The document discusses the chain rule and how to use it to differentiate and integrate composite functions. The chain rule states that if h(x) = g(f(x)), then h'(x) = g'(f(x))f'(x). It provides examples of applying the chain rule to differentiate functions like sin(x2 - 4) and integrate functions like ∫(3x2 + 4)3 dx. It also discusses how to integrate functions of the form f'(x)g(f(x)) by recognizing them as derivatives of composite functions.