SlideShare a Scribd company logo
Operations on Complex Numbers

                         Mathematics 4


                      November 29, 2011




Mathematics 4 ()      Operations on Complex Numbers   November 29, 2011   1 / 18
Review of Multiplication of Complex Numbers




Find the product of 4 + 4i and −2 − 3i
1. Multiply Algebraically

                        (4 + 4i)(−2 − 3i) = −8 − 12i − 8i − 12i2
                                            = −8 − 20i + 12
                                            = 4 − 20i




     Mathematics 4 ()             Operations on Complex Numbers   November 29, 2011   2 / 18
Review of Multiplication of Complex Numbers



Find the product of 4 + 4i and −2 − 3i
2. Multiply in their polar forms
                                  √               √
            (4 + 4i)(−2 − 3i) = (4 2 cis 45o ) · ( 13 cis 236.31o )
                                  √ √
                              = (4 2 · 13) cis(45 + 236.31)o
                                 √
                              = 4 26 cis 281.31o
                               = 4 − 20i




     Mathematics 4 ()        Operations on Complex Numbers   November 29, 2011   3 / 18
Review of Multiplication of Complex Numbers




Rule for Multiplication of Complex Numbers in Polar Form
Given:

                        z1 = r1 cis α             z2 = r2 cis β




     Mathematics 4 ()          Operations on Complex Numbers      November 29, 2011   4 / 18
Review of Multiplication of Complex Numbers




Rule for Multiplication of Complex Numbers in Polar Form
Given:

                        z1 = r1 cis α             z2 = r2 cis β

                           z1 · z2 = (r1 · r2 ) cis(α + β)




     Mathematics 4 ()          Operations on Complex Numbers      November 29, 2011   4 / 18
Raising Complex Numbers to a Power




Given: z = r cis θ
   z0 =




     Mathematics 4 ()   Operations on Complex Numbers   November 29, 2011   5 / 18
Raising Complex Numbers to a Power




Given: z = r cis θ
   z0 = 1




     Mathematics 4 ()   Operations on Complex Numbers   November 29, 2011   5 / 18
Raising Complex Numbers to a Power




Given: z = r cis θ
   z0 = 1
   z1 =




     Mathematics 4 ()   Operations on Complex Numbers   November 29, 2011   5 / 18
Raising Complex Numbers to a Power




Given: z = r cis θ
   z0 = 1
   z 1 = r cis θ




     Mathematics 4 ()   Operations on Complex Numbers   November 29, 2011   5 / 18
Raising Complex Numbers to a Power




Given: z = r cis θ
   z0 = 1
   z 1 = r cis θ
   z2 =




     Mathematics 4 ()   Operations on Complex Numbers   November 29, 2011   5 / 18
Raising Complex Numbers to a Power




Given: z = r cis θ
   z0 = 1
   z 1 = r cis θ
   z 2 = (r cis θ) · (r cis θ)




     Mathematics 4 ()            Operations on Complex Numbers   November 29, 2011   5 / 18
Raising Complex Numbers to a Power




Given: z = r cis θ
   z0 = 1
   z 1 = r cis θ
   z 2 = (r cis θ) · (r cis θ) = r2 cis 2θ




     Mathematics 4 ()         Operations on Complex Numbers   November 29, 2011   5 / 18
Raising Complex Numbers to a Power




Given: z = r cis θ
   z0   =1
   z1   = r cis θ
   z2   = (r cis θ) · (r cis θ) = r2 cis 2θ
   z3   =




     Mathematics 4 ()          Operations on Complex Numbers   November 29, 2011   5 / 18
Raising Complex Numbers to a Power




Given: z = r cis θ
   z0   =   1
   z1   =   r cis θ
   z2   =   (r cis θ) · (r cis θ) = r2 cis 2θ
   z3   =   (r2 cis 2θ) · (r cis θ)




     Mathematics 4 ()            Operations on Complex Numbers   November 29, 2011   5 / 18
Raising Complex Numbers to a Power




Given: z = r cis θ
   z0   =   1
   z1   =   r cis θ
   z2   =   (r cis θ) · (r cis θ) = r2 cis 2θ
   z3   =   (r2 cis 2θ) · (r cis θ) = r3 cis 3θ




     Mathematics 4 ()           Operations on Complex Numbers   November 29, 2011   5 / 18
Raising Complex Numbers to a Power




Given: z = r cis θ
   z0   =   1
   z1   =   r cis θ
   z2   =   (r cis θ) · (r cis θ) = r2 cis 2θ
   z3   =   (r2 cis 2θ) · (r cis θ) = r3 cis 3θ




     Mathematics 4 ()           Operations on Complex Numbers   November 29, 2011   5 / 18
Raising Complex Numbers to a Power




De Moivre’s Theorem
                       (r cis θ)n = rn cis(n · θ)




    Mathematics 4 ()     Operations on Complex Numbers   November 29, 2011   6 / 18
De Moivre’s Theorem




                 √
Example 1: Find ( 2 cis 20o )10
                         √                 √
                        ( 2 cis 20o )10 = ( 2)10 cis(10 · 20)o




     Mathematics 4 ()           Operations on Complex Numbers    November 29, 2011   7 / 18
De Moivre’s Theorem




                 √
Example 1: Find ( 2 cis 20o )10
                         √                 √
                        ( 2 cis 20o )10 = ( 2)10 cis(10 · 20)o
                             √
                            ( 2 cis 20o )10 = 32 cis 200o




     Mathematics 4 ()           Operations on Complex Numbers    November 29, 2011   7 / 18
De Moivre’s√Theorem
Example 1: Find ( 2 cis 20o )10

                                   √
                                  ( 2 cis 20o )0 = 1 cis 0




       Mathematics 4 ()            Operations on Complex Numbers   November 29, 2011   8 / 18
De Moivre’s√Theorem
Example 1: Find ( 2 cis 20o )10

                              √              √
                             ( 2 cis 20o )1 = 2 cis 20o




       Mathematics 4 ()           Operations on Complex Numbers   November 29, 2011   8 / 18
De Moivre’s√Theorem
Example 1: Find ( 2 cis 20o )10

                               √
                              ( 2 cis 20o )2 = 2 cis 400




       Mathematics 4 ()           Operations on Complex Numbers   November 29, 2011   8 / 18
De Moivre’s√Theorem
Example 1: Find ( 2 cis 20o )10

                             √                √
                            ( 2 cis 20o )3 = 2 2 cis 60o




       Mathematics 4 ()           Operations on Complex Numbers   November 29, 2011   8 / 18
De Moivre’s√Theorem
Example 1: Find ( 2 cis 20o )10

                               √
                              ( 2 cis 20o )4 = 4 cis 80o




       Mathematics 4 ()           Operations on Complex Numbers   November 29, 2011   8 / 18
De Moivre’s√Theorem
Example 1: Find ( 2 cis 20o )10

                            √                √
                           ( 2 cis 20o )5 = 4 2 cis 100o




       Mathematics 4 ()           Operations on Complex Numbers   November 29, 2011   8 / 18
De Moivre’s√Theorem
Example 1: Find ( 2 cis 20o )10

                              √
                             ( 2 cis 20o )6 = 8 cis 120o




       Mathematics 4 ()           Operations on Complex Numbers   November 29, 2011   8 / 18
De Moivre’s√Theorem
Example 1: Find ( 2 cis 20o )10

                            √                √
                           ( 2 cis 20o )7 = 8 2 cis 140o




       Mathematics 4 ()           Operations on Complex Numbers   November 29, 2011   8 / 18
De Moivre’s√Theorem
Example 1: Find ( 2 cis 20o )10

                             √
                            ( 2 cis 20o )8 = 16 cis 160o




       Mathematics 4 ()           Operations on Complex Numbers   November 29, 2011   8 / 18
De Moivre’s√Theorem
Example 1: Find ( 2 cis 20o )10

                            √                 √
                           ( 2 cis 20o )9 = 16 2 cis 180o




       Mathematics 4 ()           Operations on Complex Numbers   November 29, 2011   8 / 18
De Moivre’s√Theorem
Example 1: Find ( 2 cis 20o )10

                             √
                            ( 2 cis 20o )10 = 32 cis 200o




       Mathematics 4 ()           Operations on Complex Numbers   November 29, 2011   8 / 18
De Moivre’s Theorem




Example 2: Find (3 cis 120o )5
                        (3 cis 120o )5 = 35 cis(5 · 120)o




     Mathematics 4 ()        Operations on Complex Numbers   November 29, 2011   9 / 18
De Moivre’s Theorem




Example 2: Find (3 cis 120o )5
                               (3 cis 120o )5 = 35 cis(5 · 120)o
                        (3 cis 120o )5 = 243 cis 600o = 243 cis 240o




     Mathematics 4 ()              Operations on Complex Numbers   November 29, 2011   9 / 18
De Moivre’s Theorem
Example 2: Find (3 cis 120o )5


                                 (3 cis 120o )0 = 1 cis 0




       Mathematics 4 ()           Operations on Complex Numbers   November 29, 2011   10 / 18
De Moivre’s Theorem
Example 2: Find (3 cis 120o )5


                                 (3 cis 120o )1 = 3 cis 120o




       Mathematics 4 ()            Operations on Complex Numbers   November 29, 2011   10 / 18
De Moivre’s Theorem
Example 2: Find (3 cis 120o )5


                                 (3 cis 120o )2 = 9 cis 240o




       Mathematics 4 ()            Operations on Complex Numbers   November 29, 2011   10 / 18
De Moivre’s Theorem
Example 2: Find (3 cis 120o )5


                                 (3 cis 120o )3 = 27 cis 360o




       Mathematics 4 ()             Operations on Complex Numbers   November 29, 2011   10 / 18
De Moivre’s Theorem
Example 2: Find (3 cis 120o )5


                                 (3 cis 120o )4 = 81 cis 480o




       Mathematics 4 ()             Operations on Complex Numbers   November 29, 2011   10 / 18
De Moivre’s Theorem
Example 2: Find (3 cis 120o )5


                          (3 cis 120o )5 = 243 cis 600o = 243 cis 240o




       Mathematics 4 ()              Operations on Complex Numbers   November 29, 2011   10 / 18
De Moivre’s Theorem




Example 3: Find (1 − i)8
                                   √
                       (1 − i)8 = ( 2 cis 315o )8




    Mathematics 4 ()       Operations on Complex Numbers   November 29, 2011   11 / 18
De Moivre’s Theorem




Example 3: Find (1 − i)8
                                         √
                   √        (1 − i)8 = ( 2 cis 315o )8
                  ( 2 cis 315o )8 = 16 cis 2520o = 16 cis 0 = 16




    Mathematics 4 ()           Operations on Complex Numbers   November 29, 2011   11 / 18
De Moivre’s Theorem
Example 3: Find (1 − i)8

                                     √
                         (1 − i)0 = ( 2 cis(−45)o )0 = 1 cis 0




      Mathematics 4 ()           Operations on Complex Numbers   November 29, 2011   12 / 18
De Moivre’s Theorem
Example 3: Find (1 − i)8

                                √                √
                    (1 − i)1 = ( 2 cis(−45)o )1 = 2 cis(−45)o




      Mathematics 4 ()         Operations on Complex Numbers   November 29, 2011   12 / 18
De Moivre’s Theorem
Example 3: Find (1 − i)8

                                     √
                         (1 − i)2 = ( 2 cis(−45)o )2 = 2 cis(−90)o




      Mathematics 4 ()              Operations on Complex Numbers   November 29, 2011   12 / 18
De Moivre’s Theorem
Example 3: Find (1 − i)8

                               √                  √
                   (1 − i)3 = ( 2 cis(−45)o )3 = 2 2 cis(−135)o




      Mathematics 4 ()         Operations on Complex Numbers   November 29, 2011   12 / 18
De Moivre’s Theorem
Example 3: Find (1 − i)8

                                 √
                     (1 − i)4 = ( 2 cis(−45)o )4 = 4 cis(−180)o




      Mathematics 4 ()          Operations on Complex Numbers   November 29, 2011   12 / 18
De Moivre’s Theorem
Example 3: Find (1 − i)8

                               √                  √
                   (1 − i)5 = ( 2 cis(−45)o )5 = 4 2 cis(−225)o




      Mathematics 4 ()         Operations on Complex Numbers   November 29, 2011   12 / 18
De Moivre’s Theorem
Example 3: Find (1 − i)8

                                 √
                     (1 − i)6 = ( 2 cis(−45)o )6 = 8 cis(−270)o




      Mathematics 4 ()          Operations on Complex Numbers   November 29, 2011   12 / 18
De Moivre’s Theorem
Example 3: Find (1 − i)8

                               √                  √
                   (1 − i)7 = ( 2 cis(−45)o )7 = 8 2 cis(−315)o




      Mathematics 4 ()         Operations on Complex Numbers   November 29, 2011   12 / 18
De Moivre’s Theorem
Example 3: Find (1 − i)8

                        √
            (1 − i)8 = ( 2 cis(−45)o )8 = 16 cis(−360)o = 16 cis 0




      Mathematics 4 ()       Operations on Complex Numbers   November 29, 2011   12 / 18
De Moivre’s Theorem
Example 3: Find (1 − i)8

                        √
            (1 − i)8 = ( 2 cis(−45)o )8 = 16 cis(−360)o = 16 cis 0




      Mathematics 4 ()       Operations on Complex Numbers   November 29, 2011   12 / 18
De Moivre’s Theorem

De Moivre’s Theorem can be used to find the nth of a complex number:
                                    √
Find the three cube roots of −2 − i2 3.
We wish to find values of r and θ such that:
                                            √
                        (r cis θ)3 = −2 − i2 3




     Mathematics 4 ()     Operations on Complex Numbers   November 29, 2011   13 / 18
De Moivre’s Theorem

De Moivre’s Theorem can be used to find the nth of a complex number:
                                    √
Find the three cube roots of −2 − i2 3.
We wish to find values of r and θ such that:
                                            √
                        (r cis θ)3 = −2 − i2 3

Using De Moivre’s Theorem and expressing the complex number in polar
form:

                          r3 cis 3θ = 4 cis 240o

Therefore:

             r3 = 4     and            3θ = 240o + k · 360o , k ∈ Z


     Mathematics 4 ()     Operations on Complex Numbers    November 29, 2011   13 / 18
De Moivre’s Theorem

De Moivre’s Theorem can be used to find the nth of a complex number:
                                    √
Find the three cube roots of −2 − i2 3.
We wish to find values of r and θ such that:
                                            √
                        (r cis θ)3 = −2 − i2 3

Using De Moivre’s Theorem and expressing the complex number in polar
form:

                          r3 cis 3θ = 4 cis 240o

Therefore:

             r3 = √
                  4     and            3θ = 240o + k · 360o , k ∈ Z
              r= 34      and            θ = 80o + k · 120o , k ∈ Z

     Mathematics 4 ()     Operations on Complex Numbers    November 29, 2011   13 / 18
Finding the nth roots of complex numbers




For any complex number r cis θ and n ∈ Z+ :
The nth roots of r cis θ is given by:
                                   √
                                   n
                                     r cis θk
                               θ + k360o
                        θk =             , k = 0, 1, 2, ...(n − 1)
                                   n




     Mathematics 4 ()             Operations on Complex Numbers      November 29, 2011   14 / 18
Finding the nth roots of complex numbers



Example 1: Find the fourth roots of 16 cis 120o




     Mathematics 4 ()    Operations on Complex Numbers   November 29, 2011   15 / 18
Finding the nth roots of complex numbers



Example 1: Find the fourth roots of 16 cis 120o
                        r4 cis 4θ = 16 cis 120o




     Mathematics 4 ()    Operations on Complex Numbers   November 29, 2011   15 / 18
Finding the nth roots of complex numbers



Example 1: Find the fourth roots of 16 cis 120o
                            r4 cis 4θ = 16 cis 120o
                  r4 = 16       and              4θ = 120o + k360o




     Mathematics 4 ()        Operations on Complex Numbers    November 29, 2011   15 / 18
Finding the nth roots of complex numbers



Example 1: Find the fourth roots of 16 cis 120o
                              r4 cis 4θ = 16 cis 120o
                  r4 = 16         and              4θ = 120o + k360o
                        r=2        and              θ = 30o + k90o




     Mathematics 4 ()          Operations on Complex Numbers     November 29, 2011   15 / 18
Finding the nth roots of complex numbers



Example 1: Find the fourth roots of 16 cis 120o
                              r4 cis 4θ = 16 cis 120o
                  r4 = 16         and              4θ = 120o + k360o
                        r=2        and              θ = 30o + k90o
                                      2 cis 30o
                                      2 cis 120o
                                      2 cis 210o
                                      2 cis 300o




     Mathematics 4 ()          Operations on Complex Numbers     November 29, 2011   15 / 18
Finding the nth roots of complex numbers
Example 1: Find the fourth roots of 16 cis 120o


                  (2 cis 30)0                                    (2 cis 210)0




                 (2 cis 120)0                                    (2 cis 300)0




       Mathematics 4 ()          Operations on Complex Numbers         November 29, 2011   16 / 18
Finding the nth roots of complex numbers
Example 1: Find the fourth roots of 16 cis 120o


                  (2 cis 30)1                                    (2 cis 210)1




                 (2 cis 120)1                                    (2 cis 300)1




       Mathematics 4 ()          Operations on Complex Numbers         November 29, 2011   16 / 18
Finding the nth roots of complex numbers
Example 1: Find the fourth roots of 16 cis 120o


                  (2 cis 30)2                                    (2 cis 210)2




                 (2 cis 120)2                                    (2 cis 300)2




       Mathematics 4 ()          Operations on Complex Numbers         November 29, 2011   16 / 18
Finding the nth roots of complex numbers
Example 1: Find the fourth roots of 16 cis 120o


                  (2 cis 30)3                                    (2 cis 210)3




                 (2 cis 120)3                                    (2 cis 300)3




       Mathematics 4 ()          Operations on Complex Numbers         November 29, 2011   16 / 18
Finding the nth roots of complex numbers
Example 1: Find the fourth roots of 16 cis 120o


                  (2 cis 30)4                                    (2 cis 210)4




                 (2 cis 120)4                                    (2 cis 300)4




       Mathematics 4 ()          Operations on Complex Numbers         November 29, 2011   16 / 18
Finding the nth roots of complex numbers
Example 1: Find the fourth roots of 16 cis 120o


                  (2 cis 30)4                                    (2 cis 210)4




                 (2 cis 120)4                                    (2 cis 300)4




       Mathematics 4 ()          Operations on Complex Numbers         November 29, 2011   16 / 18
Finding the nth roots of complex numbers



Example 2: Find the cube roots of −8




    Mathematics 4 ()    Operations on Complex Numbers   November 29, 2011   17 / 18
Finding the nth roots of complex numbers



Example 2: Find the cube roots of −8
                       r3 cis 3θ = −8 = 8 cis 180o




    Mathematics 4 ()      Operations on Complex Numbers   November 29, 2011   17 / 18
Finding the nth roots of complex numbers



Example 2: Find the cube roots of −8
                           r3 cis 3θ = −8 = 8 cis 180o
                  r3 = 8        and              3θ = 180o + k360o




    Mathematics 4 ()          Operations on Complex Numbers    November 29, 2011   17 / 18
Finding the nth roots of complex numbers



Example 2: Find the cube roots of −8
                             r3 cis 3θ = −8 = 8 cis 180o
                  r3 = 8          and              3θ = 180o + k360o
                       r=2         and              θ = 60o + k120o




    Mathematics 4 ()            Operations on Complex Numbers     November 29, 2011   17 / 18
Finding the nth roots of complex numbers



Example 2: Find the cube roots of −8
                             r3 cis 3θ = −8 = 8 cis 180o
                  r3 = 8          and              3θ = 180o + k360o
                       r=2         and              θ = 60o + k120o
                                      2 cis 60o
                                  2 cis 180o = −2
                                      2 cis 300o




    Mathematics 4 ()            Operations on Complex Numbers     November 29, 2011   17 / 18
Finding the nth roots of complex numbers
Example 2: Find the cube roots of −8




        (2 cis 60)0                  (2 cis 180)0              (2 cis 300)0




      Mathematics 4 ()         Operations on Complex Numbers   November 29, 2011   18 / 18
Finding the nth roots of complex numbers
Example 2: Find the cube roots of −8




        (2 cis 60)1                  (2 cis 180)1              (2 cis 300)1




      Mathematics 4 ()         Operations on Complex Numbers   November 29, 2011   18 / 18
Finding the nth roots of complex numbers
Example 2: Find the cube roots of −8




        (2 cis 60)2                  (2 cis 180)2              (2 cis 300)2




      Mathematics 4 ()         Operations on Complex Numbers   November 29, 2011   18 / 18
Finding the nth roots of complex numbers
Example 2: Find the cube roots of −8




        (2 cis 60)3                  (2 cis 180)3              (2 cis 300)3




      Mathematics 4 ()         Operations on Complex Numbers   November 29, 2011   18 / 18

More Related Content

What's hot

Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
Matthew Leingang
 
Inverse functions and relations
Inverse functions and relationsInverse functions and relations
Inverse functions and relationsJessica Garcia
 
Polynomial operations (1)
Polynomial operations (1)Polynomial operations (1)
Polynomial operations (1)swartzje
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
oscar
 
9.3 Intro to Rational Functions
9.3 Intro to Rational Functions9.3 Intro to Rational Functions
9.3 Intro to Rational FunctionsKristen Fouss
 
Asymptotes and holes 97
Asymptotes and holes 97Asymptotes and holes 97
Asymptotes and holes 97swartzje
 
Group abstract algebra
Group  abstract algebraGroup  abstract algebra
Group abstract algebra
NaliniSPatil
 
Zeros of a polynomial function
Zeros of a polynomial functionZeros of a polynomial function
Zeros of a polynomial function
MartinGeraldine
 
5.3 integration by substitution dfs-102
5.3 integration by substitution dfs-1025.3 integration by substitution dfs-102
5.3 integration by substitution dfs-102
Farhana Shaheen
 
Basics of Integration and Derivatives
Basics of Integration and DerivativesBasics of Integration and Derivatives
Basics of Integration and Derivatives
Faisal Waqar
 
7 cavalieri principle-x
7 cavalieri principle-x7 cavalieri principle-x
7 cavalieri principle-x
math266
 
Chain Rule
Chain RuleChain Rule
Chain Rule
Nishant Patel
 
Section 5.4 logarithmic functions
Section 5.4 logarithmic functions Section 5.4 logarithmic functions
Section 5.4 logarithmic functions
Wong Hsiung
 
3.1 higher derivatives
3.1 higher derivatives3.1 higher derivatives
3.1 higher derivativesmath265
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Matthew Leingang
 
Function transformations
Function transformationsFunction transformations
Function transformationsTerry Gastauer
 
6.4 inverse matrices
6.4 inverse matrices6.4 inverse matrices
6.4 inverse matricesmath260
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculus
MANISHSAHU106
 
Module 4 exponential and logarithmic functions
Module 4   exponential and logarithmic functionsModule 4   exponential and logarithmic functions
Module 4 exponential and logarithmic functionsAya Chavez
 
Dm2021 binary operations
Dm2021 binary operationsDm2021 binary operations
Dm2021 binary operations
Robert Geofroy
 

What's hot (20)

Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Inverse functions and relations
Inverse functions and relationsInverse functions and relations
Inverse functions and relations
 
Polynomial operations (1)
Polynomial operations (1)Polynomial operations (1)
Polynomial operations (1)
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
 
9.3 Intro to Rational Functions
9.3 Intro to Rational Functions9.3 Intro to Rational Functions
9.3 Intro to Rational Functions
 
Asymptotes and holes 97
Asymptotes and holes 97Asymptotes and holes 97
Asymptotes and holes 97
 
Group abstract algebra
Group  abstract algebraGroup  abstract algebra
Group abstract algebra
 
Zeros of a polynomial function
Zeros of a polynomial functionZeros of a polynomial function
Zeros of a polynomial function
 
5.3 integration by substitution dfs-102
5.3 integration by substitution dfs-1025.3 integration by substitution dfs-102
5.3 integration by substitution dfs-102
 
Basics of Integration and Derivatives
Basics of Integration and DerivativesBasics of Integration and Derivatives
Basics of Integration and Derivatives
 
7 cavalieri principle-x
7 cavalieri principle-x7 cavalieri principle-x
7 cavalieri principle-x
 
Chain Rule
Chain RuleChain Rule
Chain Rule
 
Section 5.4 logarithmic functions
Section 5.4 logarithmic functions Section 5.4 logarithmic functions
Section 5.4 logarithmic functions
 
3.1 higher derivatives
3.1 higher derivatives3.1 higher derivatives
3.1 higher derivatives
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
 
Function transformations
Function transformationsFunction transformations
Function transformations
 
6.4 inverse matrices
6.4 inverse matrices6.4 inverse matrices
6.4 inverse matrices
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculus
 
Module 4 exponential and logarithmic functions
Module 4   exponential and logarithmic functionsModule 4   exponential and logarithmic functions
Module 4 exponential and logarithmic functions
 
Dm2021 binary operations
Dm2021 binary operationsDm2021 binary operations
Dm2021 binary operations
 

Viewers also liked

Complex Numbers
Complex NumbersComplex Numbers
Complex Numbersitutor
 
Complex numbers org.ppt
Complex numbers org.pptComplex numbers org.ppt
Complex numbers org.pptOsama Tahir
 
Complex Number's Applications
Complex Number's ApplicationsComplex Number's Applications
Complex Number's Applications
Nikhil Deswal
 
Complex Number I - Presentation
Complex Number I - PresentationComplex Number I - Presentation
Complex Number I - Presentationyhchung
 
complex numbers 1
complex numbers 1complex numbers 1
complex numbers 1
youmarks
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbersswartzje
 
complex numbers
complex numberscomplex numbers
complex numbers
valour
 
Du1 complex numbers and sequences
Du1 complex numbers and sequencesDu1 complex numbers and sequences
Du1 complex numbers and sequences
jmancisidor
 
ComplexNumbers_Part 1
ComplexNumbers_Part 1ComplexNumbers_Part 1
ComplexNumbers_Part 1Irma Crespo
 
6.5 notes p2 DeMoivres
6.5 notes p2 DeMoivres6.5 notes p2 DeMoivres
6.5 notes p2 DeMoivres
Jonathan Fjelstrom
 
Complex numbers and quadratic equations
Complex numbers and quadratic equationsComplex numbers and quadratic equations
Complex numbers and quadratic equationsriyadutta1996
 
X2 T01 09 geometrical representation of complex numbers
X2 T01 09 geometrical representation of complex numbersX2 T01 09 geometrical representation of complex numbers
X2 T01 09 geometrical representation of complex numbersNigel Simmons
 
Solving Equations in Complex Numbers
Solving Equations in Complex NumbersSolving Equations in Complex Numbers
Solving Equations in Complex Numbers
youmarks
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
1. introduction to complex numbers
1. introduction to complex numbers1. introduction to complex numbers
1. introduction to complex numbers
جليل الممتاز
 
Calculus Application of Integration
Calculus Application of IntegrationCalculus Application of Integration
Calculus Application of Integration
sagar maniya
 
Complex Numbers And Appsfeb
Complex Numbers And AppsfebComplex Numbers And Appsfeb
Complex Numbers And Appsfebnitinpatelceng
 
Properties of coordination complexes Complete
Properties of coordination complexes CompleteProperties of coordination complexes Complete
Properties of coordination complexes Complete
Chris Sonntag
 
1.3 Complex Numbers, Quadratic Equations In The Complex Number System
1.3 Complex Numbers, Quadratic Equations In The Complex Number System1.3 Complex Numbers, Quadratic Equations In The Complex Number System
1.3 Complex Numbers, Quadratic Equations In The Complex Number Systemguest620260
 

Viewers also liked (20)

Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 
Complex numbers org.ppt
Complex numbers org.pptComplex numbers org.ppt
Complex numbers org.ppt
 
Complex Number's Applications
Complex Number's ApplicationsComplex Number's Applications
Complex Number's Applications
 
Complex Number I - Presentation
Complex Number I - PresentationComplex Number I - Presentation
Complex Number I - Presentation
 
complex numbers 1
complex numbers 1complex numbers 1
complex numbers 1
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 
complex numbers
complex numberscomplex numbers
complex numbers
 
Du1 complex numbers and sequences
Du1 complex numbers and sequencesDu1 complex numbers and sequences
Du1 complex numbers and sequences
 
ComplexNumbers_Part 1
ComplexNumbers_Part 1ComplexNumbers_Part 1
ComplexNumbers_Part 1
 
6.5 notes p2 DeMoivres
6.5 notes p2 DeMoivres6.5 notes p2 DeMoivres
6.5 notes p2 DeMoivres
 
Complex numbers and quadratic equations
Complex numbers and quadratic equationsComplex numbers and quadratic equations
Complex numbers and quadratic equations
 
X2 T01 09 geometrical representation of complex numbers
X2 T01 09 geometrical representation of complex numbersX2 T01 09 geometrical representation of complex numbers
X2 T01 09 geometrical representation of complex numbers
 
Solving Equations in Complex Numbers
Solving Equations in Complex NumbersSolving Equations in Complex Numbers
Solving Equations in Complex Numbers
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
1. introduction to complex numbers
1. introduction to complex numbers1. introduction to complex numbers
1. introduction to complex numbers
 
5.9 complex numbers
5.9 complex numbers5.9 complex numbers
5.9 complex numbers
 
Calculus Application of Integration
Calculus Application of IntegrationCalculus Application of Integration
Calculus Application of Integration
 
Complex Numbers And Appsfeb
Complex Numbers And AppsfebComplex Numbers And Appsfeb
Complex Numbers And Appsfeb
 
Properties of coordination complexes Complete
Properties of coordination complexes CompleteProperties of coordination complexes Complete
Properties of coordination complexes Complete
 
1.3 Complex Numbers, Quadratic Equations In The Complex Number System
1.3 Complex Numbers, Quadratic Equations In The Complex Number System1.3 Complex Numbers, Quadratic Equations In The Complex Number System
1.3 Complex Numbers, Quadratic Equations In The Complex Number System
 

Similar to Powers and Roots of Complex numbers

Section 11-2 Algebra 2
Section 11-2 Algebra 2Section 11-2 Algebra 2
Section 11-2 Algebra 2
Jimbo Lamb
 
Mathematics and History of Complex Variables
Mathematics and History of Complex VariablesMathematics and History of Complex Variables
Mathematics and History of Complex Variables
Solo Hermelin
 
AA Section 6-1
AA Section 6-1AA Section 6-1
AA Section 6-1
Jimbo Lamb
 
[Maths] arithmetic
[Maths] arithmetic[Maths] arithmetic
[Maths] arithmeticOurutopy
 
More theorems on polynomial functions
More theorems on polynomial functionsMore theorems on polynomial functions
More theorems on polynomial functions
Leo Crisologo
 
factoring polynomials
factoring polynomialsfactoring polynomials
factoring polynomials
abigail Dayrit
 
Factoring by grouping ppt
Factoring by grouping pptFactoring by grouping ppt
Factoring by grouping ppt
Doreen Mhizha
 
Main
MainMain
Patterns
PatternsPatterns
Patterns
Jessica Price
 
Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1jennytuazon01630
 
Applied Math 40S June 2 AM, 2008
Applied Math 40S June 2 AM, 2008Applied Math 40S June 2 AM, 2008
Applied Math 40S June 2 AM, 2008
Darren Kuropatwa
 
Circles Lecture - Part 1
Circles Lecture - Part 1Circles Lecture - Part 1
Circles Lecture - Part 1Leo Crisologo
 
A family of implicit higher order methods for the numerical integration of se...
A family of implicit higher order methods for the numerical integration of se...A family of implicit higher order methods for the numerical integration of se...
A family of implicit higher order methods for the numerical integration of se...
Alexander Decker
 
Math 116 pres. 1
Math 116 pres. 1Math 116 pres. 1

Similar to Powers and Roots of Complex numbers (15)

0406 ch 4 day 6
0406 ch 4 day 60406 ch 4 day 6
0406 ch 4 day 6
 
Section 11-2 Algebra 2
Section 11-2 Algebra 2Section 11-2 Algebra 2
Section 11-2 Algebra 2
 
Mathematics and History of Complex Variables
Mathematics and History of Complex VariablesMathematics and History of Complex Variables
Mathematics and History of Complex Variables
 
AA Section 6-1
AA Section 6-1AA Section 6-1
AA Section 6-1
 
[Maths] arithmetic
[Maths] arithmetic[Maths] arithmetic
[Maths] arithmetic
 
More theorems on polynomial functions
More theorems on polynomial functionsMore theorems on polynomial functions
More theorems on polynomial functions
 
factoring polynomials
factoring polynomialsfactoring polynomials
factoring polynomials
 
Factoring by grouping ppt
Factoring by grouping pptFactoring by grouping ppt
Factoring by grouping ppt
 
Main
MainMain
Main
 
Patterns
PatternsPatterns
Patterns
 
Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1
 
Applied Math 40S June 2 AM, 2008
Applied Math 40S June 2 AM, 2008Applied Math 40S June 2 AM, 2008
Applied Math 40S June 2 AM, 2008
 
Circles Lecture - Part 1
Circles Lecture - Part 1Circles Lecture - Part 1
Circles Lecture - Part 1
 
A family of implicit higher order methods for the numerical integration of se...
A family of implicit higher order methods for the numerical integration of se...A family of implicit higher order methods for the numerical integration of se...
A family of implicit higher order methods for the numerical integration of se...
 
Math 116 pres. 1
Math 116 pres. 1Math 116 pres. 1
Math 116 pres. 1
 

More from Leo Crisologo

Math 4 graphing rational functions
Math 4 graphing rational functionsMath 4 graphing rational functions
Math 4 graphing rational functionsLeo Crisologo
 
Theorems on polynomial functions
Theorems on polynomial functionsTheorems on polynomial functions
Theorems on polynomial functions
Leo Crisologo
 
Polynomial functions
Polynomial functionsPolynomial functions
Polynomial functionsLeo Crisologo
 
Math 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersMath 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersLeo Crisologo
 
Math 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersMath 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersLeo Crisologo
 
Specific function examples
Specific function examplesSpecific function examples
Specific function examplesLeo Crisologo
 
Inverse of functions
Inverse of functionsInverse of functions
Inverse of functionsLeo Crisologo
 
Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?Leo Crisologo
 
Permutations and combinations examples
Permutations and combinations examplesPermutations and combinations examples
Permutations and combinations examplesLeo Crisologo
 
Sequences and series
Sequences and seriesSequences and series
Sequences and series
Leo Crisologo
 
Right triangle problems
Right triangle problemsRight triangle problems
Right triangle problemsLeo Crisologo
 
Inverse trigonometric functions
Inverse trigonometric functionsInverse trigonometric functions
Inverse trigonometric functionsLeo Crisologo
 
Graphing trigonometric functions
Graphing trigonometric functionsGraphing trigonometric functions
Graphing trigonometric functions
Leo Crisologo
 
Circles and Tangent Lines
Circles and Tangent LinesCircles and Tangent Lines
Circles and Tangent Lines
Leo Crisologo
 
Circles - Degenerate and Null cases
Circles - Degenerate and Null casesCircles - Degenerate and Null cases
Circles - Degenerate and Null casesLeo Crisologo
 
Circles - analysis problems
Circles - analysis problemsCircles - analysis problems
Circles - analysis problemsLeo Crisologo
 

More from Leo Crisologo (20)

Math 4 graphing rational functions
Math 4 graphing rational functionsMath 4 graphing rational functions
Math 4 graphing rational functions
 
Theorems on polynomial functions
Theorems on polynomial functionsTheorems on polynomial functions
Theorems on polynomial functions
 
Polynomial functions
Polynomial functionsPolynomial functions
Polynomial functions
 
Math 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersMath 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbers
 
Math 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersMath 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbers
 
Completeness axiom
Completeness axiomCompleteness axiom
Completeness axiom
 
Specific function examples
Specific function examplesSpecific function examples
Specific function examples
 
Inverse of functions
Inverse of functionsInverse of functions
Inverse of functions
 
Functions
FunctionsFunctions
Functions
 
Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?
 
Permutations and combinations examples
Permutations and combinations examplesPermutations and combinations examples
Permutations and combinations examples
 
Permutations
PermutationsPermutations
Permutations
 
Counting examples
Counting examplesCounting examples
Counting examples
 
Sequences and series
Sequences and seriesSequences and series
Sequences and series
 
Right triangle problems
Right triangle problemsRight triangle problems
Right triangle problems
 
Inverse trigonometric functions
Inverse trigonometric functionsInverse trigonometric functions
Inverse trigonometric functions
 
Graphing trigonometric functions
Graphing trigonometric functionsGraphing trigonometric functions
Graphing trigonometric functions
 
Circles and Tangent Lines
Circles and Tangent LinesCircles and Tangent Lines
Circles and Tangent Lines
 
Circles - Degenerate and Null cases
Circles - Degenerate and Null casesCircles - Degenerate and Null cases
Circles - Degenerate and Null cases
 
Circles - analysis problems
Circles - analysis problemsCircles - analysis problems
Circles - analysis problems
 

Recently uploaded

FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
UiPathCommunity
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
DianaGray10
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Ramesh Iyer
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
91mobiles
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
DianaGray10
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
g2nightmarescribd
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
ControlCase
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Product School
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 

Recently uploaded (20)

FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 

Powers and Roots of Complex numbers

  • 1. Operations on Complex Numbers Mathematics 4 November 29, 2011 Mathematics 4 () Operations on Complex Numbers November 29, 2011 1 / 18
  • 2. Review of Multiplication of Complex Numbers Find the product of 4 + 4i and −2 − 3i 1. Multiply Algebraically (4 + 4i)(−2 − 3i) = −8 − 12i − 8i − 12i2 = −8 − 20i + 12 = 4 − 20i Mathematics 4 () Operations on Complex Numbers November 29, 2011 2 / 18
  • 3. Review of Multiplication of Complex Numbers Find the product of 4 + 4i and −2 − 3i 2. Multiply in their polar forms √ √ (4 + 4i)(−2 − 3i) = (4 2 cis 45o ) · ( 13 cis 236.31o ) √ √ = (4 2 · 13) cis(45 + 236.31)o √ = 4 26 cis 281.31o = 4 − 20i Mathematics 4 () Operations on Complex Numbers November 29, 2011 3 / 18
  • 4. Review of Multiplication of Complex Numbers Rule for Multiplication of Complex Numbers in Polar Form Given: z1 = r1 cis α z2 = r2 cis β Mathematics 4 () Operations on Complex Numbers November 29, 2011 4 / 18
  • 5. Review of Multiplication of Complex Numbers Rule for Multiplication of Complex Numbers in Polar Form Given: z1 = r1 cis α z2 = r2 cis β z1 · z2 = (r1 · r2 ) cis(α + β) Mathematics 4 () Operations on Complex Numbers November 29, 2011 4 / 18
  • 6. Raising Complex Numbers to a Power Given: z = r cis θ z0 = Mathematics 4 () Operations on Complex Numbers November 29, 2011 5 / 18
  • 7. Raising Complex Numbers to a Power Given: z = r cis θ z0 = 1 Mathematics 4 () Operations on Complex Numbers November 29, 2011 5 / 18
  • 8. Raising Complex Numbers to a Power Given: z = r cis θ z0 = 1 z1 = Mathematics 4 () Operations on Complex Numbers November 29, 2011 5 / 18
  • 9. Raising Complex Numbers to a Power Given: z = r cis θ z0 = 1 z 1 = r cis θ Mathematics 4 () Operations on Complex Numbers November 29, 2011 5 / 18
  • 10. Raising Complex Numbers to a Power Given: z = r cis θ z0 = 1 z 1 = r cis θ z2 = Mathematics 4 () Operations on Complex Numbers November 29, 2011 5 / 18
  • 11. Raising Complex Numbers to a Power Given: z = r cis θ z0 = 1 z 1 = r cis θ z 2 = (r cis θ) · (r cis θ) Mathematics 4 () Operations on Complex Numbers November 29, 2011 5 / 18
  • 12. Raising Complex Numbers to a Power Given: z = r cis θ z0 = 1 z 1 = r cis θ z 2 = (r cis θ) · (r cis θ) = r2 cis 2θ Mathematics 4 () Operations on Complex Numbers November 29, 2011 5 / 18
  • 13. Raising Complex Numbers to a Power Given: z = r cis θ z0 =1 z1 = r cis θ z2 = (r cis θ) · (r cis θ) = r2 cis 2θ z3 = Mathematics 4 () Operations on Complex Numbers November 29, 2011 5 / 18
  • 14. Raising Complex Numbers to a Power Given: z = r cis θ z0 = 1 z1 = r cis θ z2 = (r cis θ) · (r cis θ) = r2 cis 2θ z3 = (r2 cis 2θ) · (r cis θ) Mathematics 4 () Operations on Complex Numbers November 29, 2011 5 / 18
  • 15. Raising Complex Numbers to a Power Given: z = r cis θ z0 = 1 z1 = r cis θ z2 = (r cis θ) · (r cis θ) = r2 cis 2θ z3 = (r2 cis 2θ) · (r cis θ) = r3 cis 3θ Mathematics 4 () Operations on Complex Numbers November 29, 2011 5 / 18
  • 16. Raising Complex Numbers to a Power Given: z = r cis θ z0 = 1 z1 = r cis θ z2 = (r cis θ) · (r cis θ) = r2 cis 2θ z3 = (r2 cis 2θ) · (r cis θ) = r3 cis 3θ Mathematics 4 () Operations on Complex Numbers November 29, 2011 5 / 18
  • 17. Raising Complex Numbers to a Power De Moivre’s Theorem (r cis θ)n = rn cis(n · θ) Mathematics 4 () Operations on Complex Numbers November 29, 2011 6 / 18
  • 18. De Moivre’s Theorem √ Example 1: Find ( 2 cis 20o )10 √ √ ( 2 cis 20o )10 = ( 2)10 cis(10 · 20)o Mathematics 4 () Operations on Complex Numbers November 29, 2011 7 / 18
  • 19. De Moivre’s Theorem √ Example 1: Find ( 2 cis 20o )10 √ √ ( 2 cis 20o )10 = ( 2)10 cis(10 · 20)o √ ( 2 cis 20o )10 = 32 cis 200o Mathematics 4 () Operations on Complex Numbers November 29, 2011 7 / 18
  • 20. De Moivre’s√Theorem Example 1: Find ( 2 cis 20o )10 √ ( 2 cis 20o )0 = 1 cis 0 Mathematics 4 () Operations on Complex Numbers November 29, 2011 8 / 18
  • 21. De Moivre’s√Theorem Example 1: Find ( 2 cis 20o )10 √ √ ( 2 cis 20o )1 = 2 cis 20o Mathematics 4 () Operations on Complex Numbers November 29, 2011 8 / 18
  • 22. De Moivre’s√Theorem Example 1: Find ( 2 cis 20o )10 √ ( 2 cis 20o )2 = 2 cis 400 Mathematics 4 () Operations on Complex Numbers November 29, 2011 8 / 18
  • 23. De Moivre’s√Theorem Example 1: Find ( 2 cis 20o )10 √ √ ( 2 cis 20o )3 = 2 2 cis 60o Mathematics 4 () Operations on Complex Numbers November 29, 2011 8 / 18
  • 24. De Moivre’s√Theorem Example 1: Find ( 2 cis 20o )10 √ ( 2 cis 20o )4 = 4 cis 80o Mathematics 4 () Operations on Complex Numbers November 29, 2011 8 / 18
  • 25. De Moivre’s√Theorem Example 1: Find ( 2 cis 20o )10 √ √ ( 2 cis 20o )5 = 4 2 cis 100o Mathematics 4 () Operations on Complex Numbers November 29, 2011 8 / 18
  • 26. De Moivre’s√Theorem Example 1: Find ( 2 cis 20o )10 √ ( 2 cis 20o )6 = 8 cis 120o Mathematics 4 () Operations on Complex Numbers November 29, 2011 8 / 18
  • 27. De Moivre’s√Theorem Example 1: Find ( 2 cis 20o )10 √ √ ( 2 cis 20o )7 = 8 2 cis 140o Mathematics 4 () Operations on Complex Numbers November 29, 2011 8 / 18
  • 28. De Moivre’s√Theorem Example 1: Find ( 2 cis 20o )10 √ ( 2 cis 20o )8 = 16 cis 160o Mathematics 4 () Operations on Complex Numbers November 29, 2011 8 / 18
  • 29. De Moivre’s√Theorem Example 1: Find ( 2 cis 20o )10 √ √ ( 2 cis 20o )9 = 16 2 cis 180o Mathematics 4 () Operations on Complex Numbers November 29, 2011 8 / 18
  • 30. De Moivre’s√Theorem Example 1: Find ( 2 cis 20o )10 √ ( 2 cis 20o )10 = 32 cis 200o Mathematics 4 () Operations on Complex Numbers November 29, 2011 8 / 18
  • 31. De Moivre’s Theorem Example 2: Find (3 cis 120o )5 (3 cis 120o )5 = 35 cis(5 · 120)o Mathematics 4 () Operations on Complex Numbers November 29, 2011 9 / 18
  • 32. De Moivre’s Theorem Example 2: Find (3 cis 120o )5 (3 cis 120o )5 = 35 cis(5 · 120)o (3 cis 120o )5 = 243 cis 600o = 243 cis 240o Mathematics 4 () Operations on Complex Numbers November 29, 2011 9 / 18
  • 33. De Moivre’s Theorem Example 2: Find (3 cis 120o )5 (3 cis 120o )0 = 1 cis 0 Mathematics 4 () Operations on Complex Numbers November 29, 2011 10 / 18
  • 34. De Moivre’s Theorem Example 2: Find (3 cis 120o )5 (3 cis 120o )1 = 3 cis 120o Mathematics 4 () Operations on Complex Numbers November 29, 2011 10 / 18
  • 35. De Moivre’s Theorem Example 2: Find (3 cis 120o )5 (3 cis 120o )2 = 9 cis 240o Mathematics 4 () Operations on Complex Numbers November 29, 2011 10 / 18
  • 36. De Moivre’s Theorem Example 2: Find (3 cis 120o )5 (3 cis 120o )3 = 27 cis 360o Mathematics 4 () Operations on Complex Numbers November 29, 2011 10 / 18
  • 37. De Moivre’s Theorem Example 2: Find (3 cis 120o )5 (3 cis 120o )4 = 81 cis 480o Mathematics 4 () Operations on Complex Numbers November 29, 2011 10 / 18
  • 38. De Moivre’s Theorem Example 2: Find (3 cis 120o )5 (3 cis 120o )5 = 243 cis 600o = 243 cis 240o Mathematics 4 () Operations on Complex Numbers November 29, 2011 10 / 18
  • 39. De Moivre’s Theorem Example 3: Find (1 − i)8 √ (1 − i)8 = ( 2 cis 315o )8 Mathematics 4 () Operations on Complex Numbers November 29, 2011 11 / 18
  • 40. De Moivre’s Theorem Example 3: Find (1 − i)8 √ √ (1 − i)8 = ( 2 cis 315o )8 ( 2 cis 315o )8 = 16 cis 2520o = 16 cis 0 = 16 Mathematics 4 () Operations on Complex Numbers November 29, 2011 11 / 18
  • 41. De Moivre’s Theorem Example 3: Find (1 − i)8 √ (1 − i)0 = ( 2 cis(−45)o )0 = 1 cis 0 Mathematics 4 () Operations on Complex Numbers November 29, 2011 12 / 18
  • 42. De Moivre’s Theorem Example 3: Find (1 − i)8 √ √ (1 − i)1 = ( 2 cis(−45)o )1 = 2 cis(−45)o Mathematics 4 () Operations on Complex Numbers November 29, 2011 12 / 18
  • 43. De Moivre’s Theorem Example 3: Find (1 − i)8 √ (1 − i)2 = ( 2 cis(−45)o )2 = 2 cis(−90)o Mathematics 4 () Operations on Complex Numbers November 29, 2011 12 / 18
  • 44. De Moivre’s Theorem Example 3: Find (1 − i)8 √ √ (1 − i)3 = ( 2 cis(−45)o )3 = 2 2 cis(−135)o Mathematics 4 () Operations on Complex Numbers November 29, 2011 12 / 18
  • 45. De Moivre’s Theorem Example 3: Find (1 − i)8 √ (1 − i)4 = ( 2 cis(−45)o )4 = 4 cis(−180)o Mathematics 4 () Operations on Complex Numbers November 29, 2011 12 / 18
  • 46. De Moivre’s Theorem Example 3: Find (1 − i)8 √ √ (1 − i)5 = ( 2 cis(−45)o )5 = 4 2 cis(−225)o Mathematics 4 () Operations on Complex Numbers November 29, 2011 12 / 18
  • 47. De Moivre’s Theorem Example 3: Find (1 − i)8 √ (1 − i)6 = ( 2 cis(−45)o )6 = 8 cis(−270)o Mathematics 4 () Operations on Complex Numbers November 29, 2011 12 / 18
  • 48. De Moivre’s Theorem Example 3: Find (1 − i)8 √ √ (1 − i)7 = ( 2 cis(−45)o )7 = 8 2 cis(−315)o Mathematics 4 () Operations on Complex Numbers November 29, 2011 12 / 18
  • 49. De Moivre’s Theorem Example 3: Find (1 − i)8 √ (1 − i)8 = ( 2 cis(−45)o )8 = 16 cis(−360)o = 16 cis 0 Mathematics 4 () Operations on Complex Numbers November 29, 2011 12 / 18
  • 50. De Moivre’s Theorem Example 3: Find (1 − i)8 √ (1 − i)8 = ( 2 cis(−45)o )8 = 16 cis(−360)o = 16 cis 0 Mathematics 4 () Operations on Complex Numbers November 29, 2011 12 / 18
  • 51. De Moivre’s Theorem De Moivre’s Theorem can be used to find the nth of a complex number: √ Find the three cube roots of −2 − i2 3. We wish to find values of r and θ such that: √ (r cis θ)3 = −2 − i2 3 Mathematics 4 () Operations on Complex Numbers November 29, 2011 13 / 18
  • 52. De Moivre’s Theorem De Moivre’s Theorem can be used to find the nth of a complex number: √ Find the three cube roots of −2 − i2 3. We wish to find values of r and θ such that: √ (r cis θ)3 = −2 − i2 3 Using De Moivre’s Theorem and expressing the complex number in polar form: r3 cis 3θ = 4 cis 240o Therefore: r3 = 4 and 3θ = 240o + k · 360o , k ∈ Z Mathematics 4 () Operations on Complex Numbers November 29, 2011 13 / 18
  • 53. De Moivre’s Theorem De Moivre’s Theorem can be used to find the nth of a complex number: √ Find the three cube roots of −2 − i2 3. We wish to find values of r and θ such that: √ (r cis θ)3 = −2 − i2 3 Using De Moivre’s Theorem and expressing the complex number in polar form: r3 cis 3θ = 4 cis 240o Therefore: r3 = √ 4 and 3θ = 240o + k · 360o , k ∈ Z r= 34 and θ = 80o + k · 120o , k ∈ Z Mathematics 4 () Operations on Complex Numbers November 29, 2011 13 / 18
  • 54. Finding the nth roots of complex numbers For any complex number r cis θ and n ∈ Z+ : The nth roots of r cis θ is given by: √ n r cis θk θ + k360o θk = , k = 0, 1, 2, ...(n − 1) n Mathematics 4 () Operations on Complex Numbers November 29, 2011 14 / 18
  • 55. Finding the nth roots of complex numbers Example 1: Find the fourth roots of 16 cis 120o Mathematics 4 () Operations on Complex Numbers November 29, 2011 15 / 18
  • 56. Finding the nth roots of complex numbers Example 1: Find the fourth roots of 16 cis 120o r4 cis 4θ = 16 cis 120o Mathematics 4 () Operations on Complex Numbers November 29, 2011 15 / 18
  • 57. Finding the nth roots of complex numbers Example 1: Find the fourth roots of 16 cis 120o r4 cis 4θ = 16 cis 120o r4 = 16 and 4θ = 120o + k360o Mathematics 4 () Operations on Complex Numbers November 29, 2011 15 / 18
  • 58. Finding the nth roots of complex numbers Example 1: Find the fourth roots of 16 cis 120o r4 cis 4θ = 16 cis 120o r4 = 16 and 4θ = 120o + k360o r=2 and θ = 30o + k90o Mathematics 4 () Operations on Complex Numbers November 29, 2011 15 / 18
  • 59. Finding the nth roots of complex numbers Example 1: Find the fourth roots of 16 cis 120o r4 cis 4θ = 16 cis 120o r4 = 16 and 4θ = 120o + k360o r=2 and θ = 30o + k90o 2 cis 30o 2 cis 120o 2 cis 210o 2 cis 300o Mathematics 4 () Operations on Complex Numbers November 29, 2011 15 / 18
  • 60. Finding the nth roots of complex numbers Example 1: Find the fourth roots of 16 cis 120o (2 cis 30)0 (2 cis 210)0 (2 cis 120)0 (2 cis 300)0 Mathematics 4 () Operations on Complex Numbers November 29, 2011 16 / 18
  • 61. Finding the nth roots of complex numbers Example 1: Find the fourth roots of 16 cis 120o (2 cis 30)1 (2 cis 210)1 (2 cis 120)1 (2 cis 300)1 Mathematics 4 () Operations on Complex Numbers November 29, 2011 16 / 18
  • 62. Finding the nth roots of complex numbers Example 1: Find the fourth roots of 16 cis 120o (2 cis 30)2 (2 cis 210)2 (2 cis 120)2 (2 cis 300)2 Mathematics 4 () Operations on Complex Numbers November 29, 2011 16 / 18
  • 63. Finding the nth roots of complex numbers Example 1: Find the fourth roots of 16 cis 120o (2 cis 30)3 (2 cis 210)3 (2 cis 120)3 (2 cis 300)3 Mathematics 4 () Operations on Complex Numbers November 29, 2011 16 / 18
  • 64. Finding the nth roots of complex numbers Example 1: Find the fourth roots of 16 cis 120o (2 cis 30)4 (2 cis 210)4 (2 cis 120)4 (2 cis 300)4 Mathematics 4 () Operations on Complex Numbers November 29, 2011 16 / 18
  • 65. Finding the nth roots of complex numbers Example 1: Find the fourth roots of 16 cis 120o (2 cis 30)4 (2 cis 210)4 (2 cis 120)4 (2 cis 300)4 Mathematics 4 () Operations on Complex Numbers November 29, 2011 16 / 18
  • 66. Finding the nth roots of complex numbers Example 2: Find the cube roots of −8 Mathematics 4 () Operations on Complex Numbers November 29, 2011 17 / 18
  • 67. Finding the nth roots of complex numbers Example 2: Find the cube roots of −8 r3 cis 3θ = −8 = 8 cis 180o Mathematics 4 () Operations on Complex Numbers November 29, 2011 17 / 18
  • 68. Finding the nth roots of complex numbers Example 2: Find the cube roots of −8 r3 cis 3θ = −8 = 8 cis 180o r3 = 8 and 3θ = 180o + k360o Mathematics 4 () Operations on Complex Numbers November 29, 2011 17 / 18
  • 69. Finding the nth roots of complex numbers Example 2: Find the cube roots of −8 r3 cis 3θ = −8 = 8 cis 180o r3 = 8 and 3θ = 180o + k360o r=2 and θ = 60o + k120o Mathematics 4 () Operations on Complex Numbers November 29, 2011 17 / 18
  • 70. Finding the nth roots of complex numbers Example 2: Find the cube roots of −8 r3 cis 3θ = −8 = 8 cis 180o r3 = 8 and 3θ = 180o + k360o r=2 and θ = 60o + k120o 2 cis 60o 2 cis 180o = −2 2 cis 300o Mathematics 4 () Operations on Complex Numbers November 29, 2011 17 / 18
  • 71. Finding the nth roots of complex numbers Example 2: Find the cube roots of −8 (2 cis 60)0 (2 cis 180)0 (2 cis 300)0 Mathematics 4 () Operations on Complex Numbers November 29, 2011 18 / 18
  • 72. Finding the nth roots of complex numbers Example 2: Find the cube roots of −8 (2 cis 60)1 (2 cis 180)1 (2 cis 300)1 Mathematics 4 () Operations on Complex Numbers November 29, 2011 18 / 18
  • 73. Finding the nth roots of complex numbers Example 2: Find the cube roots of −8 (2 cis 60)2 (2 cis 180)2 (2 cis 300)2 Mathematics 4 () Operations on Complex Numbers November 29, 2011 18 / 18
  • 74. Finding the nth roots of complex numbers Example 2: Find the cube roots of −8 (2 cis 60)3 (2 cis 180)3 (2 cis 300)3 Mathematics 4 () Operations on Complex Numbers November 29, 2011 18 / 18