SlideShare a Scribd company logo
Section 4.7
                             Antiderivatives

                            V63.0121.006/016, Calculus I

                                   New York University


                                    April 8, 2010



    Announcements

         Quiz April 16 on §§4.1–4.4
         Final Exam: Monday, May 10, 10:00am

    .
.
Image credit: Ian Hampton
                                                         .   .   .   .   .   .
Announcements




    Quiz April 16 on §§4.1–4.4
    Final Exam: Monday, May 10, 10:00am




                                                            .   .   .    .       .      .

 V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010       2 / 32
Outline


What is an antiderivative?

Tabulating Antiderivatives
   Power functions
   Combinations
   Exponential functions
   Trigonometric functions

Finding Antiderivatives Graphically

Rectilinear motion


                                                             .   .   .    .       .      .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010       3 / 32
Objectives


      Given an expression for
      function f, find a
      differentiable function F
      such that F′ = f (F is called
      an antiderivative for f).
      Given the graph of a
      function f, find a
      differentiable function F
      such that F′ = f
      Use antiderivatives to
      solve problems in
      rectilinear motion


                                                             .   .   .    .       .      .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010       4 / 32
Hard problem, easy check

Example
Find an antiderivative for f(x) = ln x.




                                                             .   .   .    .       .      .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010       5 / 32
Hard problem, easy check

Example
Find an antiderivative for f(x) = ln x.

Solution
???




                                                             .   .   .    .       .      .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010       5 / 32
Hard problem, easy check

Example
Find an antiderivative for f(x) = ln x.

Solution
???

Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?




                                                             .   .   .    .       .      .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010       5 / 32
Hard problem, easy check

Example
Find an antiderivative for f(x) = ln x.

Solution
???

Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?

Solution

                    d
                       (x ln x − x)
                    dx

                                                                    .   .   .    .       .      .

  V63.0121, Calculus I (NYU)          Section 4.7 Antiderivatives               April 8, 2010       5 / 32
Hard problem, easy check

Example
Find an antiderivative for f(x) = ln x.

Solution
???

Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?

Solution

                    d                               1
                       (x ln x − x) = 1 · ln x + x · − 1
                    dx                              x

                                                                .   .   .    .       .      .

  V63.0121, Calculus I (NYU)      Section 4.7 Antiderivatives               April 8, 2010       5 / 32
Hard problem, easy check

Example
Find an antiderivative for f(x) = ln x.

Solution
???

Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?

Solution

                    d                               1
                       (x ln x − x) = 1 · ln x + x · − 1 = ln x
                    dx                              x

                                                                .   .   .    .       .      .

  V63.0121, Calculus I (NYU)      Section 4.7 Antiderivatives               April 8, 2010       5 / 32
Hard problem, easy check

Example
Find an antiderivative for f(x) = ln x.

Solution
???

Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?

Solution

                    d
                    dx
                                                    1
                       (x ln x − x) = 1 · ln x + x · − 1 = ln x
                                                    x
                                                                        
                                                                .   .   .    .       .      .

  V63.0121, Calculus I (NYU)      Section 4.7 Antiderivatives               April 8, 2010       5 / 32
Why the MVT is the MITC
Most Important Theorem In Calculus!



Theorem
Let f′ = 0 on an interval (a, b). Then f is constant on (a, b).

Proof.
Pick any points x and y in (a, b) with x  y. Then f is continuous on
[x, y] and differentiable on (x, y). By MVT there exists a point z in (x, y)
such that
                  f(y) − f(x)
                              = f′ (z) =⇒ f(y) = f(x) + f′ (z)(y − x)
                     y−x

But f′ (z) = 0, so f(y) = f(x). Since this is true for all x and y in (a, b),
then f is constant.

                                                                 .   .   .    .       .      .

   V63.0121, Calculus I (NYU)      Section 4.7 Antiderivatives               April 8, 2010       6 / 32
When two functions have the same derivative


Theorem
Suppose f and g are two differentiable functions on (a, b) with f′ = g′ .
Then f and g differ by a constant. That is, there exists a constant C
such that f(x) = g(x) + C.

Proof.

     Let h(x) = f(x) − g(x)
     Then h′ (x) = f′ (x) − g′ (x) = 0 on (a, b)
     So h(x) = C, a constant
     This means f(x) − g(x) = C on (a, b)



                                                             .   .   .    .       .      .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010       7 / 32
Outline


What is an antiderivative?

Tabulating Antiderivatives
   Power functions
   Combinations
   Exponential functions
   Trigonometric functions

Finding Antiderivatives Graphically

Rectilinear motion


                                                             .   .   .    .       .      .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010       8 / 32
Antiderivatives of power functions


                                                                y
                                                                .
                                                                                .(x) = x2
                                                                                f
 Recall that the derivative of a
 power function is a power
 function.
 Fact (The Power Rule)
 If f(x) = xr , then f′ (x) = rxr−1 .

                                                                    .
                                                                                x
                                                                                .




                                                                    .   .   .    .       .      .

  V63.0121, Calculus I (NYU)      Section 4.7 Antiderivatives                   April 8, 2010       9 / 32
Antiderivatives of power functions

                                                                   ′
                                                                y f
                                                                . . (x) = 2x
                                                                               .(x) = x2
                                                                               f
 Recall that the derivative of a
 power function is a power
 function.
 Fact (The Power Rule)
 If f(x) = xr , then f′ (x) = rxr−1 .

                                                                 .
                                                                               x
                                                                               .




                                                                 .   .    .     .       .      .

  V63.0121, Calculus I (NYU)      Section 4.7 Antiderivatives                  April 8, 2010       9 / 32
Antiderivatives of power functions

                                                                   ′
                                                                y f
                                                                . . (x) = 2x
                                                                               .(x) = x2
                                                                               f
 Recall that the derivative of a
 power function is a power
 function.                                                                     F
                                                                               . (x) = ?

 Fact (The Power Rule)
 If f(x) = xr , then f′ (x) = rxr−1 .

                                                                 .
                                                                               x
                                                                               .




                                                                 .   .    .     .       .      .

  V63.0121, Calculus I (NYU)      Section 4.7 Antiderivatives                  April 8, 2010       9 / 32
Antiderivatives of power functions

                                                                   ′
                                                                y f
                                                                . . (x) = 2x
                                                                               .(x) = x2
                                                                               f
 Recall that the derivative of a
 power function is a power
 function.                                                                     F
                                                                               . (x) = ?

 Fact (The Power Rule)
 If f(x) = xr , then f′ (x) = rxr−1 .

 So in looking for antiderivatives
                                                                 .
 of power functions, try power                                                 x
                                                                               .
 functions!




                                                                 .   .    .     .       .      .

  V63.0121, Calculus I (NYU)      Section 4.7 Antiderivatives                  April 8, 2010       9 / 32
Example
Find an antiderivative for the function f(x) = x3 .




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   10 / 32
Example
Find an antiderivative for the function f(x) = x3 .

Solution

     Try a power function F(x) = axr




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   10 / 32
Example
Find an antiderivative for the function f(x) = x3 .

Solution

     Try a power function F(x) = axr
     Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   10 / 32
Example
Find an antiderivative for the function f(x) = x3 .

Solution

     Try a power function F(x) = axr
     Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .

     r − 1 = 3 =⇒ r = 4




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   10 / 32
Example
Find an antiderivative for the function f(x) = x3 .

Solution

     Try a power function F(x) = axr
     Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .
                                                 1
     r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = .
                                                 4




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   10 / 32
Example
Find an antiderivative for the function f(x) = x3 .

Solution

     Try a power function F(x) = axr
     Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .
                                                 1
     r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = .
                                                 4
                1 4
     So F(x) = x is an antiderivative.
                4




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   10 / 32
Example
Find an antiderivative for the function f(x) = x3 .

Solution

     Try a power function F(x) = axr
     Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .
                                                 1
     r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = .
                                                 4
                1 4
     So F(x) = x is an antiderivative.
                4
     Check:                 (    )
                        d 1 4           1
                               x = 4 · x4−1 = x3
                       dx 4             4




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   10 / 32
Example
Find an antiderivative for the function f(x) = x3 .

Solution

     Try a power function F(x) = axr
     Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .
                                                 1
     r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = .
                                                 4
                1 4
     So F(x) = x is an antiderivative.
                4
     Check:                 (    )
                        d 1 4
                       dx 4
                                        1
                               x = 4 · x4−1 = x3
                                        4
                                                                 

                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   10 / 32
Example
Find an antiderivative for the function f(x) = x3 .

Solution

     Try a power function F(x) = axr
     Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .
                                                 1
     r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = .
                                                 4
                1 4
     So F(x) = x is an antiderivative.
                4
     Check:                 (    )
                        d 1 4
                       dx 4
                                        1
                               x = 4 · x4−1 = x3
                                        4
                                                                 
     Any others?

                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   10 / 32
Example
Find an antiderivative for the function f(x) = x3 .

Solution

     Try a power function F(x) = axr
     Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .
                                                 1
     r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = .
                                                 4
                1 4
     So F(x) = x is an antiderivative.
                4
     Check:                 (    )
                        d 1 4
                       dx 4
                                        1
                               x = 4 · x4−1 = x3
                                        4
                                                                 
                                  1 4
     Any others? Yes, F(x) =        x + C is the most general form.
                                  4
                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   10 / 32
Fact (The Power Rule for antiderivatives)
If f(x) = xr , then
                                            1 r+1
                               F(x) =          x
                                           r+1
is an antiderivative for f…




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   11 / 32
Fact (The Power Rule for antiderivatives)
If f(x) = xr , then
                                         1 r+1
                               F(x) =       x
                                      r+1
is an antiderivative for f as long as r ̸= −1.




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   11 / 32
Fact (The Power Rule for antiderivatives)
If f(x) = xr , then
                                         1 r+1
                                  F(x) =    x
                                      r+1
is an antiderivative for f as long as r ̸= −1.

Fact
                       1
If f(x) = x−1 =          , then
                       x
                                  F(x) = ln |x| + C
is an antiderivative for f.




                                                                .   .   .     .       .     .

  V63.0121, Calculus I (NYU)      Section 4.7 Antiderivatives               April 8, 2010   11 / 32
What's with the absolute value?
                                                  {
                                                      ln(x)  if x  0;
                               F(x) = ln |x| =
                                                      ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.




                                                                      .   .   .     .       .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   12 / 32
What's with the absolute value?
                                                   {
                                                       ln(x)  if x  0;
                               F(x) = ln |x| =
                                                       ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.
     If x  0,
                                     d
                                        ln |x|
                                     dx




                                                                       .   .   .     .       .     .

  V63.0121, Calculus I (NYU)             Section 4.7 Antiderivatives               April 8, 2010   12 / 32
What's with the absolute value?
                                                  {
                                                      ln(x)  if x  0;
                               F(x) = ln |x| =
                                                      ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.
     If x  0,
                                     d           d
                                        ln |x| =    ln(x)
                                     dx          dx




                                                                      .   .   .     .       .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   12 / 32
What's with the absolute value?
                                                  {
                                                      ln(x)  if x  0;
                               F(x) = ln |x| =
                                                      ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.
     If x  0,
                                     d           d          1
                                        ln |x| =    ln(x) =
                                     dx          dx         x




                                                                      .   .   .     .       .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   12 / 32
What's with the absolute value?
                                                  {
                                                      ln(x)  if x  0;
                               F(x) = ln |x| =
                                                      ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.
     If x  0,
                                     d
                                     dx
                                        ln |x| =
                                                 d
                                                 dx
                                                    ln(x) =
                                                            1
                                                            x
                                                                          




                                                                      .   .   .     .       .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   12 / 32
What's with the absolute value?
                                                  {
                                                      ln(x)  if x  0;
                               F(x) = ln |x| =
                                                      ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.
     If x  0,
                                     d
                                     dx
                                        ln |x| =
                                                 d
                                                 dx
                                                    ln(x) =
                                                            1
                                                            x
                                                                          
     If x  0,
                          d
                             ln |x|
                          dx


                                                                      .   .   .     .       .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   12 / 32
What's with the absolute value?
                                                  {
                                                      ln(x)  if x  0;
                               F(x) = ln |x| =
                                                      ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.
     If x  0,
                                     d
                                     dx
                                        ln |x| =
                                                 d
                                                 dx
                                                    ln(x) =
                                                            1
                                                            x
                                                                          
     If x  0,
                          d           d
                             ln |x| =    ln(−x)
                          dx          dx


                                                                      .   .   .     .       .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   12 / 32
What's with the absolute value?
                                                  {
                                                      ln(x)  if x  0;
                               F(x) = ln |x| =
                                                      ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.
     If x  0,
                                     d
                                     dx
                                        ln |x| =
                                                 d
                                                 dx
                                                    ln(x) =
                                                            1
                                                            x
                                                                          
     If x  0,
                          d           d           1
                             ln |x| =    ln(−x) =    · (−1)
                          dx          dx          −x


                                                                      .   .   .     .       .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   12 / 32
What's with the absolute value?
                                                  {
                                                      ln(x)  if x  0;
                               F(x) = ln |x| =
                                                      ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.
     If x  0,
                                     d
                                     dx
                                        ln |x| =
                                                 d
                                                 dx
                                                    ln(x) =
                                                            1
                                                            x
                                                                          
     If x  0,
                          d           d           1           1
                             ln |x| =    ln(−x) =    · (−1) =
                          dx          dx          −x          x


                                                                      .   .   .     .       .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   12 / 32
What's with the absolute value?
                                                  {
                                                      ln(x)  if x  0;
                               F(x) = ln |x| =
                                                      ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.
     If x  0,
                                     d
                                     dx
                                        ln |x| =
                                                 d
                                                 dx
                                                    ln(x) =
                                                            1
                                                            x
                                                                          
     If x  0,
                          d
                          dx
                             ln |x| =
                                      d
                                      dx
                                         ln(−x) =
                                                  1
                                                  −x
                                                     · (−1) =
                                                              1
                                                              x
                                                                                  

                                                                      .   .   .       .     .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   12 / 32
What's with the absolute value?
                                                  {
                                                      ln(x)  if x  0;
                               F(x) = ln |x| =
                                                      ln(−x) if x  0.

     The domain of F is all nonzero numbers, while ln x is only defined
     on positive numbers.
     If x  0,
                                     d
                                     dx
                                        ln |x| =
                                                 d
                                                 dx
                                                    ln(x) =
                                                            1
                                                            x
                                                                          
     If x  0,
                          d
                          dx
                             ln |x| =
                                      d
                                      dx
                                         ln(−x) =
                                                  1
                                                  −x
                                                     · (−1) =
                                                              1
                                                              x
                                                                                  
     We prefer the antiderivative with the larger domain.
                                                                      .   .   .       .     .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   12 / 32
Graph of ln |x|

                               y
                               .




                                   .                                 f
                                                                     .(x) = 1/x
                                                                     x
                                                                     .




                                                             .   .    .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives                April 8, 2010   13 / 32
Graph of ln |x|

                               y
                               .




                                                                     F
                                                                     . (x) = ln(x)


                                   .                                 f
                                                                     .(x) = 1/x
                                                                     x
                                                                     .




                                                             .   .    .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives                April 8, 2010   13 / 32
Graph of ln |x|

                               y
                               .




                                                                     . (x) = ln |x|
                                                                     F


                                   .                                 f
                                                                     .(x) = 1/x
                                                                     x
                                                                     .




                                                             .   .    .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives                April 8, 2010   13 / 32
Combinations of antiderivatives
Fact (Sum and Constant Multiple Rule for Antiderivatives)

     If F is an antiderivative of f and G is an antiderivative of g, then
     F + G is an antiderivative of f + g.
     If F is an antiderivative of f and c is a constant, then cF is an
     antiderivative of cf.




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   14 / 32
Combinations of antiderivatives
Fact (Sum and Constant Multiple Rule for Antiderivatives)

     If F is an antiderivative of f and G is an antiderivative of g, then
     F + G is an antiderivative of f + g.
     If F is an antiderivative of f and c is a constant, then cF is an
     antiderivative of cf.

Proof.
These follow from the sum and constant multiple rule for derivatives:
     If F′ = f and G′ = g, then

                               (F + G)′ = F′ + G′ = f + g

     Or, if F′ = f,
                                     (cF)′ = cF′ = cf
                                                                .   .   .     .       .     .

  V63.0121, Calculus I (NYU)      Section 4.7 Antiderivatives               April 8, 2010   14 / 32
Antiderivatives of Polynomials

Example
Find an antiderivative for f(x) = 16x + 5.




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   15 / 32
Antiderivatives of Polynomials
Example
Find an antiderivative for f(x) = 16x + 5.

Solution
                         1 2
The expression             x is an antiderivative for x, and x is an antiderivative
                         2
for 1. So
                                 (         )
                                     1 2
                  F(x) = 16 ·          x       + 5 · x + C = 8x2 + 5x + C
                                     2

is the antiderivative of f.




                                                                    .   .   .     .       .     .

  V63.0121, Calculus I (NYU)          Section 4.7 Antiderivatives               April 8, 2010   15 / 32
Antiderivatives of Polynomials
Example
Find an antiderivative for f(x) = 16x + 5.

Solution
                         1 2
The expression             x is an antiderivative for x, and x is an antiderivative
                         2
for 1. So
                                 (         )
                                     1 2
                  F(x) = 16 ·          x       + 5 · x + C = 8x2 + 5x + C
                                     2

is the antiderivative of f.

Question
Why do we not need two C’s?

                                                                    .   .   .     .       .     .

  V63.0121, Calculus I (NYU)          Section 4.7 Antiderivatives               April 8, 2010   15 / 32
Antiderivatives of Polynomials

Example
Find an antiderivative for f(x) = 16x + 5.

Solution
                                (         )
                                    1 2
                  F(x) = 16 ·         x       + 5 · x + C = 8x2 + 5x + C
                                    2


Question
Why do we not need two C’s?

Answer
A combination of two arbitrary constants is still an arbitrary constant.
                                                                   .   .   .     .       .     .

  V63.0121, Calculus I (NYU)         Section 4.7 Antiderivatives               April 8, 2010   15 / 32
Exponential Functions

Fact
If f(x) = ax , f′ (x) = (ln a)ax .




                                                                   .   .   .     .       .     .

   V63.0121, Calculus I (NYU)        Section 4.7 Antiderivatives               April 8, 2010   16 / 32
Exponential Functions

Fact
If f(x) = ax , f′ (x) = (ln a)ax .

Accordingly,
Fact
                                 1 x
If f(x) = ax , then F(x) =           a + C is the antiderivative of f.
                                ln a




                                                                   .   .   .     .       .     .

   V63.0121, Calculus I (NYU)        Section 4.7 Antiderivatives               April 8, 2010   16 / 32
Exponential Functions

Fact
If f(x) = ax , f′ (x) = (ln a)ax .

Accordingly,
Fact
                                 1 x
If f(x) = ax , then F(x) =           a + C is the antiderivative of f.
                                ln a

Proof.
Check it yourself.




                                                                   .   .   .     .       .     .

   V63.0121, Calculus I (NYU)        Section 4.7 Antiderivatives               April 8, 2010   16 / 32
Exponential Functions

Fact
If f(x) = ax , f′ (x) = (ln a)ax .

Accordingly,
Fact
                                 1 x
If f(x) = ax , then F(x) =           a + C is the antiderivative of f.
                                ln a

Proof.
Check it yourself.

In particular,
Fact
If f(x) = ex , then F(x) = ex + C is the antiderivative of f.
                                                                   .   .   .     .       .     .

   V63.0121, Calculus I (NYU)        Section 4.7 Antiderivatives               April 8, 2010   16 / 32
Logarithmic functions?

     Remember we found

                                  F(x) = x ln x − x

     is an antiderivative of f(x) = ln x.




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   17 / 32
Logarithmic functions?

     Remember we found

                                  F(x) = x ln x − x

     is an antiderivative of f(x) = ln x.
     This is not obvious. See Calc II for the full story.




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   17 / 32
Logarithmic functions?

     Remember we found

                                           F(x) = x ln x − x

     is an antiderivative of f(x) = ln x.
     This is not obvious. See Calc II for the full story.
                                            ln x
     However, using the fact that loga x =       , we get:
                                            ln a

Fact
If f(x) = loga (x)

                                1                                  1
                F(x) =              (x ln x − x) + C = x loga x −      x+C
                               ln a                               ln a
is the antiderivative of f(x).
                                                                      .   .   .     .       .     .

  V63.0121, Calculus I (NYU)            Section 4.7 Antiderivatives               April 8, 2010   17 / 32
Trigonometric functions


Fact

                         d                          d
                            sin x = cos x              cos x = − sin x
                         dx                         dx




                                                                  .   .   .     .       .     .

  V63.0121, Calculus I (NYU)        Section 4.7 Antiderivatives               April 8, 2010   18 / 32
Trigonometric functions


Fact

                         d                          d
                            sin x = cos x              cos x = − sin x
                         dx                         dx

So to turn these around,
Fact

     The function F(x) = − cos x + C is the antiderivative of f(x) = sin x.




                                                                  .   .   .     .       .     .

  V63.0121, Calculus I (NYU)        Section 4.7 Antiderivatives               April 8, 2010   18 / 32
Trigonometric functions


Fact

                         d                          d
                            sin x = cos x              cos x = − sin x
                         dx                         dx

So to turn these around,
Fact

     The function F(x) = − cos x + C is the antiderivative of f(x) = sin x.
     The function F(x) = sin x + C is the antiderivative of f(x) = cos x.




                                                                  .   .   .     .       .     .

  V63.0121, Calculus I (NYU)        Section 4.7 Antiderivatives               April 8, 2010   18 / 32
More Trig
Example
Find an antiderivative of f(x) = tan x.




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   19 / 32
More Trig
Example
Find an antiderivative of f(x) = tan x.

Solution
???




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   19 / 32
More Trig
Example
Find an antiderivative of f(x) = tan x.

Solution
???

Answer
F(x) = ln(sec x).




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   19 / 32
More Trig
Example
Find an antiderivative of f(x) = tan x.

Solution
???

Answer
F(x) = ln(sec x).

Check

             d      1    d
                =      ·   sec x
             dx   sec x dx


                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   19 / 32
More Trig
Example
Find an antiderivative of f(x) = tan x.

Solution
???

Answer
F(x) = ln(sec x).

Check

             d      1    d           1
                =      ·   sec x =       · sec x tan x
             dx   sec x dx         sec x


                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   19 / 32
More Trig
Example
Find an antiderivative of f(x) = tan x.

Solution
???

Answer
F(x) = ln(sec x).

Check

             d      1    d           1
                =      ·   sec x =       · sec x tan x = tan x
             dx   sec x dx         sec x


                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   19 / 32
More Trig
Example
Find an antiderivative of f(x) = tan x.

Solution
???

Answer
F(x) = ln(sec x).

Check

             d
             dx
                =
                    1
                       ·
                         d
                  sec x dx
                           sec x =
                                     1
                                   sec x
                                         · sec x tan x = tan x            
                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   19 / 32
More Trig
Example
Find an antiderivative of f(x) = tan x.

Solution
???

Answer
F(x) = ln(sec x).

Check

             d
             dx
                =
                    1
                       ·
                         d
                  sec x dx
                           sec x =
                                     1
                                   sec x
                                         · sec x tan x = tan x            
More about this later.                                       .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   19 / 32
Outline


What is an antiderivative?

Tabulating Antiderivatives
   Power functions
   Combinations
   Exponential functions
   Trigonometric functions

Finding Antiderivatives Graphically

Rectilinear motion


                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   20 / 32
Problem
Below is the graph of a function f. Draw the graph of an antiderivative
for F.

                  y
                  .

                                      .

                                .                                                  . . = f(x)
                                                                                     y

                      .          .     .           .          .            .         .
                                                                                       x
                                                                                       .
                               1
                               .     2
                                     .           3
                                                 .          4
                                                            .            5
                                                                         .         6
                                                                                   .




                                                             .
                                                                               .     .     .     .       .     .

  V63.0121, Calculus I (NYU)               Section 4.7 Antiderivatives                         April 8, 2010   21 / 32
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:
                                                                           ′
                                 .    .    .    .    .    .       .. = F
                                                                   f

    y
    .                                1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .        6F
                                                                  ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .    .    .      .         .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:
                                                                           ′
                                 .    .. .
                                       +        .    .    .       .. = F
                                                                   f

    y
    .                                1
                                     .   2
                                         .     3
                                               .    4
                                                    .    5
                                                         .        6F
                                                                  ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .    .    .      .         .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:
                                                                          ′
                                 .    .. .. .
                                       + +          .    .       .. = F
                                                                  f

    y
    .                                1
                                     .   2
                                         .  3
                                            .      4
                                                   .    5
                                                        .        6F
                                                                 ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .      .         .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                       + + −                              ′
                                 .    .. .. .. .         .       .. = F
                                                                  f

    y
    .                                1
                                     .   2
                                         .  3
                                            .  4
                                               .        5
                                                        .        6F
                                                                 ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .      .         .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                       + + − −                            ′
                                 .    .. .. .. .. .              .. = F
                                                                  f

    y
    .                                1
                                     .   2
                                         .  3
                                            .  4
                                               .  5
                                                  .              6F
                                                                 ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .      .         .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1
                                     .    2
                                          .   3
                                              .   4
                                                  .   5
                                                      .   6F
                                                          ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .   .   .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1↗2
                                     . . .    3
                                              .   4
                                                  .   5
                                                      .   6F
                                                          ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .   .   .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1↗2↗3
                                     . . . . .    4
                                                  .   5
                                                      .   6F
                                                          ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .   .   .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1↗2↗3↘4
                                     . . . . . . .    5
                                                      .   6F
                                                          ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .   .   .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1↗2↗3↘4↘5
                                     . . . . . . . . .    6F
                                                          ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .   .   .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . . . . . . . . . ..
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .   .   .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . . . . . . .
                                             max
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .   .   .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .
        .    . . . . . .
                          x
                          .
            1 2 3 4 5 6
            . . . . . .

                    .




                                               .    .   .    .   .   .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .                                          ′       ′′
        .    . . . . . .              .    .    .    .    .       .. = F
                                                                   f

            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .        6F
                                                                  ..

                    .




                                               .    .    .    .        .        .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .                                          ′       ′′
        .    . . . . . .              .. + .
                                       +        .    .    .       .. = F
                                                                   f

            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .        6F
                                                                  ..

                    .




                                               .    .    .    .        .        .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .                                          ′       ′′
        .    . . . . . .              .. + .. − .
                                       + −           .    .       .. = F
                                                                   f

            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .        6F
                                                                  ..

                    .




                                                .   .    .    .        .        .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .                                          ′       ′′
        .    . . . . . .              .. + .. − .. − .
                                       + − −              .       .. = F
                                                                   f

            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .        6F
                                                                  ..

                    .




                                                .   .    .    .        .        .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .                                          ′       ′′
        .    . . . . . .              .. + .. − .. − .. + .
                                       + − − +                    .. = F
                                                                   f

            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .        6F
                                                                  ..

                    .




                                               .    .    .    .        .        .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .              + − − + + f′                   ′′
        .    . . . . . .              .. + .. − .. − .. + .. + . . = F
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .    6F
                                                              ..

                    .




                                                .   .    .    .    .       .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .              + − − + + f′                   ′′
        .    . . . . . .              .. + .. − .. − .. + .. + . . = F
                                        .
                                        ⌣
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .    6F
                                                              ..

                    .




                                                .   .    .    .    .       .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .              + − − + + f′                   ′′
        .    . . . . . .              .. + .. − .. − .. + .. + . . = F
                                        ⌣ .
                                        .    ⌢
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .    6F
                                                              ..

                    .




                                                .   .    .    .    .       .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .              + − − + + f′                   ′′
        .    . . . . . .              .. + .. − .. − .. + .. + . . = F
                                        ⌣ .
                                        .    ⌢ .  ⌢
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .    6F
                                                              ..

                    .




                                                .   .    .    .    .       .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .              + − − + + f′                   ′′
        .    . . . . . .              .. + .. − .. − .. + .. + . . = F
                                        ⌣ .
                                        .    ⌢ .  ⌢ .  ⌣
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .    6F
                                                              ..

                    .




                                                .   .    .    .    .       .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .              + − − + + f′                   ′′
        .    . . . . . .              .. + .. − .. − .. + .. + . . = F
                                        ⌣ .
                                        .    ⌢ .  ⌢ .  ⌣ .  ⌣ .
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .    .F
                                                              6

                    .




                                                .   .    .    .    .       .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .               + − − + + f′                   ′′
        .    . . . . . .               .. + .. − .. − .. + .. + . . = F
                                         ⌣ .
                                         .    ⌢ .  ⌢ .  ⌣ .  ⌣ .
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          ..
                                      1     2
                                            .   3
                                                .    4
                                                     .    5
                                                          .    .F
                                                               6
                                           IP
                    .




                                                .    .    .    .    .       .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .               + − − + + f′                   ′′
        .    . . . . . .               .. + .. − .. − .. + .. + . . = F
                                         ⌣ .
                                         .    ⌢ .  ⌢ .  ⌣ .  ⌣ .
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          ..
                                      1     2 ..
                                            .   3     4
                                                      .   5
                                                          .    .F
                                                               6
                                           IP        IP
                    .




                                                .    .    .    .    .       .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .               + − − + + f′                   ′′
        .    . . . . . .               .. + .. − .. − .. + .. + . . = F
                                         ⌣ .
                                         .    ⌢ .  ⌢ .  ⌣ .  ⌣ .
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          ..
                                      1     2 ..
                                            .   3     4
                                                      .   5
                                                          .    .F
                                                               6
                                           IP        IP
                    .
                                      .    .     .    .    .        ..
                                                                     F
                                     1
                                     .    2
                                          .     3
                                                .    4
                                                     .    5
                                                          .        6s
                                                                   . . hape

                                                .    .    .    .       .      .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .               + − − + + f′                   ′′
        .    . . . . . .               .. + .. − .. − .. + .. + . . = F
                                         ⌣ .
                                         .    ⌢ .  ⌢ .  ⌣ .  ⌣ .
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          ..
                                      1     2 ..
                                            .   3     4
                                                      .   5
                                                          .    .F
                                                               6
                                           IP        IP
                    .
                                      .    .     .    .    .        ..
                                                                     F
                                        .
                                     1
                                     .    2
                                          .     3
                                                .    4
                                                     .    5
                                                          .        6s
                                                                   . . hape

                                                .    .    .    .       .      .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .               + − − + + f′                   ′′
        .    . . . . . .               .. + .. − .. − .. + .. + . . = F
                                         ⌣ .
                                         .    ⌢ .  ⌢ .  ⌣ .  ⌣ .
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          ..
                                      1     2 ..
                                            .   3     4
                                                      .   5
                                                          .    .F
                                                               6
                                           IP        IP
                    .
                                      .    .    .     .    .        ..
                                                                     F
                                        .    .
                                     1
                                     .    2
                                          .    3
                                               .     4
                                                     .    5
                                                          .        6s
                                                                   . . hape

                                                .    .    .    .       .      .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .               + − − + + f′                   ′′
        .    . . . . . .               .. + .. − .. − .. + .. + . . = F
                                         ⌣ .
                                         .    ⌢ .  ⌢ .  ⌣ .  ⌣ .
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          ..
                                      1     2 ..
                                            .   3     4
                                                      .   5
                                                          .    .F
                                                               6
                                           IP        IP
                    .
                                      .    .    .    .     .        ..
                                                                     F
                                        .    .    .
                                     1
                                     .    2
                                          .    3
                                               .    4
                                                    .     5
                                                          .        6s
                                                                   . . hape

                                                .    .    .    .       .      .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .               + − − + + f′                   ′′
        .    . . . . . .               .. + .. − .. − .. + .. + . . = F
                                         ⌣ .
                                         .    ⌢ .  ⌢ .  ⌣ .  ⌣ .
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          ..
                                      1     2 ..
                                            .   3     4
                                                      .   5
                                                          .    .F
                                                               6
                                           IP        IP
                    .
                                      .    .    .    .    .         ..
                                                                     F
                                        .    .    .    .
                                     1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .         6s
                                                                   . . hape

                                                .    .    .    .       .      .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                        + + − − + f              ′
                                 .    . . . . . . . . . . .. = F
    y
    .                                1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                     . . .. . . . .. . . . . .
                                             max      min
               .
             .          .               + − − + + f′                   ′′
        .    . . . . . .               .. + .. − .. − .. + .. + . . = F
                                         ⌣ .
                                         .    ⌢ .  ⌢ .  ⌣ .  ⌣ .
            1 2 3 4 5 6
            . . . . . .
                          x
                          .          ..
                                      1     2 ..
                                            .   3     4
                                                      .   5
                                                          .    .F
                                                               6
                                           IP        IP
                    .
                                      .    .    .    .    .   ..F
                                        .    .    .    .    . . hape
                                     1
                                     .    2
                                          .    3
                                               .    4
                                                    .    5
                                                         .    .s
                                                              6

                                                .    .    .    .    .       .
Using f to make a sign chart for F

Assuming F′ = f, we can make a sign chart for f and f′ to find the
intervals of monotonicity and concavity for for F:

                                                 + + − − + f              ′
                                       .       . . . . . . . . . . .. = F
     y
     .                                        1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                              . . .. . . . .. . . . . .
                                                      max      min
                  .
              .          .                      + − − + + f′                   ′′
         .    . . . . . .                      .. + .. − .. − .. + .. + . . = F
                                                 ⌣ .
                                                 .    ⌢ .  ⌢ .  ⌣ .  ⌣ .
             1 2 3 4 5 6
             . . . . . .
                           x
                           .                 ..
                                              1     2 ..
                                                    .   3     4
                                                              .   5
                                                                  .    .F
                                                                       6
                                                   IP        IP
                           .
                                      ?
                                      ..   ?
                                           ..   ?
                                                ..   ?
                                                     ..   ?
                                                          ..   ?F
                                                               .. .
                                         .    .    .    .    . . hape
                                      1
                                      .    2
                                           .    3
                                                .    4
                                                     .    5
                                                          .    .s
                                                               6
The only question left is: What are the function values?
                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.7 Antiderivatives               April 8, 2010   22 / 32
Could you repeat the question?

Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for F with F(1) = 0.

                                          y
                                          .
Solution
                                                      .
                                                   .          ..
                                                               f
                                              .    . . . . . .
                                                               x
                                                               .
                                                  1 2 3 4 5 6
                                                  . . . . . .

                                                          .
                                                   . . . . .           ..
                                                                        F
                                                    . . . . .
                                                  1 2 3 4 5
                                                  . . . . .           6s
                                                                      . . hape
                                                      IP
                                                      .
                                                      max
                                                      .
                                                      IP
                                                      .
                                                      min
                                                      .
                                                  .       .   .   .      .       .
Could you repeat the question?

Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for F with F(1) = 0.

                                          y
                                          .
Solution
                                                      .
    We start with F(1) = 0.                        .          ..
                                                               f
                                              .    . . . . . .
                                                               x
                                                               .
                                                  1 2 3 4 5 6
                                                  . . . . . .

                                                          .
                                                   . . . . .           ..
                                                                        F
                                                    . . . . .
                                                  1 2 3 4 5
                                                  . . . . .           6s
                                                                      . . hape
                                                      IP
                                                      .
                                                      max
                                                      .
                                                      IP
                                                      .
                                                      min
                                                      .
                                                  .       .   .   .      .       .
Could you repeat the question?

Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for F with F(1) = 0.

                                          y
                                          .
Solution
                                                      .
    We start with F(1) = 0.                        .          ..
                                                               f
                                              .    . . . . . .
    Using the sign chart, we                                   x
                                                               .
    draw arcs with the                            1 2 3 4 5 6
                                                  . . . . . .
    specified monotonicity and
    concavity                                             .
                                                   . . . . .           ..
                                                                        F
                                                    . . . . .
                                                  1 2 3 4 5
                                                  . . . . .           6s
                                                                      . . hape
                                                      IP
                                                      .
                                                      max
                                                      .
                                                      IP
                                                      .
                                                      min
                                                      .
                                                  .       .   .   .      .       .
Could you repeat the question?

Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for F with F(1) = 0.

                                          y
                                          .
Solution
                                                      .
                                                      .
    We start with F(1) = 0.                        .          ..
                                                               f
                                              .    . . . . . .
    Using the sign chart, we                                   x
                                                               .
    draw arcs with the                            1 2 3 4 5 6
                                                  . . . . . .
    specified monotonicity and
    concavity                                             .
                                                   . . . . .           ..
                                                                        F
                                                    . . . . .
                                                  1 2 3 4 5
                                                  . . . . .           6s
                                                                      . . hape
                                                      IP
                                                      .
                                                      max
                                                      .
                                                      IP
                                                      .
                                                      min
                                                      .
                                                  .       .   .   .      .       .
Could you repeat the question?

Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for F with F(1) = 0.

                                          y
                                          .
Solution
                                                      .
                                                      .
    We start with F(1) = 0.                        .          ..
                                                               f
                                              .    . . . . . .
    Using the sign chart, we                                   x
                                                               .
    draw arcs with the                            1 2 3 4 5 6
                                                  . . . . . .
    specified monotonicity and
    concavity                                             .
                                                   . . . . .           ..
                                                                        F
                                                    . . . . .
                                                  1 2 3 4 5
                                                  . . . . .           6s
                                                                      . . hape
                                                      IP
                                                      .
                                                      max
                                                      .
                                                      IP
                                                      .
                                                      min
                                                      .
                                                  .       .   .   .      .       .
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)

More Related Content

What's hot

Inverse Functions
Inverse FunctionsInverse Functions
Inverse Functions
Jerri Harbison
 
Limits and continuity powerpoint
Limits and continuity powerpointLimits and continuity powerpoint
Limits and continuity powerpointcanalculus
 
Basic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesBasic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation Rules
Juan Miguel Palero
 
Lesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functionsLesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functions
Rnold Wilson
 
Rational functions
Rational functionsRational functions
Rational functionszozima
 
Composition and inverse of functions
Composition  and inverse of functionsComposition  and inverse of functions
Composition and inverse of functions
Charliez Jane Soriano
 
Lesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsLesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic Functions
Matthew Leingang
 
General Mathematics - Rational Functions
General Mathematics - Rational FunctionsGeneral Mathematics - Rational Functions
General Mathematics - Rational Functions
Juan Miguel Palero
 
Limits of a Function
Limits of a FunctionLimits of a Function
Limits of a Function
JesusDel2
 
Inverse Function.pptx
Inverse Function.pptxInverse Function.pptx
Inverse Function.pptx
SerGeo5
 
The chain rule
The chain ruleThe chain rule
The chain rule
J M
 
Graphing rational functions
Graphing rational functionsGraphing rational functions
Graphing rational functions
rey castro
 
Integration by partial fraction
Integration by partial fractionIntegration by partial fraction
Integration by partial fraction
Ayesha Ch
 
Exponential functions
Exponential functionsExponential functions
Exponential functions
omar_egypt
 
Lesson 1: Functions and their Representations
Lesson 1: Functions and their RepresentationsLesson 1: Functions and their Representations
Lesson 1: Functions and their Representations
Matthew Leingang
 
Continuity
ContinuityContinuity
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite IntegralJelaiAujero
 
Limit of functions
Limit of functionsLimit of functions
Limit of functions
Juan Apolinario Reyes
 

What's hot (20)

Inverse Functions
Inverse FunctionsInverse Functions
Inverse Functions
 
Limits and continuity powerpoint
Limits and continuity powerpointLimits and continuity powerpoint
Limits and continuity powerpoint
 
Basic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesBasic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation Rules
 
Lesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functionsLesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functions
 
Rational functions
Rational functionsRational functions
Rational functions
 
Composition and inverse of functions
Composition  and inverse of functionsComposition  and inverse of functions
Composition and inverse of functions
 
Lesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsLesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic Functions
 
General Mathematics - Rational Functions
General Mathematics - Rational FunctionsGeneral Mathematics - Rational Functions
General Mathematics - Rational Functions
 
Limits of a Function
Limits of a FunctionLimits of a Function
Limits of a Function
 
Inverse Function.pptx
Inverse Function.pptxInverse Function.pptx
Inverse Function.pptx
 
The chain rule
The chain ruleThe chain rule
The chain rule
 
Composite functions
Composite functionsComposite functions
Composite functions
 
Graphing rational functions
Graphing rational functionsGraphing rational functions
Graphing rational functions
 
Integration by partial fraction
Integration by partial fractionIntegration by partial fraction
Integration by partial fraction
 
Exponential functions
Exponential functionsExponential functions
Exponential functions
 
Lesson 1: Functions and their Representations
Lesson 1: Functions and their RepresentationsLesson 1: Functions and their Representations
Lesson 1: Functions and their Representations
 
Parabola
ParabolaParabola
Parabola
 
Continuity
ContinuityContinuity
Continuity
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
 
Limit of functions
Limit of functionsLimit of functions
Limit of functions
 

Viewers also liked

Application+of+Integrals
Application+of+IntegralsApplication+of+Integrals
Application+of+Integralsprice_dekho11
 
Applications of integrals
Applications of integralsApplications of integrals
Applications of integrals
nitishguptamaps
 
Ibdp _economics_ia_portfolio
Ibdp  _economics_ia_portfolioIbdp  _economics_ia_portfolio
Ibdp _economics_ia_portfolioPaola Reyes Rück
 
Application of integrals flashcards
Application of integrals flashcardsApplication of integrals flashcards
Application of integrals flashcardsyunyun2313
 
Application of Integrals
Application of IntegralsApplication of Integrals
Application of Integralssarcia
 
Application of the integral
Application of the integral Application of the integral
Application of the integral Abhishek Das
 
Lesson 22: Applications to Business and Economics
Lesson 22: Applications to Business and EconomicsLesson 22: Applications to Business and Economics
Lesson 22: Applications to Business and Economics
Matthew Leingang
 
Areas of bounded regions
Areas of bounded regionsAreas of bounded regions
Areas of bounded regionsHimani Asija
 
Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrationsitutor
 
Integrals and its applications
Integrals  and  its applicationsIntegrals  and  its applications
Integrals and its applications
Poojith Chowdhary
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
Farzad Javidanrad
 
Application of calculus in real life.
Application of calculus in real life.Application of calculus in real life.
Application of calculus in real life.
University of Potsdam
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculusitutor
 
ppt on application of integrals
ppt on application of integralsppt on application of integrals
ppt on application of integrals
harshid panchal
 
Application of Mathematics in Business : F 107 - Group K
Application of Mathematics in Business : F 107 - Group KApplication of Mathematics in Business : F 107 - Group K
Application of Mathematics in Business : F 107 - Group K
jafar_sadik
 
Applications Of Integration
Applications Of IntegrationApplications Of Integration
Applications Of Integrationlexmath
 

Viewers also liked (20)

Flash cards AoI
Flash cards AoIFlash cards AoI
Flash cards AoI
 
Application+of+Integrals
Application+of+IntegralsApplication+of+Integrals
Application+of+Integrals
 
Applications of integrals
Applications of integralsApplications of integrals
Applications of integrals
 
Ibdp _economics_ia_portfolio
Ibdp  _economics_ia_portfolioIbdp  _economics_ia_portfolio
Ibdp _economics_ia_portfolio
 
Application of integrals flashcards
Application of integrals flashcardsApplication of integrals flashcards
Application of integrals flashcards
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
Application of Integrals
Application of IntegralsApplication of Integrals
Application of Integrals
 
Application of the integral
Application of the integral Application of the integral
Application of the integral
 
Application of Maqasid al-Shariah in Islamic Finance & Economics
Application of Maqasid al-Shariah in Islamic Finance & EconomicsApplication of Maqasid al-Shariah in Islamic Finance & Economics
Application of Maqasid al-Shariah in Islamic Finance & Economics
 
Lesson 22: Applications to Business and Economics
Lesson 22: Applications to Business and EconomicsLesson 22: Applications to Business and Economics
Lesson 22: Applications to Business and Economics
 
Areas of bounded regions
Areas of bounded regionsAreas of bounded regions
Areas of bounded regions
 
Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrations
 
Integrals and its applications
Integrals  and  its applicationsIntegrals  and  its applications
Integrals and its applications
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Application of calculus in real life.
Application of calculus in real life.Application of calculus in real life.
Application of calculus in real life.
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculus
 
ppt on application of integrals
ppt on application of integralsppt on application of integrals
ppt on application of integrals
 
Application of Mathematics in Business : F 107 - Group K
Application of Mathematics in Business : F 107 - Group KApplication of Mathematics in Business : F 107 - Group K
Application of Mathematics in Business : F 107 - Group K
 
Integration Ppt
Integration PptIntegration Ppt
Integration Ppt
 
Applications Of Integration
Applications Of IntegrationApplications Of Integration
Applications Of Integration
 

Similar to Lesson 21: Antiderivatives (slides)

Lesson 21: Antiderivatives (notes)
Lesson 21: Antiderivatives (notes)Lesson 21: Antiderivatives (notes)
Lesson 21: Antiderivatives (notes)
Matthew Leingang
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: AntiderivativesMatthew Leingang
 
Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)
Mel Anthony Pepito
 
Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)
Mel Anthony Pepito
 
Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)
Matthew Leingang
 
Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)
Matthew Leingang
 
Lesson 23: Antiderivatives (Section 041 handout)
Lesson 23: Antiderivatives (Section 041 handout)Lesson 23: Antiderivatives (Section 041 handout)
Lesson 23: Antiderivatives (Section 041 handout)
Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Mel Anthony Pepito
 
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Matthew Leingang
 
Lesson 23: Antiderivatives (Section 021 handout)
Lesson 23: Antiderivatives (Section 021 handout)Lesson 23: Antiderivatives (Section 021 handout)
Lesson 23: Antiderivatives (Section 021 handout)
Matthew Leingang
 
Lesson 26: Integration by Substitution (slides)
Lesson 26: Integration by Substitution (slides)Lesson 26: Integration by Substitution (slides)
Lesson 26: Integration by Substitution (slides)
Matthew Leingang
 
Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)
Mel Anthony Pepito
 
Lesson15 -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slidesLesson15 -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slidesMel Anthony Pepito
 
Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)
Mel Anthony Pepito
 
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Mel Anthony Pepito
 
Lesson 25: The Fundamental Theorem of Calculus
Lesson 25: The Fundamental Theorem of CalculusLesson 25: The Fundamental Theorem of Calculus
Lesson 25: The Fundamental Theorem of CalculusMatthew Leingang
 
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
Lesson20  -derivatives_and_the_shape_of_curves_021_slidesLesson20  -derivatives_and_the_shape_of_curves_021_slides
Lesson20 -derivatives_and_the_shape_of_curves_021_slidesMatthew Leingang
 
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Matthew Leingang
 

Similar to Lesson 21: Antiderivatives (slides) (20)

Lesson 21: Antiderivatives (notes)
Lesson 21: Antiderivatives (notes)Lesson 21: Antiderivatives (notes)
Lesson 21: Antiderivatives (notes)
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: Antiderivatives
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: Antiderivatives
 
Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)
 
Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)
 
Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)
 
Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)
 
Lesson 23: Antiderivatives (Section 041 handout)
Lesson 23: Antiderivatives (Section 041 handout)Lesson 23: Antiderivatives (Section 041 handout)
Lesson 23: Antiderivatives (Section 041 handout)
 
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
 
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
 
Lesson 23: Antiderivatives (Section 021 handout)
Lesson 23: Antiderivatives (Section 021 handout)Lesson 23: Antiderivatives (Section 021 handout)
Lesson 23: Antiderivatives (Section 021 handout)
 
Lesson 26: Integration by Substitution (slides)
Lesson 26: Integration by Substitution (slides)Lesson 26: Integration by Substitution (slides)
Lesson 26: Integration by Substitution (slides)
 
Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)
 
Lesson15 -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slidesLesson15 -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slides
 
Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)
 
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
 
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
 
Lesson 25: The Fundamental Theorem of Calculus
Lesson 25: The Fundamental Theorem of CalculusLesson 25: The Fundamental Theorem of Calculus
Lesson 25: The Fundamental Theorem of Calculus
 
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
Lesson20  -derivatives_and_the_shape_of_curves_021_slidesLesson20  -derivatives_and_the_shape_of_curves_021_slides
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
 
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
 

More from Matthew Leingang

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
Matthew Leingang
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
Matthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
Matthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
Matthew Leingang
 

More from Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 

Recently uploaded

Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
EduSkills OECD
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
kaushalkr1407
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 

Recently uploaded (20)

Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 

Lesson 21: Antiderivatives (slides)

  • 1. Section 4.7 Antiderivatives V63.0121.006/016, Calculus I New York University April 8, 2010 Announcements Quiz April 16 on §§4.1–4.4 Final Exam: Monday, May 10, 10:00am . . Image credit: Ian Hampton . . . . . .
  • 2. Announcements Quiz April 16 on §§4.1–4.4 Final Exam: Monday, May 10, 10:00am . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 2 / 32
  • 3. Outline What is an antiderivative? Tabulating Antiderivatives Power functions Combinations Exponential functions Trigonometric functions Finding Antiderivatives Graphically Rectilinear motion . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 3 / 32
  • 4. Objectives Given an expression for function f, find a differentiable function F such that F′ = f (F is called an antiderivative for f). Given the graph of a function f, find a differentiable function F such that F′ = f Use antiderivatives to solve problems in rectilinear motion . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 4 / 32
  • 5. Hard problem, easy check Example Find an antiderivative for f(x) = ln x. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 5 / 32
  • 6. Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 5 / 32
  • 7. Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 5 / 32
  • 8. Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d (x ln x − x) dx . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 5 / 32
  • 9. Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d 1 (x ln x − x) = 1 · ln x + x · − 1 dx x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 5 / 32
  • 10. Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d 1 (x ln x − x) = 1 · ln x + x · − 1 = ln x dx x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 5 / 32
  • 11. Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d dx 1 (x ln x − x) = 1 · ln x + x · − 1 = ln x x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 5 / 32
  • 12. Why the MVT is the MITC Most Important Theorem In Calculus! Theorem Let f′ = 0 on an interval (a, b). Then f is constant on (a, b). Proof. Pick any points x and y in (a, b) with x y. Then f is continuous on [x, y] and differentiable on (x, y). By MVT there exists a point z in (x, y) such that f(y) − f(x) = f′ (z) =⇒ f(y) = f(x) + f′ (z)(y − x) y−x But f′ (z) = 0, so f(y) = f(x). Since this is true for all x and y in (a, b), then f is constant. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 6 / 32
  • 13. When two functions have the same derivative Theorem Suppose f and g are two differentiable functions on (a, b) with f′ = g′ . Then f and g differ by a constant. That is, there exists a constant C such that f(x) = g(x) + C. Proof. Let h(x) = f(x) − g(x) Then h′ (x) = f′ (x) − g′ (x) = 0 on (a, b) So h(x) = C, a constant This means f(x) − g(x) = C on (a, b) . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 7 / 32
  • 14. Outline What is an antiderivative? Tabulating Antiderivatives Power functions Combinations Exponential functions Trigonometric functions Finding Antiderivatives Graphically Rectilinear motion . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 8 / 32
  • 15. Antiderivatives of power functions y . .(x) = x2 f Recall that the derivative of a power function is a power function. Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . . x . . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 9 / 32
  • 16. Antiderivatives of power functions ′ y f . . (x) = 2x .(x) = x2 f Recall that the derivative of a power function is a power function. Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . . x . . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 9 / 32
  • 17. Antiderivatives of power functions ′ y f . . (x) = 2x .(x) = x2 f Recall that the derivative of a power function is a power function. F . (x) = ? Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . . x . . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 9 / 32
  • 18. Antiderivatives of power functions ′ y f . . (x) = 2x .(x) = x2 f Recall that the derivative of a power function is a power function. F . (x) = ? Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . So in looking for antiderivatives . of power functions, try power x . functions! . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 9 / 32
  • 19. Example Find an antiderivative for the function f(x) = x3 . . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 10 / 32
  • 20. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 10 / 32
  • 21. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 10 / 32
  • 22. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4 . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 10 / 32
  • 23. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . 1 r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = . 4 . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 10 / 32
  • 24. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . 1 r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = . 4 1 4 So F(x) = x is an antiderivative. 4 . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 10 / 32
  • 25. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . 1 r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = . 4 1 4 So F(x) = x is an antiderivative. 4 Check: ( ) d 1 4 1 x = 4 · x4−1 = x3 dx 4 4 . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 10 / 32
  • 26. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . 1 r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = . 4 1 4 So F(x) = x is an antiderivative. 4 Check: ( ) d 1 4 dx 4 1 x = 4 · x4−1 = x3 4 . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 10 / 32
  • 27. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . 1 r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = . 4 1 4 So F(x) = x is an antiderivative. 4 Check: ( ) d 1 4 dx 4 1 x = 4 · x4−1 = x3 4 Any others? . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 10 / 32
  • 28. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . 1 r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = . 4 1 4 So F(x) = x is an antiderivative. 4 Check: ( ) d 1 4 dx 4 1 x = 4 · x4−1 = x3 4 1 4 Any others? Yes, F(x) = x + C is the most general form. 4 . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 10 / 32
  • 29. Fact (The Power Rule for antiderivatives) If f(x) = xr , then 1 r+1 F(x) = x r+1 is an antiderivative for f… . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 11 / 32
  • 30. Fact (The Power Rule for antiderivatives) If f(x) = xr , then 1 r+1 F(x) = x r+1 is an antiderivative for f as long as r ̸= −1. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 11 / 32
  • 31. Fact (The Power Rule for antiderivatives) If f(x) = xr , then 1 r+1 F(x) = x r+1 is an antiderivative for f as long as r ̸= −1. Fact 1 If f(x) = x−1 = , then x F(x) = ln |x| + C is an antiderivative for f. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 11 / 32
  • 32. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 33. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d ln |x| dx . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 34. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d d ln |x| = ln(x) dx dx . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 35. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d d 1 ln |x| = ln(x) = dx dx x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 36. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 37. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d ln |x| dx . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 38. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d d ln |x| = ln(−x) dx dx . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 39. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d d 1 ln |x| = ln(−x) = · (−1) dx dx −x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 40. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d d 1 1 ln |x| = ln(−x) = · (−1) = dx dx −x x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 41. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| = d dx ln(−x) = 1 −x · (−1) = 1 x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 42. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| = d dx ln(−x) = 1 −x · (−1) = 1 x We prefer the antiderivative with the larger domain. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 12 / 32
  • 43. Graph of ln |x| y . . f .(x) = 1/x x . . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 13 / 32
  • 44. Graph of ln |x| y . F . (x) = ln(x) . f .(x) = 1/x x . . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 13 / 32
  • 45. Graph of ln |x| y . . (x) = ln |x| F . f .(x) = 1/x x . . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 13 / 32
  • 46. Combinations of antiderivatives Fact (Sum and Constant Multiple Rule for Antiderivatives) If F is an antiderivative of f and G is an antiderivative of g, then F + G is an antiderivative of f + g. If F is an antiderivative of f and c is a constant, then cF is an antiderivative of cf. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 14 / 32
  • 47. Combinations of antiderivatives Fact (Sum and Constant Multiple Rule for Antiderivatives) If F is an antiderivative of f and G is an antiderivative of g, then F + G is an antiderivative of f + g. If F is an antiderivative of f and c is a constant, then cF is an antiderivative of cf. Proof. These follow from the sum and constant multiple rule for derivatives: If F′ = f and G′ = g, then (F + G)′ = F′ + G′ = f + g Or, if F′ = f, (cF)′ = cF′ = cf . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 14 / 32
  • 48. Antiderivatives of Polynomials Example Find an antiderivative for f(x) = 16x + 5. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 15 / 32
  • 49. Antiderivatives of Polynomials Example Find an antiderivative for f(x) = 16x + 5. Solution 1 2 The expression x is an antiderivative for x, and x is an antiderivative 2 for 1. So ( ) 1 2 F(x) = 16 · x + 5 · x + C = 8x2 + 5x + C 2 is the antiderivative of f. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 15 / 32
  • 50. Antiderivatives of Polynomials Example Find an antiderivative for f(x) = 16x + 5. Solution 1 2 The expression x is an antiderivative for x, and x is an antiderivative 2 for 1. So ( ) 1 2 F(x) = 16 · x + 5 · x + C = 8x2 + 5x + C 2 is the antiderivative of f. Question Why do we not need two C’s? . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 15 / 32
  • 51. Antiderivatives of Polynomials Example Find an antiderivative for f(x) = 16x + 5. Solution ( ) 1 2 F(x) = 16 · x + 5 · x + C = 8x2 + 5x + C 2 Question Why do we not need two C’s? Answer A combination of two arbitrary constants is still an arbitrary constant. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 15 / 32
  • 52. Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 16 / 32
  • 53. Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . Accordingly, Fact 1 x If f(x) = ax , then F(x) = a + C is the antiderivative of f. ln a . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 16 / 32
  • 54. Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . Accordingly, Fact 1 x If f(x) = ax , then F(x) = a + C is the antiderivative of f. ln a Proof. Check it yourself. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 16 / 32
  • 55. Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . Accordingly, Fact 1 x If f(x) = ax , then F(x) = a + C is the antiderivative of f. ln a Proof. Check it yourself. In particular, Fact If f(x) = ex , then F(x) = ex + C is the antiderivative of f. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 16 / 32
  • 56. Logarithmic functions? Remember we found F(x) = x ln x − x is an antiderivative of f(x) = ln x. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 17 / 32
  • 57. Logarithmic functions? Remember we found F(x) = x ln x − x is an antiderivative of f(x) = ln x. This is not obvious. See Calc II for the full story. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 17 / 32
  • 58. Logarithmic functions? Remember we found F(x) = x ln x − x is an antiderivative of f(x) = ln x. This is not obvious. See Calc II for the full story. ln x However, using the fact that loga x = , we get: ln a Fact If f(x) = loga (x) 1 1 F(x) = (x ln x − x) + C = x loga x − x+C ln a ln a is the antiderivative of f(x). . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 17 / 32
  • 59. Trigonometric functions Fact d d sin x = cos x cos x = − sin x dx dx . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 18 / 32
  • 60. Trigonometric functions Fact d d sin x = cos x cos x = − sin x dx dx So to turn these around, Fact The function F(x) = − cos x + C is the antiderivative of f(x) = sin x. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 18 / 32
  • 61. Trigonometric functions Fact d d sin x = cos x cos x = − sin x dx dx So to turn these around, Fact The function F(x) = − cos x + C is the antiderivative of f(x) = sin x. The function F(x) = sin x + C is the antiderivative of f(x) = cos x. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 18 / 32
  • 62. More Trig Example Find an antiderivative of f(x) = tan x. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 19 / 32
  • 63. More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 19 / 32
  • 64. More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 19 / 32
  • 65. More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). Check d 1 d = · sec x dx sec x dx . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 19 / 32
  • 66. More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). Check d 1 d 1 = · sec x = · sec x tan x dx sec x dx sec x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 19 / 32
  • 67. More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). Check d 1 d 1 = · sec x = · sec x tan x = tan x dx sec x dx sec x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 19 / 32
  • 68. More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). Check d dx = 1 · d sec x dx sec x = 1 sec x · sec x tan x = tan x . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 19 / 32
  • 69. More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). Check d dx = 1 · d sec x dx sec x = 1 sec x · sec x tan x = tan x More about this later. . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 19 / 32
  • 70. Outline What is an antiderivative? Tabulating Antiderivatives Power functions Combinations Exponential functions Trigonometric functions Finding Antiderivatives Graphically Rectilinear motion . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 20 / 32
  • 71. Problem Below is the graph of a function f. Draw the graph of an antiderivative for F. y . . . . . = f(x) y . . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6 . . . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 21 / 32
  • 72. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: ′ . . . . . . .. = F f y . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 73. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: ′ . .. . + . . . .. = F f y . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 74. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: ′ . .. .. . + + . . .. = F f y . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 75. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − ′ . .. .. .. . . .. = F f y . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 76. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − ′ . .. .. .. .. . .. = F f y . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 77. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 78. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1↗2 . . . 3 . 4 . 5 . 6F .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 79. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1↗2↗3 . . . . . 4 . 5 . 6F .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 80. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1↗2↗3↘4 . . . . . . . 5 . 6F .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 81. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1↗2↗3↘4↘5 . . . . . . . . . 6F .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 82. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . . . . . . . . . .. . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 83. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . . . . . . . max . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 84. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .
  • 85. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . ′ ′′ . . . . . . . . . . . . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .
  • 86. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . ′ ′′ . . . . . . . .. + . + . . . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .
  • 87. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . ′ ′′ . . . . . . . .. + .. − . + − . . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .
  • 88. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . ′ ′′ . . . . . . . .. + .. − .. − . + − − . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .
  • 89. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . ′ ′′ . . . . . . . .. + .. − .. − .. + . + − − + .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .
  • 90. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .
  • 91. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F . ⌣ 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .
  • 92. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .
  • 93. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .
  • 94. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .
  • 95. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ . ⌣ . 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . .F 6 . . . . . . .
  • 96. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ . ⌣ . 1 2 3 4 5 6 . . . . . . x . .. 1 2 . 3 . 4 . 5 . .F 6 IP . . . . . . .
  • 97. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ . ⌣ . 1 2 3 4 5 6 . . . . . . x . .. 1 2 .. . 3 4 . 5 . .F 6 IP IP . . . . . . .
  • 98. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ . ⌣ . 1 2 3 4 5 6 . . . . . . x . .. 1 2 .. . 3 4 . 5 . .F 6 IP IP . . . . . . .. F 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . .
  • 99. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ . ⌣ . 1 2 3 4 5 6 . . . . . . x . .. 1 2 .. . 3 4 . 5 . .F 6 IP IP . . . . . . .. F . 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . .
  • 100. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ . ⌣ . 1 2 3 4 5 6 . . . . . . x . .. 1 2 .. . 3 4 . 5 . .F 6 IP IP . . . . . . .. F . . 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . .
  • 101. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ . ⌣ . 1 2 3 4 5 6 . . . . . . x . .. 1 2 .. . 3 4 . 5 . .F 6 IP IP . . . . . . .. F . . . 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . .
  • 102. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ . ⌣ . 1 2 3 4 5 6 . . . . . . x . .. 1 2 .. . 3 4 . 5 . .F 6 IP IP . . . . . . .. F . . . . 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . .
  • 103. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ . ⌣ . 1 2 3 4 5 6 . . . . . . x . .. 1 2 .. . 3 4 . 5 . .F 6 IP IP . . . . . . ..F . . . . . . hape 1 . 2 . 3 . 4 . 5 . .s 6 . . . . . .
  • 104. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F ⌣ . . ⌢ . ⌢ . ⌣ . ⌣ . 1 2 3 4 5 6 . . . . . . x . .. 1 2 .. . 3 4 . 5 . .F 6 IP IP . ? .. ? .. ? .. ? .. ? .. ?F .. . . . . . . . hape 1 . 2 . 3 . 4 . 5 . .s 6 The only question left is: What are the function values? . . . . . . V63.0121, Calculus I (NYU) Section 4.7 Antiderivatives April 8, 2010 22 / 32
  • 105. Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for F with F(1) = 0. y . Solution . . .. f . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .. F . . . . . 1 2 3 4 5 . . . . . 6s . . hape IP . max . IP . min . . . . . . .
  • 106. Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for F with F(1) = 0. y . Solution . We start with F(1) = 0. . .. f . . . . . . . x . 1 2 3 4 5 6 . . . . . . . . . . . . .. F . . . . . 1 2 3 4 5 . . . . . 6s . . hape IP . max . IP . min . . . . . . .
  • 107. Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for F with F(1) = 0. y . Solution . We start with F(1) = 0. . .. f . . . . . . . Using the sign chart, we x . draw arcs with the 1 2 3 4 5 6 . . . . . . specified monotonicity and concavity . . . . . . .. F . . . . . 1 2 3 4 5 . . . . . 6s . . hape IP . max . IP . min . . . . . . .
  • 108. Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for F with F(1) = 0. y . Solution . . We start with F(1) = 0. . .. f . . . . . . . Using the sign chart, we x . draw arcs with the 1 2 3 4 5 6 . . . . . . specified monotonicity and concavity . . . . . . .. F . . . . . 1 2 3 4 5 . . . . . 6s . . hape IP . max . IP . min . . . . . . .
  • 109. Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for F with F(1) = 0. y . Solution . . We start with F(1) = 0. . .. f . . . . . . . Using the sign chart, we x . draw arcs with the 1 2 3 4 5 6 . . . . . . specified monotonicity and concavity . . . . . . .. F . . . . . 1 2 3 4 5 . . . . . 6s . . hape IP . max . IP . min . . . . . . .