SlideShare a Scribd company logo
The Argand Diagram
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y
                           3
                           2
                           1

              -4 -3 -2 -1       1   2   3 4 x
                         -1
                         -2
                         -3
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y
                           3
                           2
                           1

              -4 -3 -2 -1       1   2   3 4 x (real axis)
                         -1
                         -2
                         -3
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                           1

              -4 -3 -2 -1       1   2   3 4 x (real axis)
                         -1
                         -2
                         -3
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                           1

              -4 -3 -2 -1       1   2   3 4 x (real axis)
                         -1
A=2                      -2
                         -3
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                           1
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1
A=2                       -2
                          -3
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                           1
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1
A=2                       -2
B = -3i                   -3
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                           1
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1
A=2                       -2
B = -3i                   -3 B
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                           1
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1
A=2                       -2
B = -3i                   -3 B
C = -2 + i
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                       C 1
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1
A=2                       -2
B = -3i                   -3 B
C = -2 + i
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                       C 1
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1
A=2                       -2
B = -3i                   -3 B
C = -2 + i
D=4-i
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                       C 1
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1           D
A=2                       -2
B = -3i                   -3 B
C = -2 + i
D=4-i
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                       C 1
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1           D
A=2                       -2
B = -3i                   -3 B
C = -2 + i
D=4-i
E=4+i
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                       C 1              E
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1           D
A=2                       -2
B = -3i                   -3 B
C = -2 + i
D=4-i
E=4+i
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3                    NOTE: Conjugates
                           2                    are reflected in the
                       C 1              E       real (x) axis
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1           D
A=2                       -2
B = -3i                   -3 B
C = -2 + i
D=4-i
E=4+i
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3                    NOTE: Conjugates
                           2                    are reflected in the
                       C 1              E       real (x) axis
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1           D
A=2                       -2
B = -3i                   -3 B
C = -2 + i
D=4-i
E=4+i
           Every complex number can be represented by a unique
           point on the Argand Diagram.
Mod-Arg Form
y




O    x
Mod-Arg Form
         Modulus
         The modulus of a complex number is the
y        length of the vector OZ




O    x
Mod-Arg Form
                 Modulus
                 The modulus of a complex number is the
y                length of the vector OZ
    z = x + iy




O         x
Mod-Arg Form
                 Modulus
                 The modulus of a complex number is the
y                length of the vector OZ
    z = x + iy




O         x
Mod-Arg Form
                     Modulus
                     The modulus of a complex number is the
y                    length of the vector OZ
        z = x + iy

           y

O   x          x
Mod-Arg Form
                     Modulus
                     The modulus of a complex number is the
y                    length of the vector OZ
        z = x + iy
                               r 2  x2  y2
           y                    r  x2  y2

O   x          x
Mod-Arg Form
                        Modulus
                        The modulus of a complex number is the
y                       length of the vector OZ
           z = x + iy
                                  r 2  x2  y2
    r z
              y                    r  x2  y2

O      x          x
Mod-Arg Form
                        Modulus
                        The modulus of a complex number is the
y                       length of the vector OZ
           z = x + iy
                                  r 2  x2  y2
    r z
              y                    r  x2  y2
                                   z  x2  y2
O      x          x
Mod-Arg Form
                        Modulus
                        The modulus of a complex number is the
y                       length of the vector OZ
           z = x + iy
                                  r 2  x2  y2
    r z
              y                     r  x2  y2
                                    z  x2  y2
O      x          x
                        Argument
                        The argument of a complex number is
                        the angle the vector OZ makes with the
                        positive real (x) axis
Mod-Arg Form
                        Modulus
                        The modulus of a complex number is the
y                       length of the vector OZ
           z = x + iy
                                  r 2  x2  y2
    r z
                y                   r  x2  y2
      arg z                       z  x2  y2
O      x            x
                        Argument
                        The argument of a complex number is
                        the angle the vector OZ makes with the
                        positive real (x) axis
Mod-Arg Form
                        Modulus
                        The modulus of a complex number is the
y                       length of the vector OZ
           z = x + iy
                                  r 2  x2  y2
    r z
                y                   r  x2  y2
      arg z                       z  x2  y2
O      x            x
                        Argument
                        The argument of a complex number is
                        the angle the vector OZ makes with the
                        positive real (x) axis
                                    1 y
                          arg z  tan  
                                       x
Mod-Arg Form
                        Modulus
                        The modulus of a complex number is the
y                       length of the vector OZ
           z = x + iy
                                  r 2  x2  y2
    r z
                y                   r  x2  y2
      arg z                       z  x2  y2
O      x            x
                        Argument
                        The argument of a complex number is
                        the angle the vector OZ makes with the
                        positive real (x) axis
                                       y
                                    1
                          arg z  tan              arg z  
                                       x
e.g . Find the modulus and argument of 4  4i
e.g . Find the modulus and argument of 4  4i
    4  4i  4 2   4 
                        2
e.g . Find the modulus and argument of 4  4i
    4  4i  4 2   4 
                        2


           32
          4 2
e.g . Find the modulus and argument of 4  4i
                                                  4
                             arg4  4i   tan 
    4  4i  4   4 
                                                1
                                                     
                2       2

                                                  4 
           32
          4 2
e.g . Find the modulus and argument of 4  4i
                             arg4  4i   tan    4
    4  4i  4   4 
                                                 1
                                                         
                2       2

                                                    4 
           32                             tan 1  1
          4 2
e.g . Find the modulus and argument of 4  4i
                             arg4  4i   tan    4
    4  4i  4   4 
                                                 1
                                                         
                2       2

                                                    4 
           32                             tan 1  1
          4 2
e.g . Find the modulus and argument of 4  4i
                             arg4  4i   tan    4
    4  4i  4   4 
                                                 1
                                                         
                2       2

                                                    4 
           32                             tan 1  1
          4 2                                  
                                           
                                                4
e.g . Find the modulus and argument of 4  4i
                             arg4  4i   tan    4
     4  4i  4   4 
                                                 1
                                                         
                2       2

                                                    4 
           32                             tan 1  1
          4 2                                  
                                           
                                           4
Every complex number can be written in terms of its modulus and
argument
e.g . Find the modulus and argument of 4  4i
                             arg4  4i   tan    4
    4  4i  4   4 
                                                 1
                                                         
                2       2

                                                    4 
           32                             tan 1  1
          4 2                                  
                                           
                                           4
Every complex number can be written in terms of its modulus and
argument
                   z  x  iy
e.g . Find the modulus and argument of 4  4i
                             arg4  4i   tan    4
    4  4i  4   4 
                                                 1
                                                         
                2       2

                                                    4 
           32                             tan 1  1
          4 2                                  
                                           
                                           4
Every complex number can be written in terms of its modulus and
argument
                   z  x  iy
                      r cos  ir sin 
e.g . Find the modulus and argument of 4  4i
                             arg4  4i   tan    4
    4  4i  4   4 
                                                 1
                                                         
                2       2

                                                    4 
           32                             tan 1  1
          4 2                                  
                                           
                                           4
Every complex number can be written in terms of its modulus and
argument
                   z  x  iy
                      r cos  ir sin 
                      r cos  i sin  
e.g . Find the modulus and argument of 4  4i
                             arg4  4i   tan    4
    4  4i  4   4 
                                                 1
                                                         
                2       2

                                                    4 
           32                             tan 1  1
          4 2                                  
                                           
                                           4
Every complex number can be written in terms of its modulus and
argument
                   z  x  iy
                      r cos  ir sin 
                      r cos  i sin  
      The mod-arg form of z is;
e.g . Find the modulus and argument of 4  4i
                              arg4  4i   tan    4
    4  4i  4   4 
                                                  1
                                                          
                2       2

                                                     4 
           32                              tan 1  1
          4 2                                   
                                            
                                           4
Every complex number can be written in terms of its modulus and
argument
                   z  x  iy
                      r cos  ir sin 
                      r cos  i sin  
      The mod-arg form of z is;
                      z  r cos  i sin  
e.g . Find the modulus and argument of 4  4i
                              arg4  4i   tan    4
    4  4i  4   4 
                                                  1
                                                          
                2       2

                                                     4 
           32                              tan 1  1
          4 2                                   
                                            
                                           4
Every complex number can be written in terms of its modulus and
argument
                   z  x  iy
                      r cos  ir sin 
                      r cos  i sin  
      The mod-arg form of z is;
                      z  r cos  i sin  
                      z  rcis
e.g . Find the modulus and argument of 4  4i
                              arg4  4i   tan    4
    4  4i  4   4 
                                                  1
                                                          
                2       2

                                                     4 
           32                              tan 1  1
          4 2                                   
                                            
                                           4
Every complex number can be written in terms of its modulus and
argument
                   z  x  iy
                      r cos  ir sin 
                      r cos  i sin  
      The mod-arg form of z is;
                      z  r cos  i sin  
                      z  rcis
              where; r  z
                        arg z
e.g. i  4  4i

e.g. i  4  4i  4 2cis  
                             
                           4

e.g. i  4  4i  4 2cis  
                             
                           4
     ii  3  i

e.g. i  4  4i  4 2cis  
                             
                           4
     ii  3  i
       z     3 2
                       12
          4
         2

e.g. i  4  4i  4 2cis  
                             
                           4
     ii  3  i
       z     3 2
                      1
                       2
                                  arg z  tan 1
                                                   1
                                                    3
          4
         2

e.g. i  4  4i  4 2cis  
                             
                           4
     ii  3  i
       z     3 2
                      1
                       2
                                  arg z  tan 1
                                                   1
                                                   3
          4                            
                                            6
         2

e.g. i  4  4i  4 2cis  
                             
                           4
     ii  3  i
       z     3 2
                      1
                       2
                                       arg z  tan 1
                                                        1
                                                        3
          4                                 
                                                 6
         2
                                       
                       3  i  2cis
                                       6

e.g. i  4  4i  4 2cis  
                             
                           4
     ii  3  i
       z     3 2
                      1
                       2
                                       arg z  tan 1
                                                        1
                                                        3
          4                                 
                                                 6
         2
                                       
                       3  i  2cis
                                       6




                             Exercise 4B; evens

More Related Content

What's hot

Overview of sampling
Overview of samplingOverview of sampling
Overview of sampling
Sagar Kumar
 
Bode plot
Bode plotBode plot
Bode plot
Mrunal Deshkar
 
Fundamentals of Digital Signal Processing - Question Bank
Fundamentals of Digital Signal Processing - Question BankFundamentals of Digital Signal Processing - Question Bank
Fundamentals of Digital Signal Processing - Question Bank
Mathankumar S
 
Fourier transform
Fourier transformFourier transform
Fourier transform
Naveen Sihag
 
State space analysis shortcut rules, control systems,
State space analysis shortcut rules, control systems, State space analysis shortcut rules, control systems,
State space analysis shortcut rules, control systems,
Prajakta Pardeshi
 
Block diagram Examples
Block diagram ExamplesBlock diagram Examples
Block diagram Examples
Sagar Kuntumal
 
Solvedproblems 120406031331-phpapp01
Solvedproblems 120406031331-phpapp01Solvedproblems 120406031331-phpapp01
Solvedproblems 120406031331-phpapp01
Rimple Mahey
 
Mathematics and History of Complex Variables
Mathematics and History of Complex VariablesMathematics and History of Complex Variables
Mathematics and History of Complex Variables
Solo Hermelin
 
Bilinear z transformaion
Bilinear z transformaionBilinear z transformaion
Bilinear z transformaion
Nguyen Si Phuoc
 
Power electronics devices and their characteristics
Power electronics devices and their characteristicsPower electronics devices and their characteristics
Power electronics devices and their characteristics
KartickJana3
 
Modern Control - Lec 06 - PID Tuning
Modern Control - Lec 06 - PID TuningModern Control - Lec 06 - PID Tuning
Modern Control - Lec 06 - PID Tuning
Amr E. Mohamed
 
Feedback control: Handout1
Feedback control: Handout1Feedback control: Handout1
Feedback control: Handout1
Wat Chayaprasert
 
classification of second order partial differential equation
classification of second order partial differential equationclassification of second order partial differential equation
classification of second order partial differential equation
jigar methaniya
 
Lecture 2 transfer-function
Lecture 2 transfer-functionLecture 2 transfer-function
Lecture 2 transfer-function
Saifullah Memon
 
Gate ee 2006 with solutions
Gate ee 2006 with solutionsGate ee 2006 with solutions
Gate ee 2006 with solutions
khemraj298
 
Fourier analysis of signals and systems
Fourier analysis of signals and systemsFourier analysis of signals and systems
Fourier analysis of signals and systems
Babul Islam
 
Z transforms and their applications
Z transforms and their applicationsZ transforms and their applications
Z transforms and their applications
Ram Kumar K R
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
Matthew Leingang
 
Silicon controlled rectifier
Silicon controlled rectifierSilicon controlled rectifier
Silicon controlled rectifier
Narayan Datta
 
Lecture 14 15-time_domain_analysis_of_2nd_order_systems
Lecture 14 15-time_domain_analysis_of_2nd_order_systemsLecture 14 15-time_domain_analysis_of_2nd_order_systems
Lecture 14 15-time_domain_analysis_of_2nd_order_systems
Syed Ali Raza Rizvi
 

What's hot (20)

Overview of sampling
Overview of samplingOverview of sampling
Overview of sampling
 
Bode plot
Bode plotBode plot
Bode plot
 
Fundamentals of Digital Signal Processing - Question Bank
Fundamentals of Digital Signal Processing - Question BankFundamentals of Digital Signal Processing - Question Bank
Fundamentals of Digital Signal Processing - Question Bank
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
State space analysis shortcut rules, control systems,
State space analysis shortcut rules, control systems, State space analysis shortcut rules, control systems,
State space analysis shortcut rules, control systems,
 
Block diagram Examples
Block diagram ExamplesBlock diagram Examples
Block diagram Examples
 
Solvedproblems 120406031331-phpapp01
Solvedproblems 120406031331-phpapp01Solvedproblems 120406031331-phpapp01
Solvedproblems 120406031331-phpapp01
 
Mathematics and History of Complex Variables
Mathematics and History of Complex VariablesMathematics and History of Complex Variables
Mathematics and History of Complex Variables
 
Bilinear z transformaion
Bilinear z transformaionBilinear z transformaion
Bilinear z transformaion
 
Power electronics devices and their characteristics
Power electronics devices and their characteristicsPower electronics devices and their characteristics
Power electronics devices and their characteristics
 
Modern Control - Lec 06 - PID Tuning
Modern Control - Lec 06 - PID TuningModern Control - Lec 06 - PID Tuning
Modern Control - Lec 06 - PID Tuning
 
Feedback control: Handout1
Feedback control: Handout1Feedback control: Handout1
Feedback control: Handout1
 
classification of second order partial differential equation
classification of second order partial differential equationclassification of second order partial differential equation
classification of second order partial differential equation
 
Lecture 2 transfer-function
Lecture 2 transfer-functionLecture 2 transfer-function
Lecture 2 transfer-function
 
Gate ee 2006 with solutions
Gate ee 2006 with solutionsGate ee 2006 with solutions
Gate ee 2006 with solutions
 
Fourier analysis of signals and systems
Fourier analysis of signals and systemsFourier analysis of signals and systems
Fourier analysis of signals and systems
 
Z transforms and their applications
Z transforms and their applicationsZ transforms and their applications
Z transforms and their applications
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
 
Silicon controlled rectifier
Silicon controlled rectifierSilicon controlled rectifier
Silicon controlled rectifier
 
Lecture 14 15-time_domain_analysis_of_2nd_order_systems
Lecture 14 15-time_domain_analysis_of_2nd_order_systemsLecture 14 15-time_domain_analysis_of_2nd_order_systems
Lecture 14 15-time_domain_analysis_of_2nd_order_systems
 

Viewers also liked

X2 T01 10 locus & complex nos 1 (2010)
X2 T01 10 locus & complex nos 1 (2010)X2 T01 10 locus & complex nos 1 (2010)
X2 T01 10 locus & complex nos 1 (2010)Nigel Simmons
 
Xarxes socials (toni valle, patricia, amparo)
Xarxes socials (toni valle, patricia, amparo)Xarxes socials (toni valle, patricia, amparo)
Xarxes socials (toni valle, patricia, amparo)vicmanfb
 
X3 pure men's chapt 8a
X3 pure men's chapt 8aX3 pure men's chapt 8a
X3 pure men's chapt 8a
bcotter
 
Xen Spray Tan
Xen Spray TanXen Spray Tan
Xen Spray Tan
Katie Bannon
 
What you should do in the following situations
What you should do in the  following situationsWhat you should do in the  following situations
What you should do in the following situations
F El Mohdar
 
X2 T07 03 circular motion (2010)
X2 T07 03 circular motion (2010)X2 T07 03 circular motion (2010)
X2 T07 03 circular motion (2010)
Nigel Simmons
 
X book
X bookX book
X bookCendoo
 
Xarxas Socials Xsaf
Xarxas Socials XsafXarxas Socials Xsaf
Xarxas Socials XsafXSAFG
 
Xcite2011 (zipped keynote version)
Xcite2011 (zipped keynote version)Xcite2011 (zipped keynote version)
Xcite2011 (zipped keynote version)
simoncutmore
 
Xen klaszterek
Xen klaszterekXen klaszterek
Xen klaszterek
Ferenc Szalai
 
X2 t03 06 chord of contact & properties (2012)
X2 t03 06 chord of contact & properties (2012)X2 t03 06 chord of contact & properties (2012)
X2 t03 06 chord of contact & properties (2012)
Nigel Simmons
 
Xabec, inserción social
Xabec, inserción socialXabec, inserción social
Xabec, inserción social
Opus Dei
 
X2 T01 05 de moivres theorem (2011)
X2 T01 05 de moivres theorem (2011)X2 T01 05 de moivres theorem (2011)
X2 T01 05 de moivres theorem (2011)Nigel Simmons
 
Xd Manual
Xd ManualXd Manual
Xd Manual
btbedford
 
X3pure chapter 9a slides
X3pure chapter 9a slidesX3pure chapter 9a slides
X3pure chapter 9a slides
bcotter
 
xafarders
xafardersxafarders
xafarders
Sílvia Darnís
 
NUESTRA TAREA CUANDO LEEMOS SUPONE...
NUESTRA TAREA CUANDO LEEMOS SUPONE...NUESTRA TAREA CUANDO LEEMOS SUPONE...
NUESTRA TAREA CUANDO LEEMOS SUPONE...
cprgraus
 
XBRL and the MACPA - Summit Presentation
XBRL and the MACPA - Summit PresentationXBRL and the MACPA - Summit Presentation
XBRL and the MACPA - Summit Presentation
Thomas Hood
 

Viewers also liked (20)

іX кадри
іX кадриіX кадри
іX кадри
 
X2 T01 10 locus & complex nos 1 (2010)
X2 T01 10 locus & complex nos 1 (2010)X2 T01 10 locus & complex nos 1 (2010)
X2 T01 10 locus & complex nos 1 (2010)
 
Xarxes socials (toni valle, patricia, amparo)
Xarxes socials (toni valle, patricia, amparo)Xarxes socials (toni valle, patricia, amparo)
Xarxes socials (toni valle, patricia, amparo)
 
X3 pure men's chapt 8a
X3 pure men's chapt 8aX3 pure men's chapt 8a
X3 pure men's chapt 8a
 
Xen Spray Tan
Xen Spray TanXen Spray Tan
Xen Spray Tan
 
What you should do in the following situations
What you should do in the  following situationsWhat you should do in the  following situations
What you should do in the following situations
 
X2 T07 03 circular motion (2010)
X2 T07 03 circular motion (2010)X2 T07 03 circular motion (2010)
X2 T07 03 circular motion (2010)
 
X book
X bookX book
X book
 
Xarxas Socials Xsaf
Xarxas Socials XsafXarxas Socials Xsaf
Xarxas Socials Xsaf
 
Xcite2011 (zipped keynote version)
Xcite2011 (zipped keynote version)Xcite2011 (zipped keynote version)
Xcite2011 (zipped keynote version)
 
Xavier Espuña - El futur del sector carni porcí
Xavier Espuña - El futur del sector carni porcíXavier Espuña - El futur del sector carni porcí
Xavier Espuña - El futur del sector carni porcí
 
Xen klaszterek
Xen klaszterekXen klaszterek
Xen klaszterek
 
X2 t03 06 chord of contact & properties (2012)
X2 t03 06 chord of contact & properties (2012)X2 t03 06 chord of contact & properties (2012)
X2 t03 06 chord of contact & properties (2012)
 
Xabec, inserción social
Xabec, inserción socialXabec, inserción social
Xabec, inserción social
 
X2 T01 05 de moivres theorem (2011)
X2 T01 05 de moivres theorem (2011)X2 T01 05 de moivres theorem (2011)
X2 T01 05 de moivres theorem (2011)
 
Xd Manual
Xd ManualXd Manual
Xd Manual
 
X3pure chapter 9a slides
X3pure chapter 9a slidesX3pure chapter 9a slides
X3pure chapter 9a slides
 
xafarders
xafardersxafarders
xafarders
 
NUESTRA TAREA CUANDO LEEMOS SUPONE...
NUESTRA TAREA CUANDO LEEMOS SUPONE...NUESTRA TAREA CUANDO LEEMOS SUPONE...
NUESTRA TAREA CUANDO LEEMOS SUPONE...
 
XBRL and the MACPA - Summit Presentation
XBRL and the MACPA - Summit PresentationXBRL and the MACPA - Summit Presentation
XBRL and the MACPA - Summit Presentation
 

Similar to X2 T01 03 argand diagram (2011)

Aragand Diagram
Aragand DiagramAragand Diagram
Aragand Diagram
mariam mimu
 
Modulus and argand diagram
Modulus and argand diagramModulus and argand diagram
Modulus and argand diagram
Tarun Gehlot
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
Nigel Simmons
 
Maieee03
Maieee03Maieee03
Maieee03
Ashish Yadav
 
Aieee 2003 maths solved paper by fiitjee
Aieee 2003 maths solved paper by fiitjeeAieee 2003 maths solved paper by fiitjee
Aieee 2003 maths solved paper by fiitjee
Mr_KevinShah
 
Maths short dhhdbrbdhd hdh hdb rh notes for JEE.pdf
Maths short dhhdbrbdhd hdh hdb rh notes for JEE.pdfMaths short dhhdbrbdhd hdh hdb rh notes for JEE.pdf
Maths short dhhdbrbdhd hdh hdb rh notes for JEE.pdf
bagariakartik123
 
Complexos 2
Complexos 2Complexos 2
Complexos 2
KalculosOnline
 
Matrix2 english
Matrix2 englishMatrix2 english
Matrix2 english
Alfia Magfirona
 
Formulas 2nd year to 4th year
Formulas 2nd year to 4th yearFormulas 2nd year to 4th year
Formulas 2nd year to 4th year
Charlston Chavez
 
9th class maths MCQs by Ustani G.docx
9th class maths MCQs by Ustani G.docx9th class maths MCQs by Ustani G.docx
9th class maths MCQs by Ustani G.docx
Waseem798409
 
Complex number
Complex numberComplex number
Complex number
Sanju Vinaykumar
 
Mathematics 2014 sample paper and blue print
Mathematics 2014 sample paper and blue printMathematics 2014 sample paper and blue print
Mathematics 2014 sample paper and blue print
nitishguptamaps
 
Mathematics xii 2014 sample paper
Mathematics xii 2014 sample paperMathematics xii 2014 sample paper
Mathematics xii 2014 sample paper
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Complex Numbers And Appsfeb
Complex Numbers And AppsfebComplex Numbers And Appsfeb
Complex Numbers And Appsfeb
nitinpatelceng
 
Class 9th Mcq for Preparing Exams , Maths
Class 9th Mcq for Preparing Exams , MathsClass 9th Mcq for Preparing Exams , Maths
Class 9th Mcq for Preparing Exams , Maths
alrehmangraphic12
 
Theme 4 Notes Complex Numbers (1).pdf
Theme 4 Notes Complex Numbers (1).pdfTheme 4 Notes Complex Numbers (1).pdf
Theme 4 Notes Complex Numbers (1).pdf
ThapeloTsepo1
 
Week2
Week2Week2
Complexos 1
Complexos 1Complexos 1
Complexos 1
KalculosOnline
 
Exp&log graphs assignment
Exp&log graphs assignmentExp&log graphs assignment
Exp&log graphs assignment
bryan
 
Last+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxLast+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptx
AryanMishra860130
 

Similar to X2 T01 03 argand diagram (2011) (20)

Aragand Diagram
Aragand DiagramAragand Diagram
Aragand Diagram
 
Modulus and argand diagram
Modulus and argand diagramModulus and argand diagram
Modulus and argand diagram
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
 
Maieee03
Maieee03Maieee03
Maieee03
 
Aieee 2003 maths solved paper by fiitjee
Aieee 2003 maths solved paper by fiitjeeAieee 2003 maths solved paper by fiitjee
Aieee 2003 maths solved paper by fiitjee
 
Maths short dhhdbrbdhd hdh hdb rh notes for JEE.pdf
Maths short dhhdbrbdhd hdh hdb rh notes for JEE.pdfMaths short dhhdbrbdhd hdh hdb rh notes for JEE.pdf
Maths short dhhdbrbdhd hdh hdb rh notes for JEE.pdf
 
Complexos 2
Complexos 2Complexos 2
Complexos 2
 
Matrix2 english
Matrix2 englishMatrix2 english
Matrix2 english
 
Formulas 2nd year to 4th year
Formulas 2nd year to 4th yearFormulas 2nd year to 4th year
Formulas 2nd year to 4th year
 
9th class maths MCQs by Ustani G.docx
9th class maths MCQs by Ustani G.docx9th class maths MCQs by Ustani G.docx
9th class maths MCQs by Ustani G.docx
 
Complex number
Complex numberComplex number
Complex number
 
Mathematics 2014 sample paper and blue print
Mathematics 2014 sample paper and blue printMathematics 2014 sample paper and blue print
Mathematics 2014 sample paper and blue print
 
Mathematics xii 2014 sample paper
Mathematics xii 2014 sample paperMathematics xii 2014 sample paper
Mathematics xii 2014 sample paper
 
Complex Numbers And Appsfeb
Complex Numbers And AppsfebComplex Numbers And Appsfeb
Complex Numbers And Appsfeb
 
Class 9th Mcq for Preparing Exams , Maths
Class 9th Mcq for Preparing Exams , MathsClass 9th Mcq for Preparing Exams , Maths
Class 9th Mcq for Preparing Exams , Maths
 
Theme 4 Notes Complex Numbers (1).pdf
Theme 4 Notes Complex Numbers (1).pdfTheme 4 Notes Complex Numbers (1).pdf
Theme 4 Notes Complex Numbers (1).pdf
 
Week2
Week2Week2
Week2
 
Complexos 1
Complexos 1Complexos 1
Complexos 1
 
Exp&log graphs assignment
Exp&log graphs assignmentExp&log graphs assignment
Exp&log graphs assignment
 
Last+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxLast+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptx
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

What is an RPA CoE? Session 1 – CoE Vision
What is an RPA CoE?  Session 1 – CoE VisionWhat is an RPA CoE?  Session 1 – CoE Vision
What is an RPA CoE? Session 1 – CoE Vision
DianaGray10
 
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
Jason Yip
 
Principle of conventional tomography-Bibash Shahi ppt..pptx
Principle of conventional tomography-Bibash Shahi ppt..pptxPrinciple of conventional tomography-Bibash Shahi ppt..pptx
Principle of conventional tomography-Bibash Shahi ppt..pptx
BibashShahi
 
Leveraging the Graph for Clinical Trials and Standards
Leveraging the Graph for Clinical Trials and StandardsLeveraging the Graph for Clinical Trials and Standards
Leveraging the Graph for Clinical Trials and Standards
Neo4j
 
JavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green MasterplanJavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green Masterplan
Miro Wengner
 
LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...
LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...
LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...
DanBrown980551
 
"What does it really mean for your system to be available, or how to define w...
"What does it really mean for your system to be available, or how to define w..."What does it really mean for your system to be available, or how to define w...
"What does it really mean for your system to be available, or how to define w...
Fwdays
 
Must Know Postgres Extension for DBA and Developer during Migration
Must Know Postgres Extension for DBA and Developer during MigrationMust Know Postgres Extension for DBA and Developer during Migration
Must Know Postgres Extension for DBA and Developer during Migration
Mydbops
 
Essentials of Automations: Exploring Attributes & Automation Parameters
Essentials of Automations: Exploring Attributes & Automation ParametersEssentials of Automations: Exploring Attributes & Automation Parameters
Essentials of Automations: Exploring Attributes & Automation Parameters
Safe Software
 
inQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
inQuba Webinar Mastering Customer Journey Management with Dr Graham HillinQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
inQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
LizaNolte
 
Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |
AstuteBusiness
 
QR Secure: A Hybrid Approach Using Machine Learning and Security Validation F...
QR Secure: A Hybrid Approach Using Machine Learning and Security Validation F...QR Secure: A Hybrid Approach Using Machine Learning and Security Validation F...
QR Secure: A Hybrid Approach Using Machine Learning and Security Validation F...
AlexanderRichford
 
Harnessing the Power of NLP and Knowledge Graphs for Opioid Research
Harnessing the Power of NLP and Knowledge Graphs for Opioid ResearchHarnessing the Power of NLP and Knowledge Graphs for Opioid Research
Harnessing the Power of NLP and Knowledge Graphs for Opioid Research
Neo4j
 
AWS Certified Solutions Architect Associate (SAA-C03)
AWS Certified Solutions Architect Associate (SAA-C03)AWS Certified Solutions Architect Associate (SAA-C03)
AWS Certified Solutions Architect Associate (SAA-C03)
HarpalGohil4
 
"Frontline Battles with DDoS: Best practices and Lessons Learned", Igor Ivaniuk
"Frontline Battles with DDoS: Best practices and Lessons Learned",  Igor Ivaniuk"Frontline Battles with DDoS: Best practices and Lessons Learned",  Igor Ivaniuk
"Frontline Battles with DDoS: Best practices and Lessons Learned", Igor Ivaniuk
Fwdays
 
Discover the Unseen: Tailored Recommendation of Unwatched Content
Discover the Unseen: Tailored Recommendation of Unwatched ContentDiscover the Unseen: Tailored Recommendation of Unwatched Content
Discover the Unseen: Tailored Recommendation of Unwatched Content
ScyllaDB
 
AppSec PNW: Android and iOS Application Security with MobSF
AppSec PNW: Android and iOS Application Security with MobSFAppSec PNW: Android and iOS Application Security with MobSF
AppSec PNW: Android and iOS Application Security with MobSF
Ajin Abraham
 
Demystifying Knowledge Management through Storytelling
Demystifying Knowledge Management through StorytellingDemystifying Knowledge Management through Storytelling
Demystifying Knowledge Management through Storytelling
Enterprise Knowledge
 
Poznań ACE event - 19.06.2024 Team 24 Wrapup slidedeck
Poznań ACE event - 19.06.2024 Team 24 Wrapup slidedeckPoznań ACE event - 19.06.2024 Team 24 Wrapup slidedeck
Poznań ACE event - 19.06.2024 Team 24 Wrapup slidedeck
FilipTomaszewski5
 
A Deep Dive into ScyllaDB's Architecture
A Deep Dive into ScyllaDB's ArchitectureA Deep Dive into ScyllaDB's Architecture
A Deep Dive into ScyllaDB's Architecture
ScyllaDB
 

Recently uploaded (20)

What is an RPA CoE? Session 1 – CoE Vision
What is an RPA CoE?  Session 1 – CoE VisionWhat is an RPA CoE?  Session 1 – CoE Vision
What is an RPA CoE? Session 1 – CoE Vision
 
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
 
Principle of conventional tomography-Bibash Shahi ppt..pptx
Principle of conventional tomography-Bibash Shahi ppt..pptxPrinciple of conventional tomography-Bibash Shahi ppt..pptx
Principle of conventional tomography-Bibash Shahi ppt..pptx
 
Leveraging the Graph for Clinical Trials and Standards
Leveraging the Graph for Clinical Trials and StandardsLeveraging the Graph for Clinical Trials and Standards
Leveraging the Graph for Clinical Trials and Standards
 
JavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green MasterplanJavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green Masterplan
 
LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...
LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...
LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...
 
"What does it really mean for your system to be available, or how to define w...
"What does it really mean for your system to be available, or how to define w..."What does it really mean for your system to be available, or how to define w...
"What does it really mean for your system to be available, or how to define w...
 
Must Know Postgres Extension for DBA and Developer during Migration
Must Know Postgres Extension for DBA and Developer during MigrationMust Know Postgres Extension for DBA and Developer during Migration
Must Know Postgres Extension for DBA and Developer during Migration
 
Essentials of Automations: Exploring Attributes & Automation Parameters
Essentials of Automations: Exploring Attributes & Automation ParametersEssentials of Automations: Exploring Attributes & Automation Parameters
Essentials of Automations: Exploring Attributes & Automation Parameters
 
inQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
inQuba Webinar Mastering Customer Journey Management with Dr Graham HillinQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
inQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
 
Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |
 
QR Secure: A Hybrid Approach Using Machine Learning and Security Validation F...
QR Secure: A Hybrid Approach Using Machine Learning and Security Validation F...QR Secure: A Hybrid Approach Using Machine Learning and Security Validation F...
QR Secure: A Hybrid Approach Using Machine Learning and Security Validation F...
 
Harnessing the Power of NLP and Knowledge Graphs for Opioid Research
Harnessing the Power of NLP and Knowledge Graphs for Opioid ResearchHarnessing the Power of NLP and Knowledge Graphs for Opioid Research
Harnessing the Power of NLP and Knowledge Graphs for Opioid Research
 
AWS Certified Solutions Architect Associate (SAA-C03)
AWS Certified Solutions Architect Associate (SAA-C03)AWS Certified Solutions Architect Associate (SAA-C03)
AWS Certified Solutions Architect Associate (SAA-C03)
 
"Frontline Battles with DDoS: Best practices and Lessons Learned", Igor Ivaniuk
"Frontline Battles with DDoS: Best practices and Lessons Learned",  Igor Ivaniuk"Frontline Battles with DDoS: Best practices and Lessons Learned",  Igor Ivaniuk
"Frontline Battles with DDoS: Best practices and Lessons Learned", Igor Ivaniuk
 
Discover the Unseen: Tailored Recommendation of Unwatched Content
Discover the Unseen: Tailored Recommendation of Unwatched ContentDiscover the Unseen: Tailored Recommendation of Unwatched Content
Discover the Unseen: Tailored Recommendation of Unwatched Content
 
AppSec PNW: Android and iOS Application Security with MobSF
AppSec PNW: Android and iOS Application Security with MobSFAppSec PNW: Android and iOS Application Security with MobSF
AppSec PNW: Android and iOS Application Security with MobSF
 
Demystifying Knowledge Management through Storytelling
Demystifying Knowledge Management through StorytellingDemystifying Knowledge Management through Storytelling
Demystifying Knowledge Management through Storytelling
 
Poznań ACE event - 19.06.2024 Team 24 Wrapup slidedeck
Poznań ACE event - 19.06.2024 Team 24 Wrapup slidedeckPoznań ACE event - 19.06.2024 Team 24 Wrapup slidedeck
Poznań ACE event - 19.06.2024 Team 24 Wrapup slidedeck
 
A Deep Dive into ScyllaDB's Architecture
A Deep Dive into ScyllaDB's ArchitectureA Deep Dive into ScyllaDB's Architecture
A Deep Dive into ScyllaDB's Architecture
 

X2 T01 03 argand diagram (2011)

  • 2. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram.
  • 3. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y 3 2 1 -4 -3 -2 -1 1 2 3 4 x -1 -2 -3
  • 4. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y 3 2 1 -4 -3 -2 -1 1 2 3 4 x (real axis) -1 -2 -3
  • 5. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 1 -4 -3 -2 -1 1 2 3 4 x (real axis) -1 -2 -3
  • 6. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 1 -4 -3 -2 -1 1 2 3 4 x (real axis) -1 A=2 -2 -3
  • 7. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 1 A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 A=2 -2 -3
  • 8. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 1 A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 A=2 -2 B = -3i -3
  • 9. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 1 A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 A=2 -2 B = -3i -3 B
  • 10. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 1 A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 A=2 -2 B = -3i -3 B C = -2 + i
  • 11. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 C 1 A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 A=2 -2 B = -3i -3 B C = -2 + i
  • 12. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 C 1 A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 A=2 -2 B = -3i -3 B C = -2 + i D=4-i
  • 13. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 C 1 A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 D A=2 -2 B = -3i -3 B C = -2 + i D=4-i
  • 14. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 C 1 A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 D A=2 -2 B = -3i -3 B C = -2 + i D=4-i E=4+i
  • 15. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 C 1 E A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 D A=2 -2 B = -3i -3 B C = -2 + i D=4-i E=4+i
  • 16. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 NOTE: Conjugates 2 are reflected in the C 1 E real (x) axis A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 D A=2 -2 B = -3i -3 B C = -2 + i D=4-i E=4+i
  • 17. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 NOTE: Conjugates 2 are reflected in the C 1 E real (x) axis A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 D A=2 -2 B = -3i -3 B C = -2 + i D=4-i E=4+i Every complex number can be represented by a unique point on the Argand Diagram.
  • 19. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ O x
  • 20. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ z = x + iy O x
  • 21. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ z = x + iy O x
  • 22. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ z = x + iy y O x x
  • 23. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ z = x + iy r 2  x2  y2 y r  x2  y2 O x x
  • 24. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ z = x + iy r 2  x2  y2 r z y r  x2  y2 O x x
  • 25. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ z = x + iy r 2  x2  y2 r z y r  x2  y2 z  x2  y2 O x x
  • 26. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ z = x + iy r 2  x2  y2 r z y r  x2  y2 z  x2  y2 O x x Argument The argument of a complex number is the angle the vector OZ makes with the positive real (x) axis
  • 27. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ z = x + iy r 2  x2  y2 r z y r  x2  y2   arg z z  x2  y2 O x x Argument The argument of a complex number is the angle the vector OZ makes with the positive real (x) axis
  • 28. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ z = x + iy r 2  x2  y2 r z y r  x2  y2   arg z z  x2  y2 O x x Argument The argument of a complex number is the angle the vector OZ makes with the positive real (x) axis 1 y arg z  tan    x
  • 29. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ z = x + iy r 2  x2  y2 r z y r  x2  y2   arg z z  x2  y2 O x x Argument The argument of a complex number is the angle the vector OZ makes with the positive real (x) axis  y 1 arg z  tan      arg z    x
  • 30. e.g . Find the modulus and argument of 4  4i
  • 31. e.g . Find the modulus and argument of 4  4i 4  4i  4 2   4  2
  • 32. e.g . Find the modulus and argument of 4  4i 4  4i  4 2   4  2  32 4 2
  • 33. e.g . Find the modulus and argument of 4  4i   4 arg4  4i   tan  4  4i  4   4  1  2 2  4   32 4 2
  • 34. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2
  • 35. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2
  • 36. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2   4
  • 37. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2   4 Every complex number can be written in terms of its modulus and argument
  • 38. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2   4 Every complex number can be written in terms of its modulus and argument z  x  iy
  • 39. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2   4 Every complex number can be written in terms of its modulus and argument z  x  iy  r cos  ir sin 
  • 40. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2   4 Every complex number can be written in terms of its modulus and argument z  x  iy  r cos  ir sin   r cos  i sin  
  • 41. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2   4 Every complex number can be written in terms of its modulus and argument z  x  iy  r cos  ir sin   r cos  i sin   The mod-arg form of z is;
  • 42. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2   4 Every complex number can be written in terms of its modulus and argument z  x  iy  r cos  ir sin   r cos  i sin   The mod-arg form of z is; z  r cos  i sin  
  • 43. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2   4 Every complex number can be written in terms of its modulus and argument z  x  iy  r cos  ir sin   r cos  i sin   The mod-arg form of z is; z  r cos  i sin   z  rcis
  • 44. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2   4 Every complex number can be written in terms of its modulus and argument z  x  iy  r cos  ir sin   r cos  i sin   The mod-arg form of z is; z  r cos  i sin   z  rcis where; r  z   arg z
  • 45. e.g. i  4  4i
  • 46.  e.g. i  4  4i  4 2cis      4
  • 47.  e.g. i  4  4i  4 2cis      4 ii  3  i
  • 48.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3 2  12  4 2
  • 49.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3 2 1 2 arg z  tan 1 1 3  4 2
  • 50.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3 2 1 2 arg z  tan 1 1  3  4  6 2
  • 51.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3 2 1 2 arg z  tan 1 1  3  4  6 2   3  i  2cis 6
  • 52.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3 2 1 2 arg z  tan 1 1  3  4  6 2   3  i  2cis 6 Exercise 4B; evens