SlideShare a Scribd company logo
1 of 36
Download to read offline
3
  MODULUS AND ARGAND DIAGRAM



3.1 INTRODUCTION
Consider the representation of following real numbers on real
line.

x = 3
               <             0       1    2   3
                                                  >
x = −2
                    <   −3   −2      −1   0        >
      3
x =
      2
                <                    0    1   2   >
                                 Fig. 3.1
Now let us consider the complex number 3 + 2i. Here 3 and
2 are real numbers. Can we represent this complex number
on real line? Surely no.

This number is a composition of real and imaginary parts. So,
one number line is not sufficient here. How can we represent
a complex number geometrically by a point ?

We will learn geometric representation of complex numbers
and related properties in this lesson.
44 :: Mathematics


                    3.2 OBJECTIVES
                    After studying this lesson, you will be able to:

                    •     represent complex numbers on argand plane.

                    •     identify the complex numbers x + iy corresponding to a
                          given point P (x ,y) in the agrand plane.

                    •     recognise that there is a unique complex number
                          associated with every point in the argand plane.

                    •     State and represent diagramatically               the   following
                          properties of a complex number:


                          (i)           = 0⇔     z = 0


                          (ii)    z1   =     z2 ⇔        z1        =   z2

                          (iii)   z1 + z 2   ≤      z1   =    z2


                    3.3 PREVIOUS KNWOLEDGE
                    (a)   Representation of real numbers on number a line

                    (b)   Complex numbers

                    (c)   Algebra of complex numbers.


                    3.4 GEOMETRICAL REPRESENTATION                                 OF    A
                        COMPLEX NUMBER
                          You have already learnt that

                    1.    Complex number a + ib can be determined by an ordered
                          pair (a,b)

                    2.    An ordered pair (a,b ) is represented by a point on
                          coordinate plane.

                          So, complex number a+ib can be represented by a point
                          (a,b) on coordinate plane.
Modulus and Argand Diagram : 45

                                              ∧y
     This plane is called
     Argand Plane.                                        •      (a, b)
                                          ↑
     The diagram is called                b
     Argand Diagram                       ↓
                              <                ←a →
                                                                     >x
                                  x′



                                                  y′
                                              ∨
Example A                               Fig. 3.2

Complex number a + 0i is denoted by P (a, 0)

1.   Point P(a,0) lies on the x−axis
2.   a is the real part of complex
     number a + ib                            ∧y

3.   x axis is called real axis   as
     the   real part is represented
                                                              P(a, 0 )
     on the x−axis.
                              <                                     >
                              x′           0 ← a →                      x




                                              ∨ y′
                                         Fig. 3.3
Example B
Complex number 0 +bi is represented by Q(0,b)
1.   Point Q(0, b) lies on y−axis                  ∧y
2.   b is the imaginary part of                         Q(0,b)
                                                  ↑
     complex number 0 + bi
                                                  b
3.   y−axis is called the
                                                  ↓
                                   <              0
                                                                        >   x
     imaginary axis as the         x′
     imaginary part is
     represented on y−axis.


                                                   ∨ y′
                                           Fig. 3.4
46 :: Mathematics


Example C
                                                                        ∧y             A(2,3)
Represent 2 + 3i and 3 + 2i                                                   •
on the same argand plane.                                                              B(3,2)
                                                                                  •
Solution:
1.     2 + 3i is represented by A(2, 3)       <                                           >   x
                                                  x′                0
2.     3 + 2 i is represented by B(3, 2)
       Point A and B are different

       Representation of a + bi is not
       same as of b + ai, if a ≠ b                                   ∨ y′
                                                               Fig. 3.5

Example D
                                                             ∧ y
Represent 2 + 3i and −2 − 3i
on the same argand plane.                                                • P(2,3)

Solution
1.     2 + 3i is point P(2,3)        <                                            >x
                                     x′                  O
2.     −2 − 3i is point Q(−2,−3)
Points P and Q are different
and lie in the I quadrant and        Q(−2,−3) •
III quadrant respectively.
                                                           ∨  y′
     Representation of a + bi                          Fig. 3.6
     is not same as of − a − bi

       z ≠ −z
                                                                     ∧y
Example E:
                                                                              • R(2, 3)
Represent 2 + 3i and 2 − 3i
on the same argand plane
Solution
                                              <                                          >    x
                                              x′
1.     2 + 3i is point R(2,3)
2.     2 − 3i is point S(2,−3)
3.     Point R and S are different                                            •   S(2,−3)
                                                                     ∨ y′
       Representation of a + bi is
       not same as of a − bi
                                                                   Fig. 3.7
                z ≠ z
Modulus and Argand Diagram : 47


Example F:                                           ∧ y
Represent 2 + 3i, −2 −3i, 2 − 3i                              • P(2,3)
on the same argand plane
Solution
                                      <          0
                                                                          >
1.   2 + 3i is point P(2,3)          x′                                   x

2.   −2 − 3i is point Q(−2,−3)
                                  Q(-2,-3) •                  • R(2,−3)
3.   2 − 3i is point R(2,−3)
                                                     ∨
 Representation of Complex numbers                       y′
 z = a + bi                                    Fig. 3.8
 z = a − bi
 and −z = − a − bi
 are all different

       z ≠      ≠ −z

Checkpoint 1:
Tick mark the correct answer:
1.     The point representing the complex number 3 + 5i on
       argand plane is
       (i)     same as the point representing 3 − 5i
       (ii)    same as the point representing −3 − 5i
       (iii)   same as the point representing 5 + 3i
       (iv)    none of the above
2.     Complex number a − bi is represented on an argand
       plane by the point.
       (i)     (a, b)
       (ii)    (a, − b)
       (iii)   (−a, −b)
       (iv)    (−a, b)
                −       −
       { Ans : 1−(iv), 2−(ii) }

3.5 MODULUS OF A COMPLEX NUMBER
Any complex number a + ib can be represented by a point in
a plane.
48 :: Mathematics


                    How can we find the distance of this point from the origin?

                    Consider P(a, b) a point in the plane representing a + ib. If we
                    look at Fig.3.9, we find that

                    OM = a                                                                ∧y
                                                                                                     P(a,b)
                    MP = b
                                                                                                      •
                    What is the distance                                              ↑
                    of P from the origin?                                             b
                                                                                      ↓
                    Certainly, it is OP.                          <                                             >   x
                                                                  x′                  O ←        a   → M
                    How do you find OP?
                    We may note that
                    PM and OM are                                                         ∨ y′
                    perpendicular to each other.                                    Fig. 3.9

                    ∴     OP =

                               =       a +b
                                        2   2


                    OP is called the modulus of complex number or absolute
                    value of the complex number, a + ib.

                    ∴     Modulus of any complex number z such that
                                           z = a + bi, a ∈ R, b ∈ R
                          is denoted by             z        and is given            a +b
                                                                                      2   2



                    ∴      z       =       a + ib        =     a +b
                                                                2  2




                    Example G:
                                                                                                 y
                    Find the modulus of the complex
                                                                                             ∧
                                                                                Q(−4,3)
                    numbers shown in an argand
                                                                                                               P(4,3)
                    plane (Fig. 3.10)                                           •                          •
                    Solution
                    (i)   P(4, 3) represents
                                                                            <              O                            >
                                                                                                                        x
                          the complex number                           x′
                                z    = 4 + 3i
                    ∴ OP =                                                              •             •
                                       z      =     4 +3
                                                     2  2

                                                                                R(−1,−3)              S(3,−3)
                                              =     25                                      ∨ y′
                          or           z          = 5                                Fig. 3.10
Modulus and Argand Diagram : 49


    (ii)    Q(-4,3) represents z = -4 + 2i

            OQ =         z       =        (−4)2 + 22
                                 =        16 + 4
                                 =        20

    (iii)   R(−1, −3) represents z = −1 − 3i

            OR =         z       =        (−1)2 + (−3)2
                                 =        1+ 9
                                 =        10

    (iv)    S(3, −3) represents z = 3 − 3i

            OS =         z       =        (3)2 + (−3)2
                                 =        9+9
                                 =        18
3 + 4 Example H:
2   2




    Find the modulus of z and z
                         if z = 3 + 4i
                                                                y
    Solution                                                ∧
                                                                      P(3,4)
            z = 3 + 4i                                                •
    then       = 3 − 4i

    ∴       OP = z           =
                                                 <        O
                                                                                >
                                                 x′                    M        x
                             =   9 + 16
                             =   25 = 5

                                 3 + ( −4 )
                                            2
    and OQ =         z       =    2
                                                                      •
                                                                      Q(3,−4)
                             =   9 + 16
                                                            ∨
                                                                y′
                             =   25 = 5
                                                          Fig. 3.11

                z        =       z
50 :: Mathematics


Example I:
Find the modulus of z and −z                                                   ∧       y
if z = 5 + 2i
Solution:           z = 5 +2i
                                                                                                P (5,2)
then       −z       = −(5 + 2i)=− 5 − 2i
                                                               N
∴ OP =          z   =        5 +2
                              2    2                     <                                              >
                                                         x′                        O            M       x
                    =        25 + 4                            Q (−5,−2)

                    =        29
                                                                              ∨ y′
  OQ =         −z   =        (5)2 + (−2)2                              Fig. 3.12

                    =        25 + 4

                    =        29

           z        =        −z
                                                                         ∧y
                                                                                       P(1,2)
Example J:

Find the modulus of z, -z and z
                                                                   N                   M
if z = 1 + 2i                                            <                                      >   x
                                                         x′
Solution            z        = 1 + 2i
                    −z = −1 − 2i

                         = 1 − 2i                             Q(−1,−2)
                                                                         ∨    y′
                                                                                   R(1,−2)

       OP =                   =    1 +2 = 5
                                    2  2
                                                                   Fig. 3.13

       OQ =         −z        =    (−1)2 + (−2)2 =   5


                                   1 + ( −2) = 5
                                            2
       OR =         z         =     2




       z        =       −z     =       z
Modulus and Argand Diagram : 51


Check-point 2:
Choose the appropriate answer:
1.    Modulus of the complex number a + ib is

      (i)           a +b
                     2   2



      (ii)          a −b
                     2   2



      (iii)         −a + b
                      2    2



      (iv)          −a − b
                      2    2



2.    Modulus of the complex number a + ib is
      (i)         equal to the modulus of − a − ib
      (ii)        not equal to modulus of −a −ib

Q.3   z       =     −z       =    z   is

      (i)         always true
      (ii)        never true
      (iii)       sometimes true




 INTEXT QUESTIONS 3.1
 Q.1 Represent the following complex numbers on Argand
     Plane

      (a)         (i)    2 + 0i
                  (ii)   −3 + 0i
                  (iii) 0 − 0i
                  (iv) 3 − 0i

      (b)         (i)    0 + 2i
                  (ii)   0 − 3i
                  (iii) 4i
                  (iv) −5i
52 :: Mathematics


     (c)     (i)    2 + 5i and 5 + 2i
             (ii)   3 − 4i and −4 + 3i
             (iii) −7 + 2i and 2 − 7i
             (iv) −2 − 9i and −9 −2i

     (d)     (i)    1 + i and −1 − i
             (ii)   6 + 5i and −6 − 5i
             (iii) −3 + 4i and 3 − 4i
             (iv) 4 − i and −4 + i

     (e)     (i)    1 + i and 1 − i
             (ii)   −3 + 4i and −3 − 4i
             (iii) 6 − 7i and 6 + 7i
             (iv) −5 − i and −5 + i

  2. (a)     Find the        modulus   of   the   following   complex
             numbers
             (i)    1 + i
             (ii)   −3 −5i
             (iii) 2 − 3i
             (iv) 5 − 8i
             (v)    −6 + 6i

     (b)     For the following complex numbers, verify
             that     z      =   −z
             (i)    5 + 9i
             (ii)   −6 + 8i
             (iii) −3 −7i
             (iv) i + 9

     (c)     For the following complex numbers, verify
             that     z      =   −z
             (i)    −3 − 9i
             (ii)   14 + i
             (iii) 11 − 2i
             (iv) −7 + 9i
Modulus and Argand Diagram : 53


           (d)       For the following complex numbers, verify

                     that           z         =     −z        =         z

                     (i)       2 − 3i
                     (ii)      5 + 4i
                     (iii) −6 −i
                     (iv) 7 − 2i

      3.   Write the complex numbers corresponding to the points
           shown in the argand plane
                                                              y
                                                    Q     •
                                   T•                                       •P


                          x′
                               <                  R
                                                   •                             >
                                                                                 x

                                                                  • S

                                                              y′
z                                                   Fig. 3.14

     4.    Find the modulus of the following complex numbers

           (a) i + 3 i                  (b) −2i               (c) −3                 (d) 5 − 2i


                                                  1+i
           (e) i² + i³                  (f)                   (g) (1 + i) (2 − i)
                                                  1−i




    3.6 DIAGRAMATIC REPRESENTATION OF THE
        PROPERTIES OF COMPLEX NUMBERS
    We have learnt the representation of complex number in the
    argand plane. Now we will state and represent the properties
    of complex numbers diagramatically in the complex plane.

    (i)          =    0        ⇔        z = 0

           consider z = 0 + 0i
           Let P(0, 0) be the point on argand plane to represent z.
54 :: Mathematics


From Fig. 3.15 we may observe that the                                                     ∧y
origin O and point P coincide.
                                                                                       P        (0,0)
∴      OP     = 0                OP       =       z                      x′ <               •                  >x
                                                                                      O
                         (By definition of modulus
                         of complex number)
⇒      z      = 0
                                                                                           ∨ y′
                                                                                   Fig. 3.15
(ii)   (a)    z1 = z 2       ⇒                z1        =      z2

Let P(a,b) and Q(a,b) be two
points representing z 1 and z 2
on complex plane such that                                                             y
                                                                                   ∧
they coincide with each other.                                                                                 P(a,b)
                                                                                                               Q(a,b)
t h e n OP    =     a +b
                     2   2
                                                                                                               ↑
                                                                                                               b
and    OQ     =     a +b
                     2   2
                                                                    x′                                         ↓
                                                                         <                                          >x
                                                                                 0 ←            a        →
since OP      = OQ

⇒      z1     =     z2                                                             ∨ y′

                                                                                Fig. 3.16
(b)    But   z1 =    z2    does not
       always imply z1 = z 2
                                                                                   ∧ y
Let    z1 = a + ib,              a ∈ R, b ∈R                                                            P(a,b)

       z2 = a − ib,              a ∈ R, b ∈R
                                                                                                           b

Let    P(a, b) and Q(a, −b)                                              <                                          >
                                                                                                a         M
       represent         z 1 and z 2                                     x′       0                                 x
                                                                                                          −b
       respectively on the argand plane.

Then, z 1    = OP =        a +b
                            2  2
                                                                                                        Q(a,−b)
                                                                                   ∨
                                                                                       y′

                            a + ( −b )
                                      2
       z2    = OQ =          2                =       a +b
                                                       2   2                    Fig. 3.17


∴      z1    =      z2     , but P and Q are two different points on
       the complex plane.
Modulus and Argand Diagram : 55


(iii)   z1 + z 2       ≤    z1    +   z2

        Let    z1 = a + ib, a ∈ R, b ∈ R

and z 2 = c + id c ∈ R, d ∈ R
        Then       z 1 + z2 = (a + c) + i(b + d)
Let points P, Q, R represent the numbers z 1, z2 and
z 1 + z 2 respectively in the argand plane.
Join OP, OQ and OR                                                  R(a=c, b+d)
                                                    ∧   y
Then OP            =       z1                              Q(C,d)
                                                                                  S
        OQ         =       z2
                                                                              K
and     OR         =       z1 + z 2                                      P(a,b)

Draw PM ⊥ x (ii) axis
        QN ⊥ x (ii) axis                   x′
                                                <   0        N       M      L
                                                                                      >
                                                                                      x
        RL ⊥ x (iii) axis                           ∨ y′
Join QR and QP
                                                        Fig. 3.18

Draw QS ⊥ RL and PK ⊥ RL
In ∆ QON,                  In ∆       ROL                   In ∆ POM
        ON = c             OL = a+c                         OM = a
and     QN = d             RL = b+d                         PM = b
                   Also PK       = ML
                                 = OL − OM
                                 = a + c − a = c
                           RK    = RL − KL
                                 = b + d − b = d
In ∆ QON and ∆ RPK
                   ON = PK = oc
                   QN = RK = d
        and        /QNO = /RKP = 90°
56 :: Mathematics


                ∴ ∆ QON ≅ ∆ RPK
                ⇒ OQ = PR and OQ||PR
                ⇒ OPRQ is a parallelogram
                and OR is diagonal of the parallelogram.
Therefore we can say that the sum of two complex numbers
is represented by the diagonal of a parallelogram.

We also       know that
      In ∆ OPR
      OR ≤      OP + PR
      or      OR ≤ OP + OQ ( Q OQ = PR)

      ⇒                     ≤    z1   +   z2

Check-point 3:
Choose the appropriate answer.
1.    For a non−zero complex number a + ib
      (i)       the modulus is always zero.
      (ii)      the modulus is always non−zero.
2.    For complex numbers z 1 and z 2 such that z 1 = z2

      (i)        z1    =    z2

      (ii)       z1    ≠    z2

      (iii)      z1    ≤    z2

      (iv)       z1    ≥    z2

Q.3   For complex numbers z 1 , z2 and z1 + z 2

      (i)        z1 + z 2   =    z1   +   z2

      (ii)       z1 + z 2   ≥    z1   +   z2

      (iii)      z1 + z 2   ≤    z1   +   z2

      (iv)       z1 + z 2   ≠    z1   +   z2
Modulus and Argand Diagram : 57


Example K:
Draw diagram to represent z 1 + z 2
If z 1 = 2 + 3i and z2 = 1 + i

Also verify that                z1 + z 2    ≤       z1        +       z2
Solution:            Let z1 = 2 + 3i
                                                                               ∧y               C
                     z2 = 1 + i                                            4                        •
Then                 z 1 + z 2 = 3 + 4i                                    3                   •
                                                                                      A
Let    A (2, 3) be z 1
                                                                           2        B
       B(1, 1) be z 2                                                      1         •
Then C(3, 4) be z1 +z 2
                                                          x′      <                   1        2     3
                                                                                                                    >x
Verification
                                                                                          Fig. 3.19
                                                                               ∨ y′
               2 + 3 = 4 + 9 = 13 = 3.65 aprox.
       =       2        2
z1

       =    1 + i = 1 +1 = 2                        = 1.41 aprox.
             2   2
z2

z1 + z 2   =       3 + 4 = 9 + 16 = 25 = 5
                    2   2



Now,               z1       +    z2         = 3.60 + 1.41 = 5.01

∴                  z1 + z 2          <     z1   +    z2
Example L:

Represent diagramatically                           z1 − z 2          ≥        z2   −      z1        on complex
                     plane
Solution                                                                            ∧y         Q(z 2 )
                                                                                           •
For the above inequality,                                                                               • P(z 1 )
consider the Fig. 3.20
                                                                                O
Let P and Q represent
                                                         <
                                                         x′                                                     >x
z1    and z 2 respectively.
                                                                                               • R(z 1 −z 2)
Then Q ′ represent −z 2
                                                              Q ′ (−z 2) •
R represent z 1 + (−z 2 )
                                                                                    ∨     y′
                                                                                                    Fig. 3.20




                                 0
58 :: Mathematics


Complete the parallelogram. OPRQ ′ we see that OR is diagonal
of this       parallelogram and OR =                             z1 − z 2

Also   OP || Q ′ R and OP = Q′ R
       OQ ′ || PR and OQ ′ = PR
          ∴       In        ∆ OPR
       PR ≤ OP + OR (Why?)

⇒      z2      ≤        z1        +     z1 − z 2

or     z2      −       z1    ≤        z1 − z 2

or     z1 − z 2        ≥      z2       −     z1




    INTEXT QUESTIONS 3.2
 1.    Draw a diagram to represent the addition z1 + z 2                         of
       following complex numbers:

       (a)     z1 = 1 + i                         z2 = 2 + 5i

       (b)     z1 = −2 + 3i                       z2 = −1 − 4i

       (c)     z1 = 4 − i                         z2 = 5 + 2i

       Also veryfy that               z1 + z 2            ≤     z1   +      z2

 2.    Represent diagramatically

                  z1 − z 2        ≤     z1       +    z2

 3.    Draw a diagram to represent z1 − z2 for the following
       complex numbers:

       (a)     z1 = 3 − 2 i                                   z2 = 1 + i
       (b)     z1 = 4 + 3i                                    z2 = −4 + 3i
       (c)     z1 = −2 − 5i                                   z2 = −3 + 7i
       (d)     z1 = 2 + i                                     z2 =   3 + i
       In each of the above verify that
                  z1 − z 2    ≥       z1     −       z2
Modulus and Argand Diagram : 59


       3.7 POLAR FORM OF COMPLEX NUMBER
       A point (a, b) in the plane, is completely determined by

       (i)    its distance from the origin
       (ii)   the angle θ, which it makes with the positive x−axis.

       Let P(a, b) represent the complex number z = a + ib, a ∈ R,
       b ∈ R, and OP makes angle θ with positive x-axis.

       Let    OP = r
                                                         y
       It right ∆ OMP
                                                       ∧                 P(a,b)
              OM=a
                                                                     r       ↑
              MP=b                                                           b
                                                                 θ           ↓
       ∴      r cos θ = a                                            a               >x
                                                   O ←                   →M
              r sin θ = b
       Then z = a + ib can be written as                         Fig. 3.21

              z = r (Cos θ + i sin θ) is polar form
πb 
 2
      Where          r =     a +b
                               2  2       is modulus
4a 
                        b
       and    tanθ =
                        a

       or             θ = tan -1          is argument

       Here θ is the principle argument.
       Example M:
       Express 1 + i in polar form
       Solution
       Here a = 1, b = 1

       ∴      r   =     2
                       1 +1
                              2
                                  =   2

                            1
              θ = tan -1      = tan -1 (1) =
                            1
       ∴      In the form
                                                             π
              1 + i can be written as             (Cos       4
                                                                     + i sin     )
60 :: Mathematics


Example N:

        Express           − i in polar form.
Solution

                            ( 3)
                                  2
                                      + ( −1)
                                            2
        Here r        =

                      =     3 +1

                      =     4    = 2

                            −1
        tan θ         =
                             3
        we know that
                            1
        tan 30°       =
                             3

        and tan (−θ ) = − tan θ
                                                1
⇒       tan (−30°) = −tan (30°) = −
                                                3
 ∴      θ = −30°
∴       Polar form is 2 {cos (−30°) + i sin (−30°)}
Example O:
Express − 5 − 5i in the polar form
Solution

Here,           r =   25 + 25 = 50 + 5 2

                                 −5
                  tan θ =                 = 1
                                 −5
⇒                 θ = 45°
        But the point (−5, −5) lies in the III quadrant.
∴       we consider the property
        tan (180° + θ) = tan θ
⇒       tan (180° + 45°) = tan 45°
or,     tan (225°) = tan (45°)
∴       Polar form is

             ( cos 225° + i sin 225° )
Modulus and Argand Diagram : 61


    Example P:

    (a)   Express −1 +                    3 i in polar form
    (b)   is        polar representation unique?
    Solution

                     (−1)2 + (        )
                                      2
    Here r =                      3       + 1+ 3 = 4 = 2


                           3
    (a)   tan θ =            =− 3
                          −1
    ⇒     θ = −60°           ( Q tan (− θ) = − tan θ )
          So, the polar form is

          2     {   cos (−60°) + i sin (−60°)              }
    (b)   We may note that the point (−1,                       ) representing the

          complex number −1 +                      3 i, i.e.,

          point (−1,             3 ) lies in the II quadrant
3
    ∴     We consider
          tan (180° − θ) = − tan θ
          tan (180° − 60°) = − tan 60°
    or    tan 120° = tan (−60°)
          Polar form can be written as
          4 (cos 120° + i sin 120°)
    ∴     We can say that polar representation is not unique. as
          the argument θ is not unique.

    Check-point 4:

    1.    Choose the appropriate answer.
          z = a + ib can be expressed in polar form as
          (i)          r (cos θ − i sin θ)
          (ii)         r cos θ + i sin θ
          (iii)        r (cos θ + i sin θ)
62 :: Mathematics


2.    Fill in the blank
      In polar representation of z = a + ib

                                                  b
       a +b         is ___________ and tan -1         is _________.
        2   2
                                                  a


 INTEXT QUESTIONS 3.3

 1    Express the following in the polar form

             ( a)     (i)        4 + 4i

                      (ii)             + i

             (b)      (i)        1 − i

                      (ii)       1 −     3i

 2.   Write at least two polar representations for                  the
      following complex numbers

             (a)      (i)        1 −     3i

                      (ii)       2 − 2i
                      (iii)      − 1 − i
                      (iv)       6 + 6i
 3.   Write   each of the following complex numbers
      in the form a + bi

             (a)      5 (cos 30° + i sin 30°)
             (b)      11 (cos 120° + i sin 120°)
             (c)      cos 75° + i sin 75°

             (d)       3     {   (cos (−225°) + i sin (−225°)   }

3.7 POLAR REPRESENTATION OF DIVISION

Let   z1 =      r 1 (cos θ 1 + i sin θ1 )
      z2 =      r 2 (cos θ2 + i sin θ 2 )
Modulus and Argand Diagram : 63



         z1   r (cos θ1 + i sin θ1 )
then        = 1
         z 2 r2 (cos θ 2 + i sin θ 2 )


     r1 (cos θ1 + i sin θ1 )(cos θ 2 − i sin θ 2 )
=
    r2 (cos θ 2 + i sin θ 2 )(cos θ 2 − i sin θ 2 )


    r1
=      {(cos θ1cosθ 2 + sinθ1 sin θ 2 ) + i(sin θ1cos θ 2 − cos θ1sin θ 2 )}
    r2

    r1
=      {cos(θ1 − θ 2 ) + i sin(θ1 − θ 2 )}
    r2

Thus,we can see that




                   z1                r1
                           =
                   z2                r2



                     and its argument = θ 1 − θ 2

                     Also, we can observe that

                                    r1       =   z1
                     and            r2       =   z2

                     Thus, we can write

                                     z1           z1
                                             =
                                     z2          z2
Geometrical Representation of Division in C
Let                  z1     = r 1 (cos θ 1 + i sin θ 1 )
and                  z2 = r2 (cos θ 2 +                sin θ2 )
be represented by points P and Q respectively




                                                                                  1
                                                                                  7
64 :: Mathematics


Let us take a point I(1,0) on plane.
Construct                                                                    ∧y
                                                                                       I
      ∆OPR~∆OQI
∴     In ∆OPR and ∆OQI                                                                            R

      OQ                                                                          θ1                  Q
         =                                                                                 θ2
      OI
                                                                    <                                       >   x
                                                                         0                        I(1,0)
⇒     OR =              ×    OI
                                                                         ∨
But   OP = r1 , OQ = r 2, OI = 1
                                                                                                Fig. 3.22
             r1
∴     OR =              .....................   (i)
             r2

Also /ROX = /POX − /POR = θ 1                      − θ2

                  = /POX − /QOX

∴     R is point in plane with modulus

      r1
         and argument θ 1 − θ2
      r2


                                                                    z1
∴     Point R represents the complex number
                                                                    z2

                   z1
       OR =              ....................... (ii)
                   z2
      from (i) and (ii) we get

                   z1             z1
                         =
                   z2             z2

Check-point:
1.    Tick mark the right answer.
                                                          z1
      (a)         Modulus of complex number                    is
                                                          z2
                  (i)    r1 − r2
Modulus and Argand Diagram : 65


                          r1
                   (ii)
                          r2
                   (iii) r 1 − r 2

                   Where        z1   =     r1 and          z2       =   r2

                                          z1
            (b)    Argument of                  is
                                          z2

                   (i)    θ1 − θ2
                          θ1
                          θ2
                   (iii) θ 1 + θ 2
                   Where        ar (z 1)= θ 1            and ar (z2 ) = θ 2
                   { Ans: 1(a) (ii), (b)(i) }
      Example Q:
      Find the modulus of the complex number
                 (ii)
2+i
z                  2+i
3−i
                   3−i
      Solution

      Let          z      =


                               2+i
      ∴                   =
                               3−i

            But we know that

                    z1         z1
                          =
                    z2         z2


                   2+i                   2+i
                                =        3−i
                   3−i

      ∴            2+i          =        4 +1        =          5

      and          3+i          =        9+i         =       10
66 :: Mathematics



                                           5              1
∴                   z             =              =
                                           10             2

Example R:

(a)     Write the polar representation for z 1                 .   z2

(b)     Represent geometrically

         z1 z 2    =     z1       z2

Solution
(a)     Let z 1 = r 1 (cos θ 1 + i sin θ 1 ) Here z 1 =r 1, arg(z 1) = θ 1
        z2 = r 2(cos θ 2 + i sin θ 2) Here z 2                = r 2 , arg(z2 ) = θ 2
t h e n z 1 .z 2   = r 1 r2 (cos θ 1 + i sin θ 1) (cos θ 2 + i sin θ 2)
                   = r 1 r 2 (cos θ1 cos θ2 + i cos θ 1 sin θ 2 +
                        i sin θ1 cos θ2 − sin θ 1 sin θ2 )

                   = r1 r2    {       (cos θ 1 cos θ 2 − sin θ1 sin θ 2) +

                        i (sin θ2 cos θ1 + sin θ 1 cos θ 2 )

                   = r 1 r 2 ( cos (θ 1 + θ2 ) + i sin (θ1 + θ2)             }
Thus we get z1 z 2            = r 1 r2 =        z1   z2

and                arg (z 1 z2 ) = θ 1 + θ2

Geometrical Representation
Let P (r 1 , θ 1 ) and Q(r 2 θ 2)
represent z 1 and z 2 respectively.                                          ∧y
                                                                                                      Q
                                                                                                  •
Take I (1,0) on a plane
                                                                                                              P
and construct                                                                                             •
                                                                                       r2
∆ OQR ~ ∆OIP                                                                                r1
                                                                                       2
                                                                                  Q




                                                                                       Q1
        OR OP
          =
                                                                        <                                         >   x
⇒                                                                       x′                        R
        OQ OI                                                                 ←        1                  → Ι
                   OQ × OP                                                                       Fig. 3.23
⇒       OR =                  =                                              ∨    y′
                     OI
Modulus and Argand Diagram : 67


         ⇒      OR = r1 r 2
         Also   /ROX   =       /ROQ            +   /QOX
                       =       /POI        +       /QOX        = θ1 + θ2
         Example S:
         Find the modulus of the complex number
                       (1 + i) (2 + 3i)
         Solution:     Let z           = (1 + i) (2 + 3i)

         then           z              =   (1 + i )(2 + 3i )
                                       =   (1 + i )(2 + 3i )    (Q      =   z1   z2   )

         But           1+i             =       1 +1 = 2
                                                2  2



                        2 + 3i         =       2 + 32 = 2 + 9 = 13
                                                2



         ∴              z              =       2. 13 = 26


51+ 2i
z iz92
7i + 1
2 + i2
 3
          INTEXT QUESTIONS 3.4
          1.    Find the modulus of the following complex numbers:

                                 1+i
                (a)    (i)
                                 3−i

                       (ii)


                       (iii)

                (b)    (i)     (5 − i) (2 + i)
                       (ii)    (−i) (i + 3)
                       (iii) (6 + 2i) (5 + 4i)

                                                               i+ 2
                (c)    (i)                           (ii)
                                                               3 − 5i
                       (iii) (i+i²) (2i−3)           (iv) (4−3i) (i²−2i³+4)
68 :: Mathematics


                    3.8 WHAT YOU HAVE LEARNT
                    •   Every complex number z = a + ib can be written as
                        (a, b) a n d h e n c e c a n b e r e p r e s e n t e d i n c o m p l e x
                        coordinate plane.

                        The plane is called the argand plane.
                        The diagram is called the argand diagram.
                        The horizontal axis is called the real axis.
                        The vertical axis is called the imaginary axis.

                                                        ∧y

                                                                                    P (a,b)
                                                                                •
                                                                                    ↑

                                                                                    b
                        Imaginary axis
                                                            ←            a    → ↓
                                              <                                          >    x
                                              x¹                          Real axis
                                                        ∨        y        Fig. 3.24

                    •   Every complex number has a unique representation in
                        the argand plane and every point on complex plane can
                        be associated to the unique complex number.

                    •   Modulus of z = a + ib ,                             a ∈ R,       b ∈ R is

                                              z         =        a +b
                                                                  2   2




                    •   z     =       0       ⇔         z = 0

                    •   z1 + z 2     = 0⇒                   z1       =     z2

                        but   z1          =        z2            does not always imply that z 1 = z 2

                    •              z1 + z 2             ≤            z1     +       z2

                        Geometrically, it means that the sum of two complex
                        numbers is represented by the diagonal of the parallelogram.

                    •              z1 − z 2             ≥            z2     −       z1

                    •   For z = a + ib, a ∈ R, b ∈ R
Modulus and Argand Diagram : 69


          polar representation is

          z = r ( cos θ + i sin θ )

          Where           r = a 2 + b2     is called the modulus

                                       b
                          tan θ =           is called the argument
                                       a

                    z1
     •          =
                    z2

     •     z1 z 2   =             z2


     TERMINAL QUESTIONS
     1.   Represent the following complex numbers on the argand
          plane



                                                          1
z3
z1
 1        2 + 9i, −11 − 5i, 5i, −2, 3 −                       i, i², i² + 4i
                                                          3
z2                                                                      ∧ y
                                                               B•
                                                                    A •
     2.   Write the complex                                                    D
          numbers corresponding                   x   '
                                                          <                    •    >   x
                                                                    O
          to the following points                             C •
                                                                                   •E
          on the argand plane
                                                 ∨
                                                y ' Fig. 3.25
     3.   Find the modulus of the following complex numbers

          (a)       2 + i
          (b)       15 + 9i

          (c)       1 +       i

          (d)       (1 −     3 ) + (2 +        2 )i

          (e)       5i² − 4i + 3
70 :: Mathematics


4.    Illustrate with examples

      z1      =      z2   does not always imply z1 = z 2 .

5.    z              is always greater than or equal to zero. True or
      false. Give reason for your answer.

6.    Write geometrical interpretation of

             z1 + z 2     ≤          z1   +    z2

7.    Find the modulus of the following complex numbers.

                                                                    7−i
      (a) (8 + 9i)i                (b) (8i + 8i²)7i           (c)
                                                                    6+i

                                                                              (1 + i )(2 + i 2)
      (d)                          (e)         i + 1                   (f)
                                                                                   3 +1

                 i                        i+ 3                        (4 − 3i )i
      (g)
              i −1
               3                   (h)
                                          3 + 5i
                                                              (i)
                                                                    (2 + i )(1 + i )
      (j)      i¹³
8.    For the following pairs of complex numbers

      verify that             z1 + z 2    ≤         z1   +   z2

      (i)             z1 = i − 5          z2 = 3i + 2
      (ii)            z 1 = 4 + 3i z2 = 9 + 8i
9.    For the following pair of complex numbers
      verify that         z1 − z 2        ≥         z1   −   z2

      (a) z 1 = 1 +i                      z2 = i + 3
      (b) z1 = 4i + i²                    z2 = 3 − 2i
10.   For the following pair of complex numbers

                              z1          z1
      verify that                    =
                              z2          z2

      (a) z 1 = 2 + 6i ,                  z2 = 1 − 4i
Modulus and Argand Diagram : 71


      (b)   z1 = 7 − i ,                    z2 = 3 + 4i
11.   For the following pair of complex numbers
      verify that         z1 z 2        =     z1    z2

      (a) z1 = 3 + 2i ,                     z2 = 1 − 5i
      (b) z 1 = 7 + 3i ,                    z2 = 4 − 8i
12.   Express the following in the polar form

      (i) 2+2 3 i              (b) −5 + 5i                    (c) − 6 − 2 i

      (d) −3i                  (e) 2 − 2i                     (f) −1+ 3 i

      g)    2 2+2 2i           (h) −4

13.   Polar representation of a complex number is not unique.
      Support the above statement with example.

14.   Write the following in the form a + bi

      (a)     cos 60° − i sin 60°

      (b)       5   (cos 210° + i sin 210°)


      (c)       2   (cos 60° + i sin 60°)




ANSWERS TO CHECK POINTS
Check-point          1:            1. (iv)           2. (ii)

Check-point          2:            1.       (i)      2. (i) 3. (ii)

Check-point          3:            1.       (ii)     2. (i) 3.     (iii)

Check-point          4:            1.       (iii)    2. Modulus, argument

Check-point          5:            1.       (ii)     2. (i)
72 :: Mathematics


ANSWERS TO INTEXT QUESTION
3.1                                           ∧y
1     (a)

                      (−3,0) (0,0) (2,0)(3,0)
                    <   •
                    x′ −3 −2 − 0
                                        •
                                    1 2 3
                                                                 >   x

                             1



                                              ∨    y′
                         ∧y

       (b)
                                  (4,0)

                                  (0,2)


                    <′
                    x
                                                                            >x
                                  (0,−3)


                                  (0,−5)

                         ∨ y′                           ∧   y
                                                                 • (2,5)
                                 (−4,3)
      (c)           (−7,2)                •
                             •


             <′
             x
                                                                                 >
                                                                                 x
                    •
             (−9,−2)
                                                                         • (3,−4)



                                                                 • (2,−7)

                                                  •
                                     (−2,−9)                y′
                                                        ∨
Modulus and Argand Diagram : 73

                                                                    ∧y
     d)                                     (−3,4)                                          • (6,5)
                                                      •

                                         (−4,1)                           (1,1)
                                                  •                      •
                                     <                                                                >
                                  x¹                           •                     • (4,−1)          x
                                                          (−1,−1)


                                                                              • (3,−4)
                                      •
                                  (−6,−5)                          ∨ y′


                                                      ∧ y
                e)

                                                                                     • (6,7)

                                (−3,4) •



                   (−5,1) •                                    • (1,1)
               <                                                                            >   x
               x¹         •                                    • (−1,−1)
                     (−5,−1)

                                      •
                                  (−3,−4)

                                                                                  • (6,−7)
                                                      ∨ y′



2.        (a)            (i)     2                        (ii) 34            (iii)     13

                         (iv)     89                      (v) 6 2

3.        P(5,3)                     Q(0,4)               R(−2,0)            S(1,−3)                T(−5,3)

4.        (a) 2                      (b) 2                c) 3               d)       29

          e)         2               f) 1                 g)     10
74 :: Mathematics


3.2
                                     (2 + 5i)
(a)                                                 z 1+z 2 (3 + 6i)
                                        z2 •



                                            (1+i)
                                           z1




                                  z 1(-2+3i)
(b)




                       z 1 + z1
                    (-3-i)




                                  (-1 -4i) z2




(c)


                                                    z 2 (5+2i)


                                                                       z 1 + z 2 (9+i)



                                                z1 (4-i)
Modulus and Argand Diagram : 75


3.

(a)                              z2 (1-i)




           z2 (-1-i)
                                                z 1 (3-2i)


                                              z1 -z 1 (2-3i)




                                                             z 1 (4+3i)
                   z 2 (-4+3i)
(b)


                                                                              z 1 -z 2 (8)




                                                                  z2 (4-3i)



(c)        z 2 (-3+7i)




      z 1(-2-5i)

                                            -z 2 (3-7i)




                                 z 1 -z 2 (1-12i)
76 :: Mathematics



(d)
                                                        z 1 (2+i)
                               (-1)                                  z 2 (3+i)
                                      z1-z 2
                           <                      •     •    •


                    -z 2 (-3-1)



3.3

1.    (a)          (i)     4 2 (cos 45° + i sin 45°)
                   (ii)    2 (cos 30° + i sin 30°)

      (b)          (i)      2 { cos (−45°) + i sin (−45°) }
                   (ii)    2 { cos (−60°) + i sin (60°) }

2.    (a)          (i)     2 { cos (−60°) + i sin (−60°) }
                           2 { cos (120°) + i sin (120°) }

                   (ii)    2 2 { (cos (−45°) + i sin (−45°) }

                           2 2 { (cos (135°) + i sin (135°) }


                   (iii)        2        { cos (45°) + i sin (45°) }

                                2        (cos 225° + i sin 225°)


                   (iv)    6 3 (cos 45° + i sin 45°)

                           6 3 (cos 225° + i sin 225°)


            5 3 5                                           −11 11 3
3     (a)      + i                                (b)          +     i
             2  2                                            2    2

            3 −1  3 + 1                                   −3       3
      (c)       +
                       i
                                                 (d)            +       i
            2 2   2 2                                      2       2
Modulus and Argand Diagram : 77


3.4

                           1                             29                     82
1        (a)        (i)                      (ii)                      (iii)
                               5                          5                     53

         (b)        (i)    130               (ii)        10            (iii)    3 410
                           1                              3
         (c)        (i)                      (ii)                      (iii)    26      (iv) 5 13
                               2                         14




3.11 ANSWERS TO TERMINAL QUESTIONS




1.                                                                 ∧y
                                                                   9             • (2,9)
                                                                   8
                                                                   7
                                                                   6
                                                                   5    (0,5)
                                                     (-1,4)
                                                              • 4
                                                                   3
                                                                   2
                                                  (-2,0)           1
<
-11     -10    -9   -8    -7       -6   -5   -4     -3   -2   -1
                                                                                                    >
                                                                       -1                       x
                                                                                        •
                                                                                           -1
                                                                       -2               (3, )
                                                                                           3
                                                                       -3
                                                                       -4

      •                                                                -5
    (-11,-5)
                                                                   ∨
78 :: Mathematics


2.    A→ 2i,         B→ −3+3.5i,       C→ −3−1.5i,             D→3,         E→ 4−2i

3.    (a)    5,        (b)3 34 ,        (c) 2        (d) 10 + 4 2 − 2 3 ,

      (e) 2 5

4.
5.    True

                                              5 2
7.    (a)    145 ,     (b) 55 2         (c)                    (d) 1
                                                27


             3                 1                1                      2
      (e)              (f)              (g)                    (h)
             43                 5               2                      14

             5
      (i)              (j) 1
             10

12.   (a)        4(cos 60° + i sin 60°),

      (b)        5 2 (cos 135 + i sin 135°)

      (c)        2 2 (cos 210° + i sin 210°)

      (d)        3(cos 270° + i sin 270°)

      (e)        2 2 (cos 315° + i sin 315°)

      (f)        2 cos (120° + i sin 120°)
      (g)        4 (cos 45° + i sin 45°)
      (h)        4 (cos 180° + i sin 180°)


            1   3                    15   5                1         3
14.   (a)     −   i            (b)      −   i        (c)        +      i
            2   2                    2    2                2         2

More Related Content

What's hot

first order ode with its application
 first order ode with its application first order ode with its application
first order ode with its applicationKrishna Peshivadiya
 
Naville's Interpolation
Naville's InterpolationNaville's Interpolation
Naville's InterpolationVARUN KUMAR
 
5.2 the substitution methods
5.2 the substitution methods5.2 the substitution methods
5.2 the substitution methodsmath265
 
24 double integral over polar coordinate
24 double integral over polar coordinate24 double integral over polar coordinate
24 double integral over polar coordinatemath267
 
Remainder and Factor Theorem
Remainder and Factor TheoremRemainder and Factor Theorem
Remainder and Factor TheoremTrish Hammond
 
30 green's theorem
30 green's theorem30 green's theorem
30 green's theoremmath267
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Set
SetSet
SetH K
 
Divisibility rules (Properties of Divisibility)
Divisibility rules (Properties of Divisibility)Divisibility rules (Properties of Divisibility)
Divisibility rules (Properties of Divisibility)Tsuki Hibari
 
Triple integrals in spherical coordinates
Triple integrals in spherical coordinatesTriple integrals in spherical coordinates
Triple integrals in spherical coordinatesViral Prajapati
 
Unit 1: Topological spaces (its definition and definition of open sets)
Unit 1:  Topological spaces (its definition and definition of open sets)Unit 1:  Topological spaces (its definition and definition of open sets)
Unit 1: Topological spaces (its definition and definition of open sets)nasserfuzt
 
Matrix of linear transformation
Matrix of linear transformationMatrix of linear transformation
Matrix of linear transformationbeenishbeenish
 
Relations & Functions
Relations & FunctionsRelations & Functions
Relations & FunctionsJ Edwards
 
Isomorphism in Math
Isomorphism in MathIsomorphism in Math
Isomorphism in MathMahe Karim
 
Heun's Method
Heun's MethodHeun's Method
Heun's MethodRabin BK
 
Complex numbers org.ppt
Complex numbers org.pptComplex numbers org.ppt
Complex numbers org.pptOsama Tahir
 
Math presentation on domain and range
Math presentation on domain and rangeMath presentation on domain and range
Math presentation on domain and rangeTouhidul Shawan
 

What's hot (20)

Ring-ppt.pptx
Ring-ppt.pptxRing-ppt.pptx
Ring-ppt.pptx
 
first order ode with its application
 first order ode with its application first order ode with its application
first order ode with its application
 
Naville's Interpolation
Naville's InterpolationNaville's Interpolation
Naville's Interpolation
 
5.2 the substitution methods
5.2 the substitution methods5.2 the substitution methods
5.2 the substitution methods
 
24 double integral over polar coordinate
24 double integral over polar coordinate24 double integral over polar coordinate
24 double integral over polar coordinate
 
Remainder and Factor Theorem
Remainder and Factor TheoremRemainder and Factor Theorem
Remainder and Factor Theorem
 
30 green's theorem
30 green's theorem30 green's theorem
30 green's theorem
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Set
SetSet
Set
 
Divisibility rules (Properties of Divisibility)
Divisibility rules (Properties of Divisibility)Divisibility rules (Properties of Divisibility)
Divisibility rules (Properties of Divisibility)
 
Binomial expansion
Binomial expansionBinomial expansion
Binomial expansion
 
Triple integrals in spherical coordinates
Triple integrals in spherical coordinatesTriple integrals in spherical coordinates
Triple integrals in spherical coordinates
 
Unit 1: Topological spaces (its definition and definition of open sets)
Unit 1:  Topological spaces (its definition and definition of open sets)Unit 1:  Topological spaces (its definition and definition of open sets)
Unit 1: Topological spaces (its definition and definition of open sets)
 
Matrix of linear transformation
Matrix of linear transformationMatrix of linear transformation
Matrix of linear transformation
 
Relations & Functions
Relations & FunctionsRelations & Functions
Relations & Functions
 
Isomorphism in Math
Isomorphism in MathIsomorphism in Math
Isomorphism in Math
 
Heun's Method
Heun's MethodHeun's Method
Heun's Method
 
Complex numbers org.ppt
Complex numbers org.pptComplex numbers org.ppt
Complex numbers org.ppt
 
Abstract algebra - Algebraic closed field, unit - 2 , M.Sc. l semester Maths
Abstract algebra -  Algebraic closed field, unit - 2 , M.Sc. l semester Maths Abstract algebra -  Algebraic closed field, unit - 2 , M.Sc. l semester Maths
Abstract algebra - Algebraic closed field, unit - 2 , M.Sc. l semester Maths
 
Math presentation on domain and range
Math presentation on domain and rangeMath presentation on domain and range
Math presentation on domain and range
 

Viewers also liked

X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)Nigel Simmons
 
X2 T01 03 argand diagram
X2 T01 03 argand diagramX2 T01 03 argand diagram
X2 T01 03 argand diagramNigel Simmons
 
complex numbers
complex numberscomplex numbers
complex numbersvalour
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbersdoozer_k
 
AA Section 6-9
AA Section 6-9AA Section 6-9
AA Section 6-9Jimbo Lamb
 
Bombascentrifugas
BombascentrifugasBombascentrifugas
BombascentrifugasJorge Rojas
 
Jorge vivas examen
Jorge vivas examenJorge vivas examen
Jorge vivas examenJorge Rojas
 
Métodos de eliminación gaussiana
Métodos de eliminación gaussianaMétodos de eliminación gaussiana
Métodos de eliminación gaussianaJorge Rojas
 
Matematica iv unidad iii
Matematica iv unidad iiiMatematica iv unidad iii
Matematica iv unidad iiijose perez
 
Ejercicios propuestos 2 Richard gutierrez
Ejercicios propuestos 2 Richard gutierrezEjercicios propuestos 2 Richard gutierrez
Ejercicios propuestos 2 Richard gutierrezZapata27
 
رياضيات سادس علمي
رياضيات سادس علميرياضيات سادس علمي
رياضيات سادس علميAhmed Mahdi
 
Transformada de laplace
Transformada de laplaceTransformada de laplace
Transformada de laplaceAlexis Miranda
 
Cauchy riemann equations
Cauchy riemann equationsCauchy riemann equations
Cauchy riemann equationsHanpenRobot
 
Ejercicios propuestos unidad i jose gomez..
Ejercicios propuestos unidad i jose gomez..Ejercicios propuestos unidad i jose gomez..
Ejercicios propuestos unidad i jose gomez..ldbb2290
 
Mecanica actividad 2.jorge
Mecanica actividad 2.jorgeMecanica actividad 2.jorge
Mecanica actividad 2.jorgeJorge Rojas
 
An introdcution to complex numbers jcw
An introdcution to complex numbers jcwAn introdcution to complex numbers jcw
An introdcution to complex numbers jcwjenniech
 
Unidad1 jorgevivas
Unidad1 jorgevivasUnidad1 jorgevivas
Unidad1 jorgevivasJorge Rojas
 

Viewers also liked (20)

X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
 
X2 T01 03 argand diagram
X2 T01 03 argand diagramX2 T01 03 argand diagram
X2 T01 03 argand diagram
 
complex numbers
complex numberscomplex numbers
complex numbers
 
Chap 4 complex numbers focus exam ace
Chap 4 complex numbers focus exam aceChap 4 complex numbers focus exam ace
Chap 4 complex numbers focus exam ace
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 
1 ca nall
1 ca nall1 ca nall
1 ca nall
 
AA Section 6-9
AA Section 6-9AA Section 6-9
AA Section 6-9
 
Bombascentrifugas
BombascentrifugasBombascentrifugas
Bombascentrifugas
 
Teoriadeerrores
TeoriadeerroresTeoriadeerrores
Teoriadeerrores
 
Jorge vivas examen
Jorge vivas examenJorge vivas examen
Jorge vivas examen
 
Métodos de eliminación gaussiana
Métodos de eliminación gaussianaMétodos de eliminación gaussiana
Métodos de eliminación gaussiana
 
Matematica iv unidad iii
Matematica iv unidad iiiMatematica iv unidad iii
Matematica iv unidad iii
 
Ejercicios propuestos 2 Richard gutierrez
Ejercicios propuestos 2 Richard gutierrezEjercicios propuestos 2 Richard gutierrez
Ejercicios propuestos 2 Richard gutierrez
 
رياضيات سادس علمي
رياضيات سادس علميرياضيات سادس علمي
رياضيات سادس علمي
 
Transformada de laplace
Transformada de laplaceTransformada de laplace
Transformada de laplace
 
Cauchy riemann equations
Cauchy riemann equationsCauchy riemann equations
Cauchy riemann equations
 
Ejercicios propuestos unidad i jose gomez..
Ejercicios propuestos unidad i jose gomez..Ejercicios propuestos unidad i jose gomez..
Ejercicios propuestos unidad i jose gomez..
 
Mecanica actividad 2.jorge
Mecanica actividad 2.jorgeMecanica actividad 2.jorge
Mecanica actividad 2.jorge
 
An introdcution to complex numbers jcw
An introdcution to complex numbers jcwAn introdcution to complex numbers jcw
An introdcution to complex numbers jcw
 
Unidad1 jorgevivas
Unidad1 jorgevivasUnidad1 jorgevivas
Unidad1 jorgevivas
 

Similar to Modulus and argand diagram

P2 Graphs Function
P2  Graphs FunctionP2  Graphs Function
P2 Graphs Functionguestcc333c
 
Sslc maths-5-model-question-papers-english-medium
Sslc maths-5-model-question-papers-english-mediumSslc maths-5-model-question-papers-english-medium
Sslc maths-5-model-question-papers-english-mediummohanavaradhan777
 
H 2004 2007
H 2004   2007H 2004   2007
H 2004 2007sjamaths
 
class-X Maths Book | Chapter-2 | Slides By MANAV |
class-X Maths Book | Chapter-2 | Slides By MANAV |class-X Maths Book | Chapter-2 | Slides By MANAV |
class-X Maths Book | Chapter-2 | Slides By MANAV |Slides With MANAV
 
Assignments for class XII
Assignments for class XIIAssignments for class XII
Assignments for class XIIindu thakur
 
Roots of polynomial equations
Roots of polynomial equationsRoots of polynomial equations
Roots of polynomial equationsTarun Gehlot
 
Roots of polynomial equations
Roots of polynomial equationsRoots of polynomial equations
Roots of polynomial equationsTarun Gehlot
 
15815265 form-4-amat-formulae-and-note
15815265 form-4-amat-formulae-and-note15815265 form-4-amat-formulae-and-note
15815265 form-4-amat-formulae-and-noteotpeng
 
Sin cos questions
Sin cos questionsSin cos questions
Sin cos questionsGarden City
 
Sin cos questions
Sin cos questionsSin cos questions
Sin cos questionsGarden City
 
Integration worksheet.
Integration worksheet.Integration worksheet.
Integration worksheet.skruti
 

Similar to Modulus and argand diagram (20)

Complex numbers
Complex numbersComplex numbers
Complex numbers
 
P2 Graphs Function
P2  Graphs FunctionP2  Graphs Function
P2 Graphs Function
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equations
 
C4 January 2012 QP
C4 January 2012 QPC4 January 2012 QP
C4 January 2012 QP
 
Mathematics
MathematicsMathematics
Mathematics
 
10thmaths online(e)
10thmaths online(e)10thmaths online(e)
10thmaths online(e)
 
Sslc maths-5-model-question-papers-english-medium
Sslc maths-5-model-question-papers-english-mediumSslc maths-5-model-question-papers-english-medium
Sslc maths-5-model-question-papers-english-medium
 
H 2004 2007
H 2004   2007H 2004   2007
H 2004 2007
 
Chapter activity plus-in-mathematics-9
Chapter activity plus-in-mathematics-9Chapter activity plus-in-mathematics-9
Chapter activity plus-in-mathematics-9
 
class-X Maths Book | Chapter-2 | Slides By MANAV |
class-X Maths Book | Chapter-2 | Slides By MANAV |class-X Maths Book | Chapter-2 | Slides By MANAV |
class-X Maths Book | Chapter-2 | Slides By MANAV |
 
Assignments for class XII
Assignments for class XIIAssignments for class XII
Assignments for class XII
 
Maths model%20 qp
Maths model%20 qpMaths model%20 qp
Maths model%20 qp
 
Roots of polynomial equations
Roots of polynomial equationsRoots of polynomial equations
Roots of polynomial equations
 
Roots of polynomial equations
Roots of polynomial equationsRoots of polynomial equations
Roots of polynomial equations
 
Sect4 5
Sect4 5Sect4 5
Sect4 5
 
C3 January 2012 QP
C3 January 2012 QPC3 January 2012 QP
C3 January 2012 QP
 
15815265 form-4-amat-formulae-and-note
15815265 form-4-amat-formulae-and-note15815265 form-4-amat-formulae-and-note
15815265 form-4-amat-formulae-and-note
 
Sin cos questions
Sin cos questionsSin cos questions
Sin cos questions
 
Sin cos questions
Sin cos questionsSin cos questions
Sin cos questions
 
Integration worksheet.
Integration worksheet.Integration worksheet.
Integration worksheet.
 

More from Tarun Gehlot

Materials 11-01228
Materials 11-01228Materials 11-01228
Materials 11-01228Tarun Gehlot
 
Continuity and end_behavior
Continuity and  end_behaviorContinuity and  end_behavior
Continuity and end_behaviorTarun Gehlot
 
Continuity of functions by graph (exercises with detailed solutions)
Continuity of functions by graph   (exercises with detailed solutions)Continuity of functions by graph   (exercises with detailed solutions)
Continuity of functions by graph (exercises with detailed solutions)Tarun Gehlot
 
Factoring by the trial and-error method
Factoring by the trial and-error methodFactoring by the trial and-error method
Factoring by the trial and-error methodTarun Gehlot
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysisTarun Gehlot
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functionsTarun Gehlot
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problemsTarun Gehlot
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statisticsTarun Gehlot
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlabTarun Gehlot
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentialsTarun Gehlot
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximationTarun Gehlot
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functionsTarun Gehlot
 
Propeties of-triangles
Propeties of-trianglesPropeties of-triangles
Propeties of-trianglesTarun Gehlot
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadraturesTarun Gehlot
 
Basics of set theory
Basics of set theoryBasics of set theory
Basics of set theoryTarun Gehlot
 
Numerical integration
Numerical integrationNumerical integration
Numerical integrationTarun Gehlot
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theoryTarun Gehlot
 
Miscellneous functions
Miscellneous  functionsMiscellneous  functions
Miscellneous functionsTarun Gehlot
 

More from Tarun Gehlot (20)

Materials 11-01228
Materials 11-01228Materials 11-01228
Materials 11-01228
 
Binary relations
Binary relationsBinary relations
Binary relations
 
Continuity and end_behavior
Continuity and  end_behaviorContinuity and  end_behavior
Continuity and end_behavior
 
Continuity of functions by graph (exercises with detailed solutions)
Continuity of functions by graph   (exercises with detailed solutions)Continuity of functions by graph   (exercises with detailed solutions)
Continuity of functions by graph (exercises with detailed solutions)
 
Factoring by the trial and-error method
Factoring by the trial and-error methodFactoring by the trial and-error method
Factoring by the trial and-error method
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
 
Matlab commands
Matlab commandsMatlab commands
Matlab commands
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentials
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximation
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functions
 
Propeties of-triangles
Propeties of-trianglesPropeties of-triangles
Propeties of-triangles
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadratures
 
Basics of set theory
Basics of set theoryBasics of set theory
Basics of set theory
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theory
 
Miscellneous functions
Miscellneous  functionsMiscellneous  functions
Miscellneous functions
 

Modulus and argand diagram

  • 1. 3 MODULUS AND ARGAND DIAGRAM 3.1 INTRODUCTION Consider the representation of following real numbers on real line. x = 3 < 0 1 2 3 > x = −2 < −3 −2 −1 0 > 3 x = 2 < 0 1 2 > Fig. 3.1 Now let us consider the complex number 3 + 2i. Here 3 and 2 are real numbers. Can we represent this complex number on real line? Surely no. This number is a composition of real and imaginary parts. So, one number line is not sufficient here. How can we represent a complex number geometrically by a point ? We will learn geometric representation of complex numbers and related properties in this lesson.
  • 2. 44 :: Mathematics 3.2 OBJECTIVES After studying this lesson, you will be able to: • represent complex numbers on argand plane. • identify the complex numbers x + iy corresponding to a given point P (x ,y) in the agrand plane. • recognise that there is a unique complex number associated with every point in the argand plane. • State and represent diagramatically the following properties of a complex number: (i) = 0⇔ z = 0 (ii) z1 = z2 ⇔ z1 = z2 (iii) z1 + z 2 ≤ z1 = z2 3.3 PREVIOUS KNWOLEDGE (a) Representation of real numbers on number a line (b) Complex numbers (c) Algebra of complex numbers. 3.4 GEOMETRICAL REPRESENTATION OF A COMPLEX NUMBER You have already learnt that 1. Complex number a + ib can be determined by an ordered pair (a,b) 2. An ordered pair (a,b ) is represented by a point on coordinate plane. So, complex number a+ib can be represented by a point (a,b) on coordinate plane.
  • 3. Modulus and Argand Diagram : 45 ∧y This plane is called Argand Plane. • (a, b) ↑ The diagram is called b Argand Diagram ↓ < ←a → >x x′ y′ ∨ Example A Fig. 3.2 Complex number a + 0i is denoted by P (a, 0) 1. Point P(a,0) lies on the x−axis 2. a is the real part of complex number a + ib ∧y 3. x axis is called real axis as the real part is represented P(a, 0 ) on the x−axis. < > x′ 0 ← a → x ∨ y′ Fig. 3.3 Example B Complex number 0 +bi is represented by Q(0,b) 1. Point Q(0, b) lies on y−axis ∧y 2. b is the imaginary part of Q(0,b) ↑ complex number 0 + bi b 3. y−axis is called the ↓ < 0 > x imaginary axis as the x′ imaginary part is represented on y−axis. ∨ y′ Fig. 3.4
  • 4. 46 :: Mathematics Example C ∧y A(2,3) Represent 2 + 3i and 3 + 2i • on the same argand plane. B(3,2) • Solution: 1. 2 + 3i is represented by A(2, 3) < > x x′ 0 2. 3 + 2 i is represented by B(3, 2) Point A and B are different Representation of a + bi is not same as of b + ai, if a ≠ b ∨ y′ Fig. 3.5 Example D ∧ y Represent 2 + 3i and −2 − 3i on the same argand plane. • P(2,3) Solution 1. 2 + 3i is point P(2,3) < >x x′ O 2. −2 − 3i is point Q(−2,−3) Points P and Q are different and lie in the I quadrant and Q(−2,−3) • III quadrant respectively. ∨ y′ Representation of a + bi Fig. 3.6 is not same as of − a − bi z ≠ −z ∧y Example E: • R(2, 3) Represent 2 + 3i and 2 − 3i on the same argand plane Solution < > x x′ 1. 2 + 3i is point R(2,3) 2. 2 − 3i is point S(2,−3) 3. Point R and S are different • S(2,−3) ∨ y′ Representation of a + bi is not same as of a − bi Fig. 3.7 z ≠ z
  • 5. Modulus and Argand Diagram : 47 Example F: ∧ y Represent 2 + 3i, −2 −3i, 2 − 3i • P(2,3) on the same argand plane Solution < 0 > 1. 2 + 3i is point P(2,3) x′ x 2. −2 − 3i is point Q(−2,−3) Q(-2,-3) • • R(2,−3) 3. 2 − 3i is point R(2,−3) ∨ Representation of Complex numbers y′ z = a + bi Fig. 3.8 z = a − bi and −z = − a − bi are all different z ≠ ≠ −z Checkpoint 1: Tick mark the correct answer: 1. The point representing the complex number 3 + 5i on argand plane is (i) same as the point representing 3 − 5i (ii) same as the point representing −3 − 5i (iii) same as the point representing 5 + 3i (iv) none of the above 2. Complex number a − bi is represented on an argand plane by the point. (i) (a, b) (ii) (a, − b) (iii) (−a, −b) (iv) (−a, b) − − { Ans : 1−(iv), 2−(ii) } 3.5 MODULUS OF A COMPLEX NUMBER Any complex number a + ib can be represented by a point in a plane.
  • 6. 48 :: Mathematics How can we find the distance of this point from the origin? Consider P(a, b) a point in the plane representing a + ib. If we look at Fig.3.9, we find that OM = a ∧y P(a,b) MP = b • What is the distance ↑ of P from the origin? b ↓ Certainly, it is OP. < > x x′ O ← a → M How do you find OP? We may note that PM and OM are ∨ y′ perpendicular to each other. Fig. 3.9 ∴ OP = = a +b 2 2 OP is called the modulus of complex number or absolute value of the complex number, a + ib. ∴ Modulus of any complex number z such that z = a + bi, a ∈ R, b ∈ R is denoted by z and is given a +b 2 2 ∴ z = a + ib = a +b 2 2 Example G: y Find the modulus of the complex ∧ Q(−4,3) numbers shown in an argand P(4,3) plane (Fig. 3.10) • • Solution (i) P(4, 3) represents < O > x the complex number x′ z = 4 + 3i ∴ OP = • • z = 4 +3 2 2 R(−1,−3) S(3,−3) = 25 ∨ y′ or z = 5 Fig. 3.10
  • 7. Modulus and Argand Diagram : 49 (ii) Q(-4,3) represents z = -4 + 2i OQ = z = (−4)2 + 22 = 16 + 4 = 20 (iii) R(−1, −3) represents z = −1 − 3i OR = z = (−1)2 + (−3)2 = 1+ 9 = 10 (iv) S(3, −3) represents z = 3 − 3i OS = z = (3)2 + (−3)2 = 9+9 = 18 3 + 4 Example H: 2 2 Find the modulus of z and z if z = 3 + 4i y Solution ∧ P(3,4) z = 3 + 4i • then = 3 − 4i ∴ OP = z = < O > x′ M x = 9 + 16 = 25 = 5 3 + ( −4 ) 2 and OQ = z = 2 • Q(3,−4) = 9 + 16 ∨ y′ = 25 = 5 Fig. 3.11 z = z
  • 8. 50 :: Mathematics Example I: Find the modulus of z and −z ∧ y if z = 5 + 2i Solution: z = 5 +2i P (5,2) then −z = −(5 + 2i)=− 5 − 2i N ∴ OP = z = 5 +2 2 2 < > x′ O M x = 25 + 4 Q (−5,−2) = 29 ∨ y′ OQ = −z = (5)2 + (−2)2 Fig. 3.12 = 25 + 4 = 29 z = −z ∧y P(1,2) Example J: Find the modulus of z, -z and z N M if z = 1 + 2i < > x x′ Solution z = 1 + 2i −z = −1 − 2i = 1 − 2i Q(−1,−2) ∨ y′ R(1,−2) OP = = 1 +2 = 5 2 2 Fig. 3.13 OQ = −z = (−1)2 + (−2)2 = 5 1 + ( −2) = 5 2 OR = z = 2 z = −z = z
  • 9. Modulus and Argand Diagram : 51 Check-point 2: Choose the appropriate answer: 1. Modulus of the complex number a + ib is (i) a +b 2 2 (ii) a −b 2 2 (iii) −a + b 2 2 (iv) −a − b 2 2 2. Modulus of the complex number a + ib is (i) equal to the modulus of − a − ib (ii) not equal to modulus of −a −ib Q.3 z = −z = z is (i) always true (ii) never true (iii) sometimes true INTEXT QUESTIONS 3.1 Q.1 Represent the following complex numbers on Argand Plane (a) (i) 2 + 0i (ii) −3 + 0i (iii) 0 − 0i (iv) 3 − 0i (b) (i) 0 + 2i (ii) 0 − 3i (iii) 4i (iv) −5i
  • 10. 52 :: Mathematics (c) (i) 2 + 5i and 5 + 2i (ii) 3 − 4i and −4 + 3i (iii) −7 + 2i and 2 − 7i (iv) −2 − 9i and −9 −2i (d) (i) 1 + i and −1 − i (ii) 6 + 5i and −6 − 5i (iii) −3 + 4i and 3 − 4i (iv) 4 − i and −4 + i (e) (i) 1 + i and 1 − i (ii) −3 + 4i and −3 − 4i (iii) 6 − 7i and 6 + 7i (iv) −5 − i and −5 + i 2. (a) Find the modulus of the following complex numbers (i) 1 + i (ii) −3 −5i (iii) 2 − 3i (iv) 5 − 8i (v) −6 + 6i (b) For the following complex numbers, verify that z = −z (i) 5 + 9i (ii) −6 + 8i (iii) −3 −7i (iv) i + 9 (c) For the following complex numbers, verify that z = −z (i) −3 − 9i (ii) 14 + i (iii) 11 − 2i (iv) −7 + 9i
  • 11. Modulus and Argand Diagram : 53 (d) For the following complex numbers, verify that z = −z = z (i) 2 − 3i (ii) 5 + 4i (iii) −6 −i (iv) 7 − 2i 3. Write the complex numbers corresponding to the points shown in the argand plane y Q • T• •P x′ < R • > x • S y′ z Fig. 3.14 4. Find the modulus of the following complex numbers (a) i + 3 i (b) −2i (c) −3 (d) 5 − 2i 1+i (e) i² + i³ (f) (g) (1 + i) (2 − i) 1−i 3.6 DIAGRAMATIC REPRESENTATION OF THE PROPERTIES OF COMPLEX NUMBERS We have learnt the representation of complex number in the argand plane. Now we will state and represent the properties of complex numbers diagramatically in the complex plane. (i) = 0 ⇔ z = 0 consider z = 0 + 0i Let P(0, 0) be the point on argand plane to represent z.
  • 12. 54 :: Mathematics From Fig. 3.15 we may observe that the ∧y origin O and point P coincide. P (0,0) ∴ OP = 0 OP = z x′ < • >x O (By definition of modulus of complex number) ⇒ z = 0 ∨ y′ Fig. 3.15 (ii) (a) z1 = z 2 ⇒ z1 = z2 Let P(a,b) and Q(a,b) be two points representing z 1 and z 2 on complex plane such that y ∧ they coincide with each other. P(a,b) Q(a,b) t h e n OP = a +b 2 2 ↑ b and OQ = a +b 2 2 x′ ↓ < >x 0 ← a → since OP = OQ ⇒ z1 = z2 ∨ y′ Fig. 3.16 (b) But z1 = z2 does not always imply z1 = z 2 ∧ y Let z1 = a + ib, a ∈ R, b ∈R P(a,b) z2 = a − ib, a ∈ R, b ∈R b Let P(a, b) and Q(a, −b) < > a M represent z 1 and z 2 x′ 0 x −b respectively on the argand plane. Then, z 1 = OP = a +b 2 2 Q(a,−b) ∨ y′ a + ( −b ) 2 z2 = OQ = 2 = a +b 2 2 Fig. 3.17 ∴ z1 = z2 , but P and Q are two different points on the complex plane.
  • 13. Modulus and Argand Diagram : 55 (iii) z1 + z 2 ≤ z1 + z2 Let z1 = a + ib, a ∈ R, b ∈ R and z 2 = c + id c ∈ R, d ∈ R Then z 1 + z2 = (a + c) + i(b + d) Let points P, Q, R represent the numbers z 1, z2 and z 1 + z 2 respectively in the argand plane. Join OP, OQ and OR R(a=c, b+d) ∧ y Then OP = z1 Q(C,d) S OQ = z2 K and OR = z1 + z 2 P(a,b) Draw PM ⊥ x (ii) axis QN ⊥ x (ii) axis x′ < 0 N M L > x RL ⊥ x (iii) axis ∨ y′ Join QR and QP Fig. 3.18 Draw QS ⊥ RL and PK ⊥ RL In ∆ QON, In ∆ ROL In ∆ POM ON = c OL = a+c OM = a and QN = d RL = b+d PM = b Also PK = ML = OL − OM = a + c − a = c RK = RL − KL = b + d − b = d In ∆ QON and ∆ RPK ON = PK = oc QN = RK = d and /QNO = /RKP = 90°
  • 14. 56 :: Mathematics ∴ ∆ QON ≅ ∆ RPK ⇒ OQ = PR and OQ||PR ⇒ OPRQ is a parallelogram and OR is diagonal of the parallelogram. Therefore we can say that the sum of two complex numbers is represented by the diagonal of a parallelogram. We also know that In ∆ OPR OR ≤ OP + PR or OR ≤ OP + OQ ( Q OQ = PR) ⇒ ≤ z1 + z2 Check-point 3: Choose the appropriate answer. 1. For a non−zero complex number a + ib (i) the modulus is always zero. (ii) the modulus is always non−zero. 2. For complex numbers z 1 and z 2 such that z 1 = z2 (i) z1 = z2 (ii) z1 ≠ z2 (iii) z1 ≤ z2 (iv) z1 ≥ z2 Q.3 For complex numbers z 1 , z2 and z1 + z 2 (i) z1 + z 2 = z1 + z2 (ii) z1 + z 2 ≥ z1 + z2 (iii) z1 + z 2 ≤ z1 + z2 (iv) z1 + z 2 ≠ z1 + z2
  • 15. Modulus and Argand Diagram : 57 Example K: Draw diagram to represent z 1 + z 2 If z 1 = 2 + 3i and z2 = 1 + i Also verify that z1 + z 2 ≤ z1 + z2 Solution: Let z1 = 2 + 3i ∧y C z2 = 1 + i 4 • Then z 1 + z 2 = 3 + 4i 3 • A Let A (2, 3) be z 1 2 B B(1, 1) be z 2 1 • Then C(3, 4) be z1 +z 2 x′ < 1 2 3 >x Verification Fig. 3.19 ∨ y′ 2 + 3 = 4 + 9 = 13 = 3.65 aprox. = 2 2 z1 = 1 + i = 1 +1 = 2 = 1.41 aprox. 2 2 z2 z1 + z 2 = 3 + 4 = 9 + 16 = 25 = 5 2 2 Now, z1 + z2 = 3.60 + 1.41 = 5.01 ∴ z1 + z 2 < z1 + z2 Example L: Represent diagramatically z1 − z 2 ≥ z2 − z1 on complex plane Solution ∧y Q(z 2 ) • For the above inequality, • P(z 1 ) consider the Fig. 3.20 O Let P and Q represent < x′ >x z1 and z 2 respectively. • R(z 1 −z 2) Then Q ′ represent −z 2 Q ′ (−z 2) • R represent z 1 + (−z 2 ) ∨ y′ Fig. 3.20 0
  • 16. 58 :: Mathematics Complete the parallelogram. OPRQ ′ we see that OR is diagonal of this parallelogram and OR = z1 − z 2 Also OP || Q ′ R and OP = Q′ R OQ ′ || PR and OQ ′ = PR ∴ In ∆ OPR PR ≤ OP + OR (Why?) ⇒ z2 ≤ z1 + z1 − z 2 or z2 − z1 ≤ z1 − z 2 or z1 − z 2 ≥ z2 − z1 INTEXT QUESTIONS 3.2 1. Draw a diagram to represent the addition z1 + z 2 of following complex numbers: (a) z1 = 1 + i z2 = 2 + 5i (b) z1 = −2 + 3i z2 = −1 − 4i (c) z1 = 4 − i z2 = 5 + 2i Also veryfy that z1 + z 2 ≤ z1 + z2 2. Represent diagramatically z1 − z 2 ≤ z1 + z2 3. Draw a diagram to represent z1 − z2 for the following complex numbers: (a) z1 = 3 − 2 i z2 = 1 + i (b) z1 = 4 + 3i z2 = −4 + 3i (c) z1 = −2 − 5i z2 = −3 + 7i (d) z1 = 2 + i z2 = 3 + i In each of the above verify that z1 − z 2 ≥ z1 − z2
  • 17. Modulus and Argand Diagram : 59 3.7 POLAR FORM OF COMPLEX NUMBER A point (a, b) in the plane, is completely determined by (i) its distance from the origin (ii) the angle θ, which it makes with the positive x−axis. Let P(a, b) represent the complex number z = a + ib, a ∈ R, b ∈ R, and OP makes angle θ with positive x-axis. Let OP = r y It right ∆ OMP ∧ P(a,b) OM=a r ↑ MP=b b θ ↓ ∴ r cos θ = a a >x O ← →M r sin θ = b Then z = a + ib can be written as Fig. 3.21 z = r (Cos θ + i sin θ) is polar form πb  2  Where r = a +b 2 2 is modulus 4a  b and tanθ = a or θ = tan -1 is argument Here θ is the principle argument. Example M: Express 1 + i in polar form Solution Here a = 1, b = 1 ∴ r = 2 1 +1 2 = 2 1 θ = tan -1 = tan -1 (1) = 1 ∴ In the form π 1 + i can be written as (Cos 4 + i sin )
  • 18. 60 :: Mathematics Example N: Express − i in polar form. Solution ( 3) 2 + ( −1) 2 Here r = = 3 +1 = 4 = 2 −1 tan θ = 3 we know that 1 tan 30° = 3 and tan (−θ ) = − tan θ 1 ⇒ tan (−30°) = −tan (30°) = − 3 ∴ θ = −30° ∴ Polar form is 2 {cos (−30°) + i sin (−30°)} Example O: Express − 5 − 5i in the polar form Solution Here, r = 25 + 25 = 50 + 5 2 −5 tan θ = = 1 −5 ⇒ θ = 45° But the point (−5, −5) lies in the III quadrant. ∴ we consider the property tan (180° + θ) = tan θ ⇒ tan (180° + 45°) = tan 45° or, tan (225°) = tan (45°) ∴ Polar form is ( cos 225° + i sin 225° )
  • 19. Modulus and Argand Diagram : 61 Example P: (a) Express −1 + 3 i in polar form (b) is polar representation unique? Solution (−1)2 + ( ) 2 Here r = 3 + 1+ 3 = 4 = 2 3 (a) tan θ = =− 3 −1 ⇒ θ = −60° ( Q tan (− θ) = − tan θ ) So, the polar form is 2 { cos (−60°) + i sin (−60°) } (b) We may note that the point (−1, ) representing the complex number −1 + 3 i, i.e., point (−1, 3 ) lies in the II quadrant 3 ∴ We consider tan (180° − θ) = − tan θ tan (180° − 60°) = − tan 60° or tan 120° = tan (−60°) Polar form can be written as 4 (cos 120° + i sin 120°) ∴ We can say that polar representation is not unique. as the argument θ is not unique. Check-point 4: 1. Choose the appropriate answer. z = a + ib can be expressed in polar form as (i) r (cos θ − i sin θ) (ii) r cos θ + i sin θ (iii) r (cos θ + i sin θ)
  • 20. 62 :: Mathematics 2. Fill in the blank In polar representation of z = a + ib b a +b is ___________ and tan -1 is _________. 2 2 a INTEXT QUESTIONS 3.3 1 Express the following in the polar form ( a) (i) 4 + 4i (ii) + i (b) (i) 1 − i (ii) 1 − 3i 2. Write at least two polar representations for the following complex numbers (a) (i) 1 − 3i (ii) 2 − 2i (iii) − 1 − i (iv) 6 + 6i 3. Write each of the following complex numbers in the form a + bi (a) 5 (cos 30° + i sin 30°) (b) 11 (cos 120° + i sin 120°) (c) cos 75° + i sin 75° (d) 3 { (cos (−225°) + i sin (−225°) } 3.7 POLAR REPRESENTATION OF DIVISION Let z1 = r 1 (cos θ 1 + i sin θ1 ) z2 = r 2 (cos θ2 + i sin θ 2 )
  • 21. Modulus and Argand Diagram : 63 z1 r (cos θ1 + i sin θ1 ) then = 1 z 2 r2 (cos θ 2 + i sin θ 2 ) r1 (cos θ1 + i sin θ1 )(cos θ 2 − i sin θ 2 ) = r2 (cos θ 2 + i sin θ 2 )(cos θ 2 − i sin θ 2 ) r1 = {(cos θ1cosθ 2 + sinθ1 sin θ 2 ) + i(sin θ1cos θ 2 − cos θ1sin θ 2 )} r2 r1 = {cos(θ1 − θ 2 ) + i sin(θ1 − θ 2 )} r2 Thus,we can see that z1 r1 = z2 r2 and its argument = θ 1 − θ 2 Also, we can observe that r1 = z1 and r2 = z2 Thus, we can write z1 z1 = z2 z2 Geometrical Representation of Division in C Let z1 = r 1 (cos θ 1 + i sin θ 1 ) and z2 = r2 (cos θ 2 + sin θ2 ) be represented by points P and Q respectively 1 7
  • 22. 64 :: Mathematics Let us take a point I(1,0) on plane. Construct ∧y I ∆OPR~∆OQI ∴ In ∆OPR and ∆OQI R OQ θ1 Q = θ2 OI < > x 0 I(1,0) ⇒ OR = × OI ∨ But OP = r1 , OQ = r 2, OI = 1 Fig. 3.22 r1 ∴ OR = ..................... (i) r2 Also /ROX = /POX − /POR = θ 1 − θ2 = /POX − /QOX ∴ R is point in plane with modulus r1 and argument θ 1 − θ2 r2 z1 ∴ Point R represents the complex number z2 z1 OR = ....................... (ii) z2 from (i) and (ii) we get z1 z1 = z2 z2 Check-point: 1. Tick mark the right answer. z1 (a) Modulus of complex number is z2 (i) r1 − r2
  • 23. Modulus and Argand Diagram : 65 r1 (ii) r2 (iii) r 1 − r 2 Where z1 = r1 and z2 = r2 z1 (b) Argument of is z2 (i) θ1 − θ2 θ1 θ2 (iii) θ 1 + θ 2 Where ar (z 1)= θ 1 and ar (z2 ) = θ 2 { Ans: 1(a) (ii), (b)(i) } Example Q: Find the modulus of the complex number (ii) 2+i z 2+i 3−i 3−i Solution Let z = 2+i ∴ = 3−i But we know that z1 z1 = z2 z2 2+i 2+i = 3−i 3−i ∴ 2+i = 4 +1 = 5 and 3+i = 9+i = 10
  • 24. 66 :: Mathematics 5 1 ∴ z = = 10 2 Example R: (a) Write the polar representation for z 1 . z2 (b) Represent geometrically z1 z 2 = z1 z2 Solution (a) Let z 1 = r 1 (cos θ 1 + i sin θ 1 ) Here z 1 =r 1, arg(z 1) = θ 1 z2 = r 2(cos θ 2 + i sin θ 2) Here z 2 = r 2 , arg(z2 ) = θ 2 t h e n z 1 .z 2 = r 1 r2 (cos θ 1 + i sin θ 1) (cos θ 2 + i sin θ 2) = r 1 r 2 (cos θ1 cos θ2 + i cos θ 1 sin θ 2 + i sin θ1 cos θ2 − sin θ 1 sin θ2 ) = r1 r2 { (cos θ 1 cos θ 2 − sin θ1 sin θ 2) + i (sin θ2 cos θ1 + sin θ 1 cos θ 2 ) = r 1 r 2 ( cos (θ 1 + θ2 ) + i sin (θ1 + θ2) } Thus we get z1 z 2 = r 1 r2 = z1 z2 and arg (z 1 z2 ) = θ 1 + θ2 Geometrical Representation Let P (r 1 , θ 1 ) and Q(r 2 θ 2) represent z 1 and z 2 respectively. ∧y Q • Take I (1,0) on a plane P and construct • r2 ∆ OQR ~ ∆OIP r1 2 Q Q1 OR OP = < > x ⇒ x′ R OQ OI ← 1 → Ι OQ × OP Fig. 3.23 ⇒ OR = = ∨ y′ OI
  • 25. Modulus and Argand Diagram : 67 ⇒ OR = r1 r 2 Also /ROX = /ROQ + /QOX = /POI + /QOX = θ1 + θ2 Example S: Find the modulus of the complex number (1 + i) (2 + 3i) Solution: Let z = (1 + i) (2 + 3i) then z = (1 + i )(2 + 3i ) = (1 + i )(2 + 3i ) (Q = z1 z2 ) But 1+i = 1 +1 = 2 2 2 2 + 3i = 2 + 32 = 2 + 9 = 13 2 ∴ z = 2. 13 = 26 51+ 2i z iz92 7i + 1 2 + i2 3 INTEXT QUESTIONS 3.4 1. Find the modulus of the following complex numbers: 1+i (a) (i) 3−i (ii) (iii) (b) (i) (5 − i) (2 + i) (ii) (−i) (i + 3) (iii) (6 + 2i) (5 + 4i) i+ 2 (c) (i) (ii) 3 − 5i (iii) (i+i²) (2i−3) (iv) (4−3i) (i²−2i³+4)
  • 26. 68 :: Mathematics 3.8 WHAT YOU HAVE LEARNT • Every complex number z = a + ib can be written as (a, b) a n d h e n c e c a n b e r e p r e s e n t e d i n c o m p l e x coordinate plane. The plane is called the argand plane. The diagram is called the argand diagram. The horizontal axis is called the real axis. The vertical axis is called the imaginary axis. ∧y P (a,b) • ↑ b Imaginary axis ← a → ↓ < > x x¹ Real axis ∨ y Fig. 3.24 • Every complex number has a unique representation in the argand plane and every point on complex plane can be associated to the unique complex number. • Modulus of z = a + ib , a ∈ R, b ∈ R is z = a +b 2 2 • z = 0 ⇔ z = 0 • z1 + z 2 = 0⇒ z1 = z2 but z1 = z2 does not always imply that z 1 = z 2 • z1 + z 2 ≤ z1 + z2 Geometrically, it means that the sum of two complex numbers is represented by the diagonal of the parallelogram. • z1 − z 2 ≥ z2 − z1 • For z = a + ib, a ∈ R, b ∈ R
  • 27. Modulus and Argand Diagram : 69 polar representation is z = r ( cos θ + i sin θ ) Where r = a 2 + b2 is called the modulus b tan θ = is called the argument a z1 • = z2 • z1 z 2 = z2 TERMINAL QUESTIONS 1. Represent the following complex numbers on the argand plane 1 z3 z1 1 2 + 9i, −11 − 5i, 5i, −2, 3 − i, i², i² + 4i 3 z2 ∧ y B• A • 2. Write the complex D numbers corresponding x ' < • > x O to the following points C • •E on the argand plane ∨ y ' Fig. 3.25 3. Find the modulus of the following complex numbers (a) 2 + i (b) 15 + 9i (c) 1 + i (d) (1 − 3 ) + (2 + 2 )i (e) 5i² − 4i + 3
  • 28. 70 :: Mathematics 4. Illustrate with examples z1 = z2 does not always imply z1 = z 2 . 5. z is always greater than or equal to zero. True or false. Give reason for your answer. 6. Write geometrical interpretation of z1 + z 2 ≤ z1 + z2 7. Find the modulus of the following complex numbers. 7−i (a) (8 + 9i)i (b) (8i + 8i²)7i (c) 6+i (1 + i )(2 + i 2) (d) (e) i + 1 (f) 3 +1 i i+ 3 (4 − 3i )i (g) i −1 3 (h) 3 + 5i (i) (2 + i )(1 + i ) (j) i¹³ 8. For the following pairs of complex numbers verify that z1 + z 2 ≤ z1 + z2 (i) z1 = i − 5 z2 = 3i + 2 (ii) z 1 = 4 + 3i z2 = 9 + 8i 9. For the following pair of complex numbers verify that z1 − z 2 ≥ z1 − z2 (a) z 1 = 1 +i z2 = i + 3 (b) z1 = 4i + i² z2 = 3 − 2i 10. For the following pair of complex numbers z1 z1 verify that = z2 z2 (a) z 1 = 2 + 6i , z2 = 1 − 4i
  • 29. Modulus and Argand Diagram : 71 (b) z1 = 7 − i , z2 = 3 + 4i 11. For the following pair of complex numbers verify that z1 z 2 = z1 z2 (a) z1 = 3 + 2i , z2 = 1 − 5i (b) z 1 = 7 + 3i , z2 = 4 − 8i 12. Express the following in the polar form (i) 2+2 3 i (b) −5 + 5i (c) − 6 − 2 i (d) −3i (e) 2 − 2i (f) −1+ 3 i g) 2 2+2 2i (h) −4 13. Polar representation of a complex number is not unique. Support the above statement with example. 14. Write the following in the form a + bi (a) cos 60° − i sin 60° (b) 5 (cos 210° + i sin 210°) (c) 2 (cos 60° + i sin 60°) ANSWERS TO CHECK POINTS Check-point 1: 1. (iv) 2. (ii) Check-point 2: 1. (i) 2. (i) 3. (ii) Check-point 3: 1. (ii) 2. (i) 3. (iii) Check-point 4: 1. (iii) 2. Modulus, argument Check-point 5: 1. (ii) 2. (i)
  • 30. 72 :: Mathematics ANSWERS TO INTEXT QUESTION 3.1 ∧y 1 (a) (−3,0) (0,0) (2,0)(3,0) < • x′ −3 −2 − 0 • 1 2 3 > x 1 ∨ y′ ∧y (b) (4,0) (0,2) <′ x >x (0,−3) (0,−5) ∨ y′ ∧ y • (2,5) (−4,3) (c) (−7,2) • • <′ x > x • (−9,−2) • (3,−4) • (2,−7) • (−2,−9) y′ ∨
  • 31. Modulus and Argand Diagram : 73 ∧y d) (−3,4) • (6,5) • (−4,1) (1,1) • • < > x¹ • • (4,−1) x (−1,−1) • (3,−4) • (−6,−5) ∨ y′ ∧ y e) • (6,7) (−3,4) • (−5,1) • • (1,1) < > x x¹ • • (−1,−1) (−5,−1) • (−3,−4) • (6,−7) ∨ y′ 2. (a) (i) 2 (ii) 34 (iii) 13 (iv) 89 (v) 6 2 3. P(5,3) Q(0,4) R(−2,0) S(1,−3) T(−5,3) 4. (a) 2 (b) 2 c) 3 d) 29 e) 2 f) 1 g) 10
  • 32. 74 :: Mathematics 3.2 (2 + 5i) (a) z 1+z 2 (3 + 6i) z2 • (1+i) z1 z 1(-2+3i) (b) z 1 + z1 (-3-i) (-1 -4i) z2 (c) z 2 (5+2i) z 1 + z 2 (9+i) z1 (4-i)
  • 33. Modulus and Argand Diagram : 75 3. (a) z2 (1-i) z2 (-1-i) z 1 (3-2i) z1 -z 1 (2-3i) z 1 (4+3i) z 2 (-4+3i) (b) z 1 -z 2 (8) z2 (4-3i) (c) z 2 (-3+7i) z 1(-2-5i) -z 2 (3-7i) z 1 -z 2 (1-12i)
  • 34. 76 :: Mathematics (d) z 1 (2+i) (-1) z 2 (3+i) z1-z 2 < • • • -z 2 (-3-1) 3.3 1. (a) (i) 4 2 (cos 45° + i sin 45°) (ii) 2 (cos 30° + i sin 30°) (b) (i) 2 { cos (−45°) + i sin (−45°) } (ii) 2 { cos (−60°) + i sin (60°) } 2. (a) (i) 2 { cos (−60°) + i sin (−60°) } 2 { cos (120°) + i sin (120°) } (ii) 2 2 { (cos (−45°) + i sin (−45°) } 2 2 { (cos (135°) + i sin (135°) } (iii) 2 { cos (45°) + i sin (45°) } 2 (cos 225° + i sin 225°) (iv) 6 3 (cos 45° + i sin 45°) 6 3 (cos 225° + i sin 225°) 5 3 5 −11 11 3 3 (a) + i (b) + i 2 2 2 2 3 −1  3 + 1 −3 3 (c) +  i  (d) + i 2 2  2 2  2 2
  • 35. Modulus and Argand Diagram : 77 3.4 1 29 82 1 (a) (i) (ii) (iii) 5 5 53 (b) (i) 130 (ii) 10 (iii) 3 410 1 3 (c) (i) (ii) (iii) 26 (iv) 5 13 2 14 3.11 ANSWERS TO TERMINAL QUESTIONS 1. ∧y 9 • (2,9) 8 7 6 5 (0,5) (-1,4) • 4 3 2 (-2,0) 1 < -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 > -1 x • -1 -2 (3, ) 3 -3 -4 • -5 (-11,-5) ∨
  • 36. 78 :: Mathematics 2. A→ 2i, B→ −3+3.5i, C→ −3−1.5i, D→3, E→ 4−2i 3. (a) 5, (b)3 34 , (c) 2 (d) 10 + 4 2 − 2 3 , (e) 2 5 4. 5. True 5 2 7. (a) 145 , (b) 55 2 (c) (d) 1 27 3 1 1 2 (e) (f) (g) (h) 43 5 2 14 5 (i) (j) 1 10 12. (a) 4(cos 60° + i sin 60°), (b) 5 2 (cos 135 + i sin 135°) (c) 2 2 (cos 210° + i sin 210°) (d) 3(cos 270° + i sin 270°) (e) 2 2 (cos 315° + i sin 315°) (f) 2 cos (120° + i sin 120°) (g) 4 (cos 45° + i sin 45°) (h) 4 (cos 180° + i sin 180°) 1 3 15 5 1 3 14. (a) − i (b) − i (c) + i 2 2 2 2 2 2