Argand Diagram
Presented by:
Mariam Akter
ID: 17511017
Welcome to the presentation
on
-3 -2 -1 0 1 2 3
-3 -2 -1 0 1 2 3
Number line
Cartesian coordinate
system (x-y plane)
One dimensional:
• 3
• -2
Two dimensional:
• (3,2)
• 5 + 4 i =(5,4)
Y
X
(Real axis)
(Imaginary axis)
Y
X
5
4
(5,4)
Jean-Robert Argand
Argand Plane
Let,
Z= x+iy
Where,
x=R(x+iy)
y=I (x+iy)
(Real axis)
(Imaginary axis)
A(x,y)
Z=x+iy
Y
X
What is Argand Diagram?
• Graphical
representation of Z
1. A= 3+4i
2. B= 3-4i
3. C= -7-3i
4. D= 2i
5. E= 9
= 9+0i
-1
-2
-3
-4
-5
-6
-7
-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
7
6
5
4
3
2
1
A
B
C
D
E
Graphical Representation Example
Polar Form
Modulus: r = IzI = 𝑥2 + 𝑦2
Argument: 𝜃 = arg z = tan−1 𝑦
𝑥
− 𝜋 < arg 𝑧 ≤ 𝜋
Z=x+iy
𝜃 = arg z
r = IzI
The mod-arg form of z is
z= r (cos𝜃 + isin𝜃)
= r ⅇⅈ𝜃
= r cis 𝜃
Where,
x =r cos𝜃
y= r sin𝜃
Example:
z= 4cis120°
= 4(cos120°+ isin120°)
So, r=4 and
𝜃 = 120°
120°
4
z
The real axis
The imaginary axis
What is the use of Argand
Diagram?
• Graphical Representation
• Graphical Addition
• Graphical Subtraction
• Graphical Multiplication
Thank You 
Any question?

Aragand Diagram