematika Teknik 1: Matriks
Matematika Teknik 1: MatriksMatematika Teknik 1: Matriks
Matematika Teknik 1: Matriks
 
PPT kesetimbangan benda tegar dan titik berat
PPT kesetimbangan benda tegar dan titik beratPPT kesetimbangan benda tegar dan titik berat
PPT kesetimbangan benda tegar dan titik berat
 
Matematika Teknik - Matriks
Matematika Teknik - MatriksMatematika Teknik - Matriks
Matematika Teknik - Matriks
 
Sistem Persamaan Linear
 Sistem Persamaan Linear Sistem Persamaan Linear
Sistem Persamaan Linear
 
Getaran pegas
Getaran pegasGetaran pegas
Getaran pegas
 
Persamaandifferensial
PersamaandifferensialPersamaandifferensial
Persamaandifferensial
 
Persamaan diferensial
Persamaan diferensialPersamaan diferensial
Persamaan diferensial
 
Matrix - Invers, tranpose, determinant. (2x2, 3x3) XII Science LN
Matrix - Invers, tranpose, determinant. (2x2, 3x3) XII Science LNMatrix - Invers, tranpose, determinant. (2x2, 3x3) XII Science LN
Matrix - Invers, tranpose, determinant. (2x2, 3x3) XII Science LN
 
Fisika (gerak parabola)
Fisika (gerak parabola)Fisika (gerak parabola)
Fisika (gerak parabola)
 
Soal dan penyelesaian kesetimbangan benda
Soal dan penyelesaian kesetimbangan benda Soal dan penyelesaian kesetimbangan benda
Soal dan penyelesaian kesetimbangan benda
 
Dinamika Partikel
Dinamika PartikelDinamika Partikel
Dinamika Partikel
 
Ppt gerak harmonik sederhana
Ppt gerak harmonik sederhanaPpt gerak harmonik sederhana
Ppt gerak harmonik sederhana
 
Matematika "LIMIT FUNGSI - Cara Numerik"
Matematika "LIMIT FUNGSI - Cara Numerik"Matematika "LIMIT FUNGSI - Cara Numerik"
Matematika "LIMIT FUNGSI - Cara Numerik"
 
Latihan soal (diagram gaya benda di bidang miring & momen gaya)
Latihan soal (diagram gaya benda di bidang miring & momen gaya)Latihan soal (diagram gaya benda di bidang miring & momen gaya)
Latihan soal (diagram gaya benda di bidang miring & momen gaya)
 
Bab3hukumnewton
Bab3hukumnewtonBab3hukumnewton
Bab3hukumnewton
 
Tugas pdb bab 8 nomer 3
Tugas pdb bab 8 nomer 3Tugas pdb bab 8 nomer 3
Tugas pdb bab 8 nomer 3
 
Analisis vektor
Analisis vektorAnalisis vektor
Analisis vektor
 

Similar to Soal hukum 1,2,3 newton

Latihan Soal Dinamika, Usaha, Impuls.pptx
Latihan Soal Dinamika, Usaha, Impuls.pptxLatihan Soal Dinamika, Usaha, Impuls.pptx
Latihan Soal Dinamika, Usaha, Impuls.pptx
Oktaviani363839
 
Bab 5 Hukum Newton.ppt234567812345678124
Bab 5 Hukum Newton.ppt234567812345678124Bab 5 Hukum Newton.ppt234567812345678124
Bab 5 Hukum Newton.ppt234567812345678124
nurislamiah449
 

Similar to Soal hukum 1,2,3 newton (20)

HUKUM NEWTON.ppt
HUKUM NEWTON.pptHUKUM NEWTON.ppt
HUKUM NEWTON.ppt
 
Latihan Soal Dinamika, Usaha, Impuls.pptx
Latihan Soal Dinamika, Usaha, Impuls.pptxLatihan Soal Dinamika, Usaha, Impuls.pptx
Latihan Soal Dinamika, Usaha, Impuls.pptx
 
Bab 5 Hukum Newton.ppt
Bab 5 Hukum Newton.pptBab 5 Hukum Newton.ppt
Bab 5 Hukum Newton.ppt
 
Bab 5 Hukum Newton.ppt
Bab 5 Hukum Newton.pptBab 5 Hukum Newton.ppt
Bab 5 Hukum Newton.ppt
 
Bab 5 Hukum Newton.ppt
Bab 5 Hukum Newton.pptBab 5 Hukum Newton.ppt
Bab 5 Hukum Newton.ppt
 
Bab 5 Hukum Newton.ppt234567812345678124
Bab 5 Hukum Newton.ppt234567812345678124Bab 5 Hukum Newton.ppt234567812345678124
Bab 5 Hukum Newton.ppt234567812345678124
 
3)d inamika edit
3)d inamika edit3)d inamika edit
3)d inamika edit
 
Soal soal usaha dan energi
Soal soal usaha dan energiSoal soal usaha dan energi
Soal soal usaha dan energi
 
Soal soal usaha dan energi
Soal soal usaha dan energiSoal soal usaha dan energi
Soal soal usaha dan energi
 
Dinamika gerak lurus 12
Dinamika gerak lurus 12Dinamika gerak lurus 12
Dinamika gerak lurus 12
 
Persentasi fisika
Persentasi fisikaPersentasi fisika
Persentasi fisika
 
Usaha energi
Usaha energiUsaha energi
Usaha energi
 
Fisika1 140214213831-phpapp02
Fisika1 140214213831-phpapp02Fisika1 140214213831-phpapp02
Fisika1 140214213831-phpapp02
 
Gaya Gesekan
Gaya GesekanGaya Gesekan
Gaya Gesekan
 
Bab1 hukum newton
Bab1 hukum newtonBab1 hukum newton
Bab1 hukum newton
 
Xbab4 dinamikapartikelmarthen
Xbab4 dinamikapartikelmarthenXbab4 dinamikapartikelmarthen
Xbab4 dinamikapartikelmarthen
 
X bab dinamika partikel marthen
X bab dinamika partikel marthenX bab dinamika partikel marthen
X bab dinamika partikel marthen
 
X bab huk huk newton ttg gerak marthen
X bab huk huk newton ttg gerak marthenX bab huk huk newton ttg gerak marthen
X bab huk huk newton ttg gerak marthen
 
Hukum newton dan gravitasi universal
Hukum newton dan gravitasi universalHukum newton dan gravitasi universal
Hukum newton dan gravitasi universal
 
Kumpulan Soal-soal Hukum Newton
Kumpulan Soal-soal Hukum NewtonKumpulan Soal-soal Hukum Newton
Kumpulan Soal-soal Hukum Newton
 

More from Arsyadi Arsyadi (18)

Anekdot
AnekdotAnekdot
Anekdot
 
Biografi marah rusli
Biografi marah rusliBiografi marah rusli
Biografi marah rusli
 
Transek
TransekTransek
Transek
 
Buku harian
Buku harianBuku harian
Buku harian
 
Surat kuasa
Surat kuasaSurat kuasa
Surat kuasa
 
Berita acara
Berita acaraBerita acara
Berita acara
 
Surat keterangan nikah sirri
Surat keterangan nikah sirriSurat keterangan nikah sirri
Surat keterangan nikah sirri
 
Lahirnya koperasii
Lahirnya koperasiiLahirnya koperasii
Lahirnya koperasii
 
Programa baru daftar hadir
Programa baru daftar hadirPrograma baru daftar hadir
Programa baru daftar hadir
 
Area baca tulis
Area baca tulisArea baca tulis
Area baca tulis
 
Abstrak
AbstrakAbstrak
Abstrak
 
7 daftar tabel
7 daftar tabel7 daftar tabel
7 daftar tabel
 
Algoritma adalah langkah
Algoritma adalah langkahAlgoritma adalah langkah
Algoritma adalah langkah
 
Hewan dan tumbuhan langka
Hewan dan tumbuhan langkaHewan dan tumbuhan langka
Hewan dan tumbuhan langka
 
Gejala alam biotik dan abiotik
Gejala alam biotik dan abiotikGejala alam biotik dan abiotik
Gejala alam biotik dan abiotik
 
Matriks
MatriksMatriks
Matriks
 
Dongeng timun emas dan lu si
Dongeng timun emas dan lu siDongeng timun emas dan lu si
Dongeng timun emas dan lu si
 
Dongeng timun emas dan lu si
Dongeng timun emas dan lu siDongeng timun emas dan lu si
Dongeng timun emas dan lu si
 

Recently uploaded

Kisi kisi Ujian sekolah mata pelajaran IPA 2024.docx
Kisi kisi Ujian sekolah mata pelajaran IPA 2024.docxKisi kisi Ujian sekolah mata pelajaran IPA 2024.docx
Kisi kisi Ujian sekolah mata pelajaran IPA 2024.docx
FitriaSarmida1
 
443016507-Sediaan-obat-PHYCOPHYTA-MYOPHYTA-dan-MYCOPHYTA-pptx.pptx
443016507-Sediaan-obat-PHYCOPHYTA-MYOPHYTA-dan-MYCOPHYTA-pptx.pptx443016507-Sediaan-obat-PHYCOPHYTA-MYOPHYTA-dan-MYCOPHYTA-pptx.pptx
443016507-Sediaan-obat-PHYCOPHYTA-MYOPHYTA-dan-MYCOPHYTA-pptx.pptx
ErikaPutriJayantini
 
konsep pidato Bahaya Merokok bagi kesehatan
konsep pidato Bahaya Merokok bagi kesehatankonsep pidato Bahaya Merokok bagi kesehatan
konsep pidato Bahaya Merokok bagi kesehatan
SuzanDwiPutra
 
Surat Pribadi dan Surat Dinas 7 SMP ppt.pdf
Surat Pribadi dan Surat Dinas 7 SMP ppt.pdfSurat Pribadi dan Surat Dinas 7 SMP ppt.pdf
Surat Pribadi dan Surat Dinas 7 SMP ppt.pdf
EirinELS
 

Recently uploaded (20)

BAB 1 BEBATAN DAN BALUTAN DALAM PERTOLONGAN CEMAS
BAB 1 BEBATAN DAN BALUTAN DALAM PERTOLONGAN CEMASBAB 1 BEBATAN DAN BALUTAN DALAM PERTOLONGAN CEMAS
BAB 1 BEBATAN DAN BALUTAN DALAM PERTOLONGAN CEMAS
 
sistem digesti dan ekskresi pada unggas ppt
sistem digesti dan ekskresi pada unggas pptsistem digesti dan ekskresi pada unggas ppt
sistem digesti dan ekskresi pada unggas ppt
 
SISTEM SARAF OTONOM_.SISTEM SARAF OTONOM
SISTEM SARAF OTONOM_.SISTEM SARAF OTONOMSISTEM SARAF OTONOM_.SISTEM SARAF OTONOM
SISTEM SARAF OTONOM_.SISTEM SARAF OTONOM
 
Kisi kisi Ujian sekolah mata pelajaran IPA 2024.docx
Kisi kisi Ujian sekolah mata pelajaran IPA 2024.docxKisi kisi Ujian sekolah mata pelajaran IPA 2024.docx
Kisi kisi Ujian sekolah mata pelajaran IPA 2024.docx
 
443016507-Sediaan-obat-PHYCOPHYTA-MYOPHYTA-dan-MYCOPHYTA-pptx.pptx
443016507-Sediaan-obat-PHYCOPHYTA-MYOPHYTA-dan-MYCOPHYTA-pptx.pptx443016507-Sediaan-obat-PHYCOPHYTA-MYOPHYTA-dan-MYCOPHYTA-pptx.pptx
443016507-Sediaan-obat-PHYCOPHYTA-MYOPHYTA-dan-MYCOPHYTA-pptx.pptx
 
Lokakarya tentang Kepemimpinan Sekolah 1.pptx
Lokakarya tentang Kepemimpinan Sekolah 1.pptxLokakarya tentang Kepemimpinan Sekolah 1.pptx
Lokakarya tentang Kepemimpinan Sekolah 1.pptx
 
MODUL AJAR MATEMATIKA KELAS 5 KURIKULUM MERDEKA.pdf
MODUL AJAR MATEMATIKA KELAS 5 KURIKULUM MERDEKA.pdfMODUL AJAR MATEMATIKA KELAS 5 KURIKULUM MERDEKA.pdf
MODUL AJAR MATEMATIKA KELAS 5 KURIKULUM MERDEKA.pdf
 
Kegiatan Komunitas Belajar dalam sekolah .pptx
Kegiatan Komunitas Belajar dalam sekolah .pptxKegiatan Komunitas Belajar dalam sekolah .pptx
Kegiatan Komunitas Belajar dalam sekolah .pptx
 
konsep pidato Bahaya Merokok bagi kesehatan
konsep pidato Bahaya Merokok bagi kesehatankonsep pidato Bahaya Merokok bagi kesehatan
konsep pidato Bahaya Merokok bagi kesehatan
 
RENCANA + Link2 MATERI Training _"SISTEM MANAJEMEN MUTU (ISO 9001_2015)".
RENCANA + Link2 MATERI Training _"SISTEM MANAJEMEN MUTU (ISO 9001_2015)".RENCANA + Link2 MATERI Training _"SISTEM MANAJEMEN MUTU (ISO 9001_2015)".
RENCANA + Link2 MATERI Training _"SISTEM MANAJEMEN MUTU (ISO 9001_2015)".
 
Prov.Jabar_1504_Pengumuman Seleksi Tahap 2_CGP A11 (2).pdf
Prov.Jabar_1504_Pengumuman Seleksi Tahap 2_CGP A11 (2).pdfProv.Jabar_1504_Pengumuman Seleksi Tahap 2_CGP A11 (2).pdf
Prov.Jabar_1504_Pengumuman Seleksi Tahap 2_CGP A11 (2).pdf
 
Modul Ajar IPAS Kelas 4 Fase B Kurikulum Merdeka [abdiera.com]
Modul Ajar IPAS Kelas 4 Fase B Kurikulum Merdeka [abdiera.com]Modul Ajar IPAS Kelas 4 Fase B Kurikulum Merdeka [abdiera.com]
Modul Ajar IPAS Kelas 4 Fase B Kurikulum Merdeka [abdiera.com]
 
Webinar 1_Pendidikan Berjenjang Pendidikan Inklusif.pdf
Webinar 1_Pendidikan Berjenjang Pendidikan Inklusif.pdfWebinar 1_Pendidikan Berjenjang Pendidikan Inklusif.pdf
Webinar 1_Pendidikan Berjenjang Pendidikan Inklusif.pdf
 
Informatika Latihan Soal Kelas Tujuh.pptx
Informatika Latihan Soal Kelas Tujuh.pptxInformatika Latihan Soal Kelas Tujuh.pptx
Informatika Latihan Soal Kelas Tujuh.pptx
 
Modul 5 Simetri (simetri lipat, simetri putar)
Modul 5 Simetri (simetri lipat, simetri putar)Modul 5 Simetri (simetri lipat, simetri putar)
Modul 5 Simetri (simetri lipat, simetri putar)
 
Surat Pribadi dan Surat Dinas 7 SMP ppt.pdf
Surat Pribadi dan Surat Dinas 7 SMP ppt.pdfSurat Pribadi dan Surat Dinas 7 SMP ppt.pdf
Surat Pribadi dan Surat Dinas 7 SMP ppt.pdf
 
PPT BAHASA INDONESIA KELAS 1 SEKOLAH DASAR
PPT BAHASA INDONESIA KELAS 1 SEKOLAH DASARPPT BAHASA INDONESIA KELAS 1 SEKOLAH DASAR
PPT BAHASA INDONESIA KELAS 1 SEKOLAH DASAR
 
MODUL AJAR IPAS KELAS 5 KURIKULUM MERDEKA.pdf
MODUL AJAR IPAS KELAS 5 KURIKULUM MERDEKA.pdfMODUL AJAR IPAS KELAS 5 KURIKULUM MERDEKA.pdf
MODUL AJAR IPAS KELAS 5 KURIKULUM MERDEKA.pdf
 
Aksi Nyata profil pelajar pancasila.pptx
Aksi Nyata profil pelajar pancasila.pptxAksi Nyata profil pelajar pancasila.pptx
Aksi Nyata profil pelajar pancasila.pptx
 
Materi Bab 6 Algoritma dan bahasa Pemrograman
Materi Bab 6 Algoritma dan bahasa  PemrogramanMateri Bab 6 Algoritma dan bahasa  Pemrograman
Materi Bab 6 Algoritma dan bahasa Pemrograman
 

Soal hukum 1,2,3 newton

  • 1. SOAL HUKUM 1,2, 3 NEWTON 1. Perhatikan gambar berikut! Benda bermassa m = 10 kg berada di atas lantai kasar ditarik oleh gaya F = 12 N ke arah kanan. Jika koefisien gesekan statis antara benda dan lantai adalah 0,2 dengan koefisien gesekan kinetis 0,1 tentukan besarnya : a) Gaya normal b) Gaya gesek antara benda dan lantai c) Percepatan gerak benda Pembahasan Gaya-gaya pada benda diperlihatkan gambar berikut: a) Gaya normal Σ Fy = 0 N − W = 0 N − mg = 0 N − (10)(10) = 0 N = 100 N b) Gaya gesek antara benda dan lantai Cek terlebih dahulu gaya gesek statis maksimum yang bisa terjadi antara benda dan lantai: fsmaks = μs N fsmaks = (0,2)(100) = 20 N Ternyata gaya gesek statis maksimum masih lebih besar dari gaya yang menarik benda (F) sehingga benda masih berada dalam keadaan diam. Sesuai dengan hukum Newton untuk benda diam : Σ Fx = 0 F − fges = 0
  • 2. 12 − fges = 0 fges = 12 N c) Percepatan gerak benda Benda dalam keadaan diam, percepatan benda NOL 2. Perhatikan gambar berikut, benda mula-mula dalam kondisi rehat! Benda bermassa m = 10 kg berada di atas lantai kasar ditarik oleh gaya F = 25 N ke arah kanan. Jika koefisien gesekan statis antara benda dan lantai adalah 0,2 dengan koefisien gesekan kinetis 0,1 tentukan besarnya : a) Gaya normal b) Gaya gesek antara benda dan lantai c) Percepatan gerak benda d) Jarak yang ditempuh benda setelah 2 sekon Pembahasan Gaya-gaya pada benda diperlihatkan gambar berikut: a) Gaya normal Σ Fy = 0 N − W = 0 N − mg = 0 N − (10)(10) = 0 N = 100 N b) Gaya gesek antara benda dan lantai Cek terlebih dahulu gaya gesek statis maksimum yang bisa terjadi antara benda dan lantai: fsmaks = μs N
  • 3. fsmaks = (0,2)(100) = 20 N Ternyata gaya yang gesek statis maksimum (20 N) lebih kecil dari gaya yang menarik benda (25 N), Sehingga benda bergerak. Untuk benda yang bergerak gaya geseknya adalah gaya gesek dengan koefisien gesek kinetis : fges = fk = μk N fges = (0,1)(100) = 10 N c) Percepatan gerak benda Hukum Newton II : Σ Fx = ma F − fges = ma 25 − 10 = 10a a = 15/10 = 1,5 m/s2 d) Jarak yang ditempuh benda setelah 2 sekon S = Vo t + 1/2 at2 S = 0 + 1/2(1,5)(22) S = 3 meter 3. Perhatikan gambar berikut, benda 5 kg mula-mula dalam kondisi tidak bergerak! Jika sudut yang terbentuk antara gaya F = 25 N dengan garis mendatar adalah 37o, koefisien gesek kinetis permukaan lantai adalah 0,1 dan percepatan gravitasi bumi 10 m/s2 tentukan nilai: a) Gaya normal b) Gaya gesek c) Percepatan gerak benda (sin 37o = 0,6 dan cos 37o = 0,8) Pembahasan Gaya-gaya pada benda diperlihatkan gambar berikut:
  • 4. a) Gaya normal Σ Fy = 0 N + F sin θ − W = 0 N = W − F sin θ = (5)(10) − (25)(0,6) = 35 N b) Gaya gesek Jika dalam soal hanya diketahui koefisien gesek kinetis, maka dipastikan benda bisa bergerak, sehingga fges = fk : fges = μk N fges = (0,1)(35) = 3,5 N c) Percepatan gerak benda Σ Fx = ma F cos θ − fges = ma (25)(0,8) − 3,5 = 5a 5a = 16,5 a = 3,3 m/s2 4. Perhatikan gambar berikut, balok 100 kg diluncurkan dari sebuah bukit! Anggap lereng bukit rata dan memiliki koefisien gesek 0,125. Percepatan gravitasi bumi 10 m/s2 dan sin 53o = 0,8, cos 53o = 0,6. Tentukan nilai dari : a) Gaya normal pada balok b) Gaya gesek antara lereng dan balok c) Percepatan gerak balok
  • 5. Pembahasan Gaya-gaya pada balok diperlihatkan gambar berikut: a) Gaya normal pada balok Σ Fy = 0 N − W cos θ = 0 N − mg cos 53o = 0 N − (100)(10)(0,6) = 0 N = 600 Newton b) Gaya gesek antara lereng dan balok fges = μk N fges = (0,125)(600) = 75 newton c) Percepatan gerak balok Σ Fx = ma W sin θ − fges = ma mg sin 53o − fges = ma (100)(10)(0,8) − 75 = 100a a = 725/100 = 7,25 m/s2 5. Balok A massa 40 kg dan balok B massa 20 kg berada di atas permukaan licin didorong oleh gaya F sebesar 120 N seperti diperlihatkan gambar berikut! Tentukan : a) Percepatan gerak kedua balok b) Gaya kontak yang terjadi antara balok A dan B
  • 6. Pembahasan a) Percepatan gerak kedua balok Tinjau sistem : Σ F = ma 120 = (40 + 20) a a = 120/60 m/s2 b) Gaya kontak yang terjadi antara balok A dan B Cara pertama, Tinjau benda A : Σ F = ma F − Fkontak = mA a 120 − Fkontak = 40(2) Fkontak = 120 − 80 = 40 Newton Cara kedua, Tinjau benda B : Σ F = ma Fkontak = mB a Fkontak = 20(2) = 40 Newton 6. . Balok mengalami gaya tarik F1 = 15 N ke kanan dan gaya F2 ke kiri. Jika benda tetap diam berapa besar F2? Jawaban Karena benda tetap diam, sesuai dengan Hukum I Newton ΣF = 0 F1 – F2 = 0 F2 = F1
  • 7. = 15 N 7. Balok meluncur ke kanan dengan kecepatan tetap 4 ms-1. Jika F1 = 10 N; F2 = 20 N, berapa besar F3? Jawaban Sesuai dengan Hukum I Newton, gaya yang bergerak lurus beraturan (kecepatan tetap) adalah nol. ΣF = 0 F1 + F3 – F2 = 0 F3 = F2 – F1 F3 = 20 – 10 F3 = 10 N 8. Balok B massanya 2 kg ditarik dengan gaya F yang besarnya 6 Newton. Berapa percepatan yang dialami beban? Jawaban Berdasarkan Hukum II Newton F = m.a (dengan F = 6 N dan m = 2 kg) 6 = 2a a = 2 / 6 → a = 3 ms-2 9. Balok B dengan massa 2 kg mengalami dua gaya masing-masing F1 = 25 N dan F2 = 20 N seperti ditunjukkan pada gambar. Berapa percepatan balok B? Jawaban Dari Hukum II Newton
  • 8. ΣF = m.a F1 – F2 Cos 60 = m.a 25 – 20. 0,5 = 2.a a = 7,5 ms-2 10. Jika balok B yang massanya 2 kg mengalami percepatan 5 ms-2 ke kanan, berapa besar F3? Jawaban Karena ΣF = m.a F1 + F2 – F3 = m.a 10 + 40 – F3= 2,5 F3 = 40 N 11. Berapakah berat benda yang memiiki massa 2 kg dan g = 9,8 ms-2 ? Jawaban w = m g w = 2. 9,8 w = 19,6 Newton. 12. Sebuah balok yang massanya 6 kg meluncur ke bawah pada sebuah papan licin yang dimiringkan 30° dari lantai. Jika jarak lantai dengan balok 10 m dan besarnya gaya gravitasi ditempat itu 10 ms-2, maka tentukan percepatan dan waktu yang diperlukan balok untuk sampai di lantai! Jawaban Gaya berat balok diuraikan pada sumbu X (bidang miring) dan sumbu Y (garis tegak lurus bidang miring). Benda meluncur dengan gaya F = w sin 30°. Menurut hukum II Newton F = m × a w sin 30° = m × a m × g sin 30° = m × a 6 × 10 × 0,5 = 6 a → a = 5 ms-2
  • 9. 13.Beban m yang mengalami 5 kg dan percepatan gravitasi 10 ms-2 terletak di atas bidang miring dengan sudut kemiringan 370 (Sin 37 = 0,6). Beban mengakhiri gaya F mendatar sebesar 20 N Tentukan berapa percepatan m! Jawaban Uraikan dahulu gaya pada beban m sehingga tampak gaya-gaya mana saja yang mempengaruhi gerakan m turun. Setelah menguraikan gaya pada beban m maka tampak gaya-gaya yang mempengaruhi gerakan m adalah gaya mg Sin 370 dan F Cos 370. Sesuai dengan Hukum II Newton: ΣF = Σ m.a m.g Sin 370 – Cos 370 = m.a 5.10.0,6 – 20.0,8 = 5.a 5 a = 30 – 16 a = 2,8 ms-2 14.Sebuah balok 10 kg diam di atas lantai datar. Koefisien gesekan statis μs= 0,4 dan koefisien gesekan kinetis μk= 0,3. Tentukanlah gaya gesekan yang bekerja pada balok jika gaya luar F diberikan dalam arah horizontal sebesar
  • 10. a. 0 N, b. 20 N, dan c. 42 N. Jawaban Gaya-gaya yang bekerja pada benda seperti diperlihatkan pada gambar. Karena pada sumbu vertikal tidak ada gerak, berlaku ΣFy = 0 N – w = 0 N = w = mg = (10 kg)(10 m/s) = 100 N a. Oleh karena F = 0 maka Fgesek = 0, b. Gaya gesekan statik fs = μs N = (0,4)(100 N) = 40 N. Karena F = 10 N < fs maka benda masih diam (F = 20 N tidak cukup untuk menggerakkan benda). Oleh karena itu, ΣFx = F – Fgesek = 0 sehingga diperoleh Fgesek = F = 20 N c. F = 42 N > fs = 40 N maka benda bergerak. Jadi, pada benda bekerja gaya gesekan kinetik sebesar Fgesek = Fk = μk N = (0,3)(100 N) = 30 N. 15. Suatu balok bermassa 200 gram berada di bidang miring dengan kemiringan 30° terhadap bidang datar. Jika koefisien gesek statis dan kinetis antara balok dan bidang miring 0,25 dan 0,1, serta nilai percepatan gravitasi 10 m/s2, maka tentukan gaya gesek yang bekerja pada balok!
  • 11. Jawaban Langkah 1 : Gambarkan peruraian gayanya Langkah 2 : Tentukan gaya gesek statis maksimumnya : fsmak = μs . N fsmak = μs . w cos 30° fsmak = μs . m . g . cos 30° fsmak = 0,433 N Langkah 3 : Tentukan gaya penggeraknya : Fmiring = w sin 30° Fmiring = m . g. sin 30° Fmiring = 0,2 . 10 . 0,5 Fmiring = 1 N Langkah 4 : Membandingkan gaya penggerak terhadap gaya gesek statis maksimumnya. Ternyata gaya penggeraknya lebih besar dibanding gaya gesek statis maksimumnya, sehingga benda bergerak. Gaya gesek yang digunakan adalah gaya gesek kinetis. fk = μk . N fk = μk . w cos 30° fk = μk . m . g . cos 30° fk = 0,173 N 16. Dua buah benda digantungkan dengan seutas tali pada katrol silinder yang licin tanpa gesekan seperti pada gambar. Massa m1 dan m2 masing- masing 5 kg dan 3 kg. Tentukan: a. Percepatan beban b. Tegangan tali
  • 12. Jawaban Benda m1 karena massanya lebih besar turun, sedangkan benda m2 naik. Gaya tegangan tali di mana-mana sama karena katrol licin tanpa gesekan. a. Tinjau benda m1 Σ F = m1 . a w1 – T = m1 . a 5 . 10 – T = 5 . a T = 50 – 5a Tinjau benda m2: Σ F = m2 . a T – W2 = m2 . a T – 3.10 = 3 . a T = 30 + 3a Disubstitusikan harga T sama. T = T 50 – 5a = 30 + 3a 8 a = 20 a = 2,5 m/s2 b. Untuk mencari besar T pilihlah salah satu persamaan. T = 30 + 3a T = 30 + 3 x 2,5 T = 30 + 7,5 T = 37,5 N 17. Pesawat Atwood seperti pada gambar, terdiri dari katrol silinder yang licin tanpa gesekan. Jika m1 = 50 kg , m2 = 200kg dan g = 10 m/det2 antara balok m1 dan bidang datar ada gaya gesek dengan μ = 0,1. massa katrol 10 kg. hitunglah: a. percepatan sistem
  • 13. b. gaya tegang tali Jawaban a. Tinjau m1: Σ F = m . a T – fk = m . a T – μk . N = m1 . a T – 0,1 . m1 . g = m1 . a T – 0,1 50 . 10 = 50 . a T = 50 + 50a Tinjau m2 (dan substitusikan nilai T): Σ F = m . a w2 – T = m2 . a m2 . g – T = m2 . a 200 . 10 – (50 + 50a) = 200 . a 2000 – 50 – 50a = 200 . a 1950 = 250 . a a = 7,8 m/s2. b. Hitunglah nilai T T = 50 + 50a T = 50 + 50 x 7,8 T = 50 + 390 T = 440 N 18. Bidang miring dengan sudut kemiringan q = 30º, koefisien gesek 0,2. Ujung bidang miring dilengkapi katrol tanpa gesekan. Ujung tali diatas bidang miring diberi beban 4 kg. Ujung tali yang tergantung vertikal diberi beban dengan massa 10 kg. Tentukanlah percepatan dan tegangan tali sistem tersebut!
  • 14. Jawaban Tinjau m1 : Σ F1 = m1 . a T – fk – w1 sin 30 = m1 . a T – μk . N – m1 g sin 30 = m1 . a T – μk . m1 . g . cos 30 – m1 . g sin 30 = m1 . a T – 0,2 . 4 . 10 . ½ 3 - 4 . 10 . ½ = 4 . a T – 4 3 - 20 = 4a T = 26,928 + 4a Tinjau m2 : Σ F = m2 . a w2 – T = m2 . a w2 . g – T = m2 . a 10 .10 – T = 10 .a T = 100 – 10a Substitusi: T = T 26,928 + 4a = 100 – 10a 14 a = 73,072 a = 5,148 m/s2. Jadi gaya tegangan tali sebesar: T = 100 – 10 . 5,148 = 48,52 N 19 Seseorang yang bermassa 30 kg berdiri di dalam sebuah lift yang bergerak dengan percepatan 3 m/s2. Jika gravitasi bumi 10 ms-2, maka tentukan berat orang tersebut saat lift bergerak ke atas dipercepat dan bergerak ke bawah dipercepat! Jawaban a. Lift bergerak ke atas w = N = mg + m × a = 30 × 10 + 30 ×3 = 300 + 90 = 390 N Jadi, berat orang tersebut saat lift bergerak ke atas dipercepat adalah 390 N.
  • 15. b. Lift bergerak ke bawah w = N = mg – m × a = 30 × 10 – 30 × 3 = 300 – 90 = 210 N Jadi, berat orang tersebut saat lift bergerak ke bawah dipercepat adalah 210 N. 20. Kereta M dipercepat ke kanan dengan percepatan . Abaikan semua gesekan, massa katrol, dan juga massa tali. Anggap g = 10 m/s2 . Jika maka tegangan tali T pada sistem …. (Simak UI 2010) (A) 8 N (B) 12 N (C) 15 N (D) 20 N (E) 25 N SOLUSI: Karena yang mengalami percepatan adalah kereta M, maka kotak yang juga mengalami percepatan yang nilai dan arahnya sama adalah kotak 3 karena terletak secara vertikal tepat di sebelah kanan, serta kotak 2 karena terhubung dengan kotak 3. Percepatan pada kotak satu tidak sama dengan nilai percepatan pada kotak 2 dan 3. Persamaan Hukum Newton 2 pada kotak 1 secara horizontal dapat ditullis dengan: tidak dapat dihitung. Persamaan pada kotak 2 secara horizontal dapat ditullis dengan:
  • 16. Persamaan pada kotak 3 secara vertikal dapat ditullis dengan: disubstitusikan dengan persamaan kotak 2. Kita dapat mencari nilai sebesar: Jadi, tegangan tali T pada sistem sebesar Jawaban: B