SlideShare a Scribd company logo
1 of 138
Download to read offline
Section 4.7
Antiderivatives
V63.0121.041, Calculus I
New York University
November 29, 2010
Announcements
Quiz 5 in recitation this week on §§4.1–4.4
. . . . . .
. . . . . .
Announcements
Quiz 5 in recitation this
week on §§4.1–4.4
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 2 / 35
. . . . . .
Objectives
Given a ”simple“
elementary function, find a
function whose derivative
is that function.
Remember that a function
whose derivative is zero
along an interval must be
zero along that interval.
Solve problems involving
rectilinear motion.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 3 / 35
. . . . . .
Outline
What is an antiderivative?
Tabulating Antiderivatives
Power functions
Combinations
Exponential functions
Trigonometric functions
Antiderivatives of piecewise functions
Finding Antiderivatives Graphically
Rectilinear motion
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 4 / 35
. . . . . .
What is an antiderivative?
Definition
Let f be a function. An antiderivative for f is a function F such that
F′
= f.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 5 / 35
. . . . . .
Hard problem, easy check
Example
Find an antiderivative for f(x) = ln x.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 6 / 35
. . . . . .
Hard problem, easy check
Example
Find an antiderivative for f(x) = ln x.
Solution
???
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 6 / 35
. . . . . .
Hard problem, easy check
Example
Find an antiderivative for f(x) = ln x.
Solution
???
Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 6 / 35
. . . . . .
Hard problem, easy check
Example
Find an antiderivative for f(x) = ln x.
Solution
???
Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?
Solution
d
dx
(x ln x − x)
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 6 / 35
. . . . . .
Hard problem, easy check
Example
Find an antiderivative for f(x) = ln x.
Solution
???
Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?
Solution
d
dx
(x ln x − x) = 1 · ln x + x ·
1
x
− 1
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 6 / 35
. . . . . .
Hard problem, easy check
Example
Find an antiderivative for f(x) = ln x.
Solution
???
Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?
Solution
d
dx
(x ln x − x) = 1 · ln x + x ·
1
x
− 1 = ln x
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 6 / 35
. . . . . .
Hard problem, easy check
Example
Find an antiderivative for f(x) = ln x.
Solution
???
Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?
Solution
d
dx
(x ln x − x) = 1 · ln x + x ·
1
x
− 1 = ln x 
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 6 / 35
. . . . . .
Why the MVT is the MITC
Most Important Theorem In Calculus!
Theorem
Let f′
= 0 on an interval (a, b). Then f is constant on (a, b).
Proof.
Pick any points x and y in (a, b) with x  y. Then f is continuous on
[x, y] and differentiable on (x, y). By MVT there exists a point z in (x, y)
such that
f(y) − f(x)
y − x
= f′
(z) =⇒ f(y) = f(x) + f′
(z)(y − x)
But f′
(z) = 0, so f(y) = f(x). Since this is true for all x and y in (a, b),
then f is constant.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 7 / 35
. . . . . .
When two functions have the same derivative
Theorem
Suppose f and g are two differentiable functions on (a, b) with f′
= g′
.
Then f and g differ by a constant. That is, there exists a constant C
such that f(x) = g(x) + C.
Proof.
Let h(x) = f(x) − g(x)
Then h′
(x) = f′
(x) − g′
(x) = 0 on (a, b)
So h(x) = C, a constant
This means f(x) − g(x) = C on (a, b)
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 8 / 35
. . . . . .
Outline
What is an antiderivative?
Tabulating Antiderivatives
Power functions
Combinations
Exponential functions
Trigonometric functions
Antiderivatives of piecewise functions
Finding Antiderivatives Graphically
Rectilinear motion
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 9 / 35
. . . . . .
Antiderivatives of power functions
Recall that the derivative of a
power function is a power
function.
Fact (The Power Rule)
If f(x) = xr
, then f′
(x) = rxr−1
.
..
x
.
y
.
f(x) = x2
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 10 / 35
. . . . . .
Antiderivatives of power functions
Recall that the derivative of a
power function is a power
function.
Fact (The Power Rule)
If f(x) = xr
, then f′
(x) = rxr−1
.
..
x
.
y
.
f(x) = x2
.
f′
(x) = 2x
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 10 / 35
. . . . . .
Antiderivatives of power functions
Recall that the derivative of a
power function is a power
function.
Fact (The Power Rule)
If f(x) = xr
, then f′
(x) = rxr−1
.
..
x
.
y
.
f(x) = x2
.
f′
(x) = 2x
.
F(x) = ?
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 10 / 35
. . . . . .
Antiderivatives of power functions
Recall that the derivative of a
power function is a power
function.
Fact (The Power Rule)
If f(x) = xr
, then f′
(x) = rxr−1
.
So in looking for antiderivatives
of power functions, try power
functions!
..
x
.
y
.
f(x) = x2
.
f′
(x) = 2x
.
F(x) = ?
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 10 / 35
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 11 / 35
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 11 / 35
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 11 / 35
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
r − 1 = 3 =⇒ r = 4
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 11 / 35
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =
1
4
.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 11 / 35
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =
1
4
.
So F(x) =
1
4
x4
is an antiderivative.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 11 / 35
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =
1
4
.
So F(x) =
1
4
x4
is an antiderivative.
Check:
d
dx
(
1
4
x4
)
= 4 ·
1
4
x4−1
= x3
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 11 / 35
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =
1
4
.
So F(x) =
1
4
x4
is an antiderivative.
Check:
d
dx
(
1
4
x4
)
= 4 ·
1
4
x4−1
= x3

V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 11 / 35
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =
1
4
.
So F(x) =
1
4
x4
is an antiderivative.
Check:
d
dx
(
1
4
x4
)
= 4 ·
1
4
x4−1
= x3

Any others?
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 11 / 35
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =
1
4
.
So F(x) =
1
4
x4
is an antiderivative.
Check:
d
dx
(
1
4
x4
)
= 4 ·
1
4
x4−1
= x3

Any others? Yes, F(x) =
1
4
x4
+ C is the most general form.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 11 / 35
. . . . . .
Extrapolating to general power functions
Fact (The Power Rule for antiderivatives)
If f(x) = xr
, then
F(x) =
1
r + 1
xr+1
is an antiderivative for f…
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 12 / 35
. . . . . .
Extrapolating to general power functions
Fact (The Power Rule for antiderivatives)
If f(x) = xr
, then
F(x) =
1
r + 1
xr+1
is an antiderivative for f as long as r ̸= −1.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 12 / 35
. . . . . .
Extrapolating to general power functions
Fact (The Power Rule for antiderivatives)
If f(x) = xr
, then
F(x) =
1
r + 1
xr+1
is an antiderivative for f as long as r ̸= −1.
Fact
If f(x) = x−1
=
1
x
, then
F(x) = ln |x| + C
is an antiderivative for f.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 12 / 35
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x|
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x)
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x

V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x

If x  0,
d
dx
ln |x|
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x

If x  0,
d
dx
ln |x| =
d
dx
ln(−x)
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x

If x  0,
d
dx
ln |x| =
d
dx
ln(−x) =
1
−x
· (−1)
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x

If x  0,
d
dx
ln |x| =
d
dx
ln(−x) =
1
−x
· (−1) =
1
x
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x

If x  0,
d
dx
ln |x| =
d
dx
ln(−x) =
1
−x
· (−1) =
1
x

V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x

If x  0,
d
dx
ln |x| =
d
dx
ln(−x) =
1
−x
· (−1) =
1
x

We prefer the antiderivative with the larger domain.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
. . . . . .
Graph of ln |x|
.. x.
y
. f(x) = 1/x
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 14 / 35
. . . . . .
Graph of ln |x|
.. x.
y
. f(x) = 1/x.
F(x) = ln(x)
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 14 / 35
. . . . . .
Graph of ln |x|
.. x.
y
. f(x) = 1/x.
F(x) = ln |x|
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 14 / 35
. . . . . .
Combinations of antiderivatives
Fact (Sum and Constant Multiple Rule for Antiderivatives)
If F is an antiderivative of f and G is an antiderivative of g, then
F + G is an antiderivative of f + g.
If F is an antiderivative of f and c is a constant, then cF is an
antiderivative of cf.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 15 / 35
. . . . . .
Combinations of antiderivatives
Fact (Sum and Constant Multiple Rule for Antiderivatives)
If F is an antiderivative of f and G is an antiderivative of g, then
F + G is an antiderivative of f + g.
If F is an antiderivative of f and c is a constant, then cF is an
antiderivative of cf.
Proof.
These follow from the sum and constant multiple rule for derivatives:
If F′
= f and G′
= g, then
(F + G)′
= F′
+ G′
= f + g
Or, if F′
= f,
(cF)′
= cF′
= cf
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 15 / 35
. . . . . .
Antiderivatives of Polynomials
..
Example
Find an antiderivative for f(x) = 16x + 5.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 16 / 35
. . . . . .
Antiderivatives of Polynomials
..
Example
Find an antiderivative for f(x) = 16x + 5.
Solution
The expression
1
2
x2
is an antiderivative for x, and x is an antiderivative for 1.
So
F(x) = 16 ·
(
1
2
x2
)
+ 5 · x + C = 8x2
+ 5x + C
is the antiderivative of f.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 16 / 35
. . . . . .
Antiderivatives of Polynomials
..
Example
Find an antiderivative for f(x) = 16x + 5.
Solution
The expression
1
2
x2
is an antiderivative for x, and x is an antiderivative for 1.
So
F(x) = 16 ·
(
1
2
x2
)
+ 5 · x + C = 8x2
+ 5x + C
is the antiderivative of f.
Question
Do we need two C’s or just one?
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 16 / 35
. . . . . .
Antiderivatives of Polynomials
..
Example
Find an antiderivative for f(x) = 16x + 5.
Solution
The expression
1
2
x2
is an antiderivative for x, and x is an antiderivative for 1.
So
F(x) = 16 ·
(
1
2
x2
)
+ 5 · x + C = 8x2
+ 5x + C
is the antiderivative of f.
Question
Do we need two C’s or just one?
Answer
Just one. A combination of two arbitrary constants is still an arbitrary constant.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 16 / 35
. . . . . .
Exponential Functions
Fact
If f(x) = ax
, f′
(x) = (ln a)ax
.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 17 / 35
. . . . . .
Exponential Functions
Fact
If f(x) = ax
, f′
(x) = (ln a)ax
.
Accordingly,
Fact
If f(x) = ax
, then F(x) =
1
ln a
ax
+ C is the antiderivative of f.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 17 / 35
. . . . . .
Exponential Functions
Fact
If f(x) = ax
, f′
(x) = (ln a)ax
.
Accordingly,
Fact
If f(x) = ax
, then F(x) =
1
ln a
ax
+ C is the antiderivative of f.
Proof.
Check it yourself.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 17 / 35
. . . . . .
Exponential Functions
Fact
If f(x) = ax
, f′
(x) = (ln a)ax
.
Accordingly,
Fact
If f(x) = ax
, then F(x) =
1
ln a
ax
+ C is the antiderivative of f.
Proof.
Check it yourself.
In particular,
Fact
If f(x) = ex
, then F(x) = ex
+ C is the antiderivative of f.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 17 / 35
. . . . . .
Logarithmic functions?
Remember we found
F(x) = x ln x − x
is an antiderivative of f(x) = ln x.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 18 / 35
. . . . . .
Logarithmic functions?
Remember we found
F(x) = x ln x − x
is an antiderivative of f(x) = ln x.
This is not obvious. See Calc II for the full story.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 18 / 35
. . . . . .
Logarithmic functions?
Remember we found
F(x) = x ln x − x
is an antiderivative of f(x) = ln x.
This is not obvious. See Calc II for the full story.
However, using the fact that loga x =
ln x
ln a
, we get:
Fact
If f(x) = loga(x)
F(x) =
1
ln a
(x ln x − x) + C = x loga x −
1
ln a
x + C
is the antiderivative of f(x).
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 18 / 35
. . . . . .
Trigonometric functions
Fact
d
dx
sin x = cos x
d
dx
cos x = − sin x
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 19 / 35
. . . . . .
Trigonometric functions
Fact
d
dx
sin x = cos x
d
dx
cos x = − sin x
So to turn these around,
Fact
The function F(x) = − cos x + C is the antiderivative of f(x) = sin x.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 19 / 35
. . . . . .
Trigonometric functions
Fact
d
dx
sin x = cos x
d
dx
cos x = − sin x
So to turn these around,
Fact
The function F(x) = − cos x + C is the antiderivative of f(x) = sin x.
The function F(x) = sin x + C is the antiderivative of f(x) = cos x.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 19 / 35
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 20 / 35
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
Solution
???
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 20 / 35
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
Solution
???
Answer
F(x) = ln(sec x).
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 20 / 35
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
Solution
???
Answer
F(x) = ln(sec x).
Check
d
dx
=
1
sec x
·
d
dx
sec x
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 20 / 35
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
Solution
???
Answer
F(x) = ln(sec x).
Check
d
dx
=
1
sec x
·
d
dx
sec x =
1
sec x
· sec x tan x
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 20 / 35
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
Solution
???
Answer
F(x) = ln(sec x).
Check
d
dx
=
1
sec x
·
d
dx
sec x =
1
sec x
· sec x tan x = tan x
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 20 / 35
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
Solution
???
Answer
F(x) = ln(sec x).
Check
d
dx
=
1
sec x
·
d
dx
sec x =
1
sec x
· sec x tan x = tan x 
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 20 / 35
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
Solution
???
Answer
F(x) = ln(sec x).
Check
d
dx
=
1
sec x
·
d
dx
sec x =
1
sec x
· sec x tan x = tan x 
More about this later.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 20 / 35
. . . . . .
Antiderivatives of piecewise functions
Example
Let f(x) =
{
x if 0 ≤ x ≤ 1;
1 − x2
if 1  x.
Find the antiderivative of f with
F(0) = 1.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 21 / 35
. . . . . .
Antiderivatives of piecewise functions
Example
Let f(x) =
{
x if 0 ≤ x ≤ 1;
1 − x2
if 1  x.
Find the antiderivative of f with
F(0) = 1.
Solution
We can antidifferentiate each piece:
F(x) =



1
2
x2
+ C1 if 0 ≤ x ≤ 1;
x −
1
3
x3
+ C2 if 1  x.
The constants need to be chosen so that F(0) = 1 and F is continuous
(at 1).
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 21 / 35
. . . . . .
F(x) =



1
2
x2
+ C1 if 0 ≤ x ≤ 1;
x −
1
3
x3
+ C2 if 1  x.
Note
F(0) =
1
2
02
+ C1 = C1 =⇒ C1 = 1
This means lim
x→1−
F(x) =
1
2
12
+ 1 =
3
2
. Now
lim
x→1+
F(x) = 1 −
1
3
+ C2 =
2
3
+ C2
So for F to be continuous we need
3
2
=
2
3
+ C2 =⇒ C2 =
5
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 22 / 35
. . . . . .
Outline
What is an antiderivative?
Tabulating Antiderivatives
Power functions
Combinations
Exponential functions
Trigonometric functions
Antiderivatives of piecewise functions
Finding Antiderivatives Graphically
Rectilinear motion
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 23 / 35
. . . . . .
Finding Antiderivatives Graphically
Problem
Below is the graph of a function f. Draw the graph of an antiderivative
for f.
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
y = f(x)
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 24 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
..
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
...
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
....
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
.....
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
?
.
?
.
?
.
?
.
?
.
?
The only question left is: What are the function values?
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0. ..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
..
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
..
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
...
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
...
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
....
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
....
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
.....
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
......
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
It’s harder to tell if/when F
crosses the axis; more
about that later.
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
......
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
. . . . . .
Outline
What is an antiderivative?
Tabulating Antiderivatives
Power functions
Combinations
Exponential functions
Trigonometric functions
Antiderivatives of piecewise functions
Finding Antiderivatives Graphically
Rectilinear motion
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 27 / 35
. . . . . .
Say what?
“Rectilinear motion” just means motion along a line.
Often we are given information about the velocity or acceleration
of a moving particle and we want to know the equations of motion.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 28 / 35
. . . . . .
Application: Dead Reckoning
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 29 / 35
. . . . . .
Application: Dead Reckoning
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 29 / 35
. . . . . .
Problem
Suppose a particle of mass m is acted upon by a constant force F.
Find the position function s(t), the velocity function v(t), and the
acceleration function a(t).
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 30 / 35
. . . . . .
Problem
Suppose a particle of mass m is acted upon by a constant force F.
Find the position function s(t), the velocity function v(t), and the
acceleration function a(t).
Solution
By Newton’s Second Law (F = ma) a constant force induces a
constant acceleration. So a(t) = a =
F
m
.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 30 / 35
. . . . . .
Problem
Suppose a particle of mass m is acted upon by a constant force F.
Find the position function s(t), the velocity function v(t), and the
acceleration function a(t).
Solution
By Newton’s Second Law (F = ma) a constant force induces a
constant acceleration. So a(t) = a =
F
m
.
Since v′
(t) = a(t), v(t) must be an antiderivative of the constant
function a. So
v(t) = at + C = at + v0
where v0 is the initial velocity.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 30 / 35
. . . . . .
Problem
Suppose a particle of mass m is acted upon by a constant force F.
Find the position function s(t), the velocity function v(t), and the
acceleration function a(t).
Solution
By Newton’s Second Law (F = ma) a constant force induces a
constant acceleration. So a(t) = a =
F
m
.
Since v′
(t) = a(t), v(t) must be an antiderivative of the constant
function a. So
v(t) = at + C = at + v0
where v0 is the initial velocity.
Since s′
(t) = v(t), s(t) must be an antiderivative of v(t), meaning
s(t) =
1
2
at2
+ v0t + C =
1
2
at2
+ v0t + s0
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 30 / 35
. . . . . .
An earlier Hatsumon
Example
Drop a ball off the roof of the Silver Center. What is its velocity when it
hits the ground?
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 31 / 35
. . . . . .
An earlier Hatsumon
Example
Drop a ball off the roof of the Silver Center. What is its velocity when it
hits the ground?
Solution
Assume s0 = 100 m, and v0 = 0. Approximate a = g ≈ −10. Then
s(t) = 100 − 5t2
So s(t) = 0 when t =
√
20 = 2
√
5. Then
v(t) = −10t,
so the velocity at impact is v(2
√
5) = −20
√
5 m/s.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 31 / 35
. . . . . .
Finding initial velocity from stopping distance
Example
The skid marks made by an automobile indicate that its brakes were
fully applied for a distance of 160 ft before it came to a stop. Suppose
that the car in question has a constant deceleration of 20 ft/s2 under the
conditions of the skid. How fast was the car traveling when its brakes
were first applied?
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 32 / 35
. . . . . .
Finding initial velocity from stopping distance
Example
The skid marks made by an automobile indicate that its brakes were
fully applied for a distance of 160 ft before it came to a stop. Suppose
that the car in question has a constant deceleration of 20 ft/s2 under the
conditions of the skid. How fast was the car traveling when its brakes
were first applied?
Solution (Setup)
While braking, the car has acceleration a(t) = −20
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 32 / 35
. . . . . .
Finding initial velocity from stopping distance
Example
The skid marks made by an automobile indicate that its brakes were
fully applied for a distance of 160 ft before it came to a stop. Suppose
that the car in question has a constant deceleration of 20 ft/s2 under the
conditions of the skid. How fast was the car traveling when its brakes
were first applied?
Solution (Setup)
While braking, the car has acceleration a(t) = −20
Measure time 0 and position 0 when the car starts braking. So
s(0) = 0.
The car stops at time some t1, when v(t1) = 0.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 32 / 35
. . . . . .
Finding initial velocity from stopping distance
Example
The skid marks made by an automobile indicate that its brakes were
fully applied for a distance of 160 ft before it came to a stop. Suppose
that the car in question has a constant deceleration of 20 ft/s2 under the
conditions of the skid. How fast was the car traveling when its brakes
were first applied?
Solution (Setup)
While braking, the car has acceleration a(t) = −20
Measure time 0 and position 0 when the car starts braking. So
s(0) = 0.
The car stops at time some t1, when v(t1) = 0.
We know that when s(t1) = 160.
We want to know v(0), or v0.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 32 / 35
. . . . . .
Implementing the Solution
In general,
s(t) = s0 + v0t +
1
2
at2
Since s0 = 0 and a = −20, we have
s(t) = v0t − 10t2
v(t) = v0 − 20t
for all t.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 33 / 35
. . . . . .
Implementing the Solution
In general,
s(t) = s0 + v0t +
1
2
at2
Since s0 = 0 and a = −20, we have
s(t) = v0t − 10t2
v(t) = v0 − 20t
for all t. Plugging in t = t1,
160 = v0t1 − 10t2
1
0 = v0 − 20t1
We need to solve these two equations.
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 33 / 35
. . . . . .
Solving
We have
v0t1 − 10t2
1 = 160 v0 − 20t1 = 0
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 34 / 35
. . . . . .
Solving
We have
v0t1 − 10t2
1 = 160 v0 − 20t1 = 0
The second gives t1 = v0/20, so substitute into the first:
v0 ·
v0
20
− 10
( v0
20
)2
= 160
or
v2
0
20
−
10v2
0
400
= 160
2v2
0 − v2
0 = 160 · 40 = 6400
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 34 / 35
. . . . . .
Solving
We have
v0t1 − 10t2
1 = 160 v0 − 20t1 = 0
The second gives t1 = v0/20, so substitute into the first:
v0 ·
v0
20
− 10
( v0
20
)2
= 160
or
v2
0
20
−
10v2
0
400
= 160
2v2
0 − v2
0 = 160 · 40 = 6400
So v0 = 80 ft/s ≈ 55 mi/hr
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 34 / 35
. . . . . .
Summary
Antiderivatives are a useful
concept, especially in
motion
We can graph an
antiderivative from the
graph of a function
We can compute
antiderivatives, but not
always
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.......
F
f(x) = e−x2
f′
(x) = ???
V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 35 / 35

More Related Content

What's hot

Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...Frank Nielsen
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)Matthew Leingang
 
Multiattribute Decision Making
Multiattribute Decision MakingMultiattribute Decision Making
Multiattribute Decision MakingArthur Charpentier
 
Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)Matthew Leingang
 
transformations and nonparametric inference
transformations and nonparametric inferencetransformations and nonparametric inference
transformations and nonparametric inferenceArthur Charpentier
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionCharles Deledalle
 
Interpolation with unequal interval
Interpolation with unequal intervalInterpolation with unequal interval
Interpolation with unequal intervalDr. Nirav Vyas
 
IJSRED-V2I5P56
IJSRED-V2I5P56IJSRED-V2I5P56
IJSRED-V2I5P56IJSRED
 

What's hot (20)

Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Numerical Methods 3
Numerical Methods 3Numerical Methods 3
Numerical Methods 3
 
Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)
 
Side 2019, part 2
Side 2019, part 2Side 2019, part 2
Side 2019, part 2
 
Lecture6.handout
Lecture6.handoutLecture6.handout
Lecture6.handout
 
Slides Bank England
Slides Bank EnglandSlides Bank England
Slides Bank England
 
Multiattribute Decision Making
Multiattribute Decision MakingMultiattribute Decision Making
Multiattribute Decision Making
 
Side 2019 #5
Side 2019 #5Side 2019 #5
Side 2019 #5
 
Side 2019, part 1
Side 2019, part 1Side 2019, part 1
Side 2019, part 1
 
Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)
 
transformations and nonparametric inference
transformations and nonparametric inferencetransformations and nonparametric inference
transformations and nonparametric inference
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
 
Interpolation with unequal interval
Interpolation with unequal intervalInterpolation with unequal interval
Interpolation with unequal interval
 
Slides ads ia
Slides ads iaSlides ads ia
Slides ads ia
 
Pata contraction
Pata contractionPata contraction
Pata contraction
 
IJSRED-V2I5P56
IJSRED-V2I5P56IJSRED-V2I5P56
IJSRED-V2I5P56
 

Viewers also liked (14)

2D Geometry QA 11
2D Geometry QA 112D Geometry QA 11
2D Geometry QA 11
 
Sequences and Series QA 3
Sequences and Series QA 3Sequences and Series QA 3
Sequences and Series QA 3
 
Law of Gravitation QA 3
Law of Gravitation QA 3Law of Gravitation QA 3
Law of Gravitation QA 3
 
Direct Current QA 9
Direct Current QA 9Direct Current QA 9
Direct Current QA 9
 
Alternating Current Theory 1
Alternating Current Theory 1Alternating Current Theory 1
Alternating Current Theory 1
 
Direct Current Theory 5
Direct Current Theory 5Direct Current Theory 5
Direct Current Theory 5
 
Trigonometry QA 7/ Height and Distance
Trigonometry QA 7/ Height and DistanceTrigonometry QA 7/ Height and Distance
Trigonometry QA 7/ Height and Distance
 
Sequences and Series QA 2
Sequences and Series QA 2Sequences and Series QA 2
Sequences and Series QA 2
 
Integrals indefinides
Integrals indefinidesIntegrals indefinides
Integrals indefinides
 
Units Dimensions Error 3
Units Dimensions Error 3Units Dimensions Error 3
Units Dimensions Error 3
 
3D Geometry QA 10
3D Geometry QA 103D Geometry QA 10
3D Geometry QA 10
 
Laws of Motion QA 2
Laws of Motion QA 2Laws of Motion QA 2
Laws of Motion QA 2
 
Set Theory 2
Set Theory 2Set Theory 2
Set Theory 2
 
Laws of Motion QA 5
Laws of Motion QA 5Laws of Motion QA 5
Laws of Motion QA 5
 

Similar to Lesson 23: Antiderivatives (Section 041 slides)

Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)Mel Anthony Pepito
 
Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)Mel Anthony Pepito
 
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: AntiderivativesMatthew Leingang
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: AntiderivativesMatthew Leingang
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: AntiderivativesMatthew Leingang
 
Lesson 21: Antiderivatives (notes)
Lesson 21: Antiderivatives (notes)Lesson 21: Antiderivatives (notes)
Lesson 21: Antiderivatives (notes)Matthew Leingang
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Mel Anthony Pepito
 
Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)Mel Anthony Pepito
 
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)Matthew Leingang
 
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
Lesson20  -derivatives_and_the_shape_of_curves_021_slidesLesson20  -derivatives_and_the_shape_of_curves_021_slides
Lesson20 -derivatives_and_the_shape_of_curves_021_slidesMatthew Leingang
 
Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)Matthew Leingang
 
Lesson 5: Continuity (Section 21 slides)
Lesson 5: Continuity (Section 21 slides)Lesson 5: Continuity (Section 21 slides)
Lesson 5: Continuity (Section 21 slides)Matthew Leingang
 
Lesson 5: Continuity (Section 21 slides)
Lesson 5: Continuity (Section 21 slides)Lesson 5: Continuity (Section 21 slides)
Lesson 5: Continuity (Section 21 slides)Mel Anthony Pepito
 
Lesson 22: Optimization II (Section 041 slides)
Lesson 22: Optimization II (Section 041 slides)Lesson 22: Optimization II (Section 041 slides)
Lesson 22: Optimization II (Section 041 slides)Matthew Leingang
 
Bai giang Dao ham rieng
Bai giang Dao ham riengBai giang Dao ham rieng
Bai giang Dao ham riengNhan Nguyen
 

Similar to Lesson 23: Antiderivatives (Section 041 slides) (20)

Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)
 
Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)
 
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: Antiderivatives
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: Antiderivatives
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: Antiderivatives
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: Antiderivatives
 
Lesson 21: Antiderivatives (notes)
Lesson 21: Antiderivatives (notes)Lesson 21: Antiderivatives (notes)
Lesson 21: Antiderivatives (notes)
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)
 
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
 
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
Lesson20  -derivatives_and_the_shape_of_curves_021_slidesLesson20  -derivatives_and_the_shape_of_curves_021_slides
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
 
Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)
 
Lesson 5: Continuity (Section 21 slides)
Lesson 5: Continuity (Section 21 slides)Lesson 5: Continuity (Section 21 slides)
Lesson 5: Continuity (Section 21 slides)
 
Lesson 5: Continuity (Section 21 slides)
Lesson 5: Continuity (Section 21 slides)Lesson 5: Continuity (Section 21 slides)
Lesson 5: Continuity (Section 21 slides)
 
Lesson 22: Optimization II (Section 041 slides)
Lesson 22: Optimization II (Section 041 slides)Lesson 22: Optimization II (Section 041 slides)
Lesson 22: Optimization II (Section 041 slides)
 
Bai giang Dao ham rieng
Bai giang Dao ham riengBai giang Dao ham rieng
Bai giang Dao ham rieng
 
Evaluating definite integrals
Evaluating definite integralsEvaluating definite integrals
Evaluating definite integrals
 

More from Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Matthew Leingang
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Matthew Leingang
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Matthew Leingang
 
Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)Matthew Leingang
 

More from Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
 
Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)
 

Recently uploaded

Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAndikSusilo4
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 

Recently uploaded (20)

Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & Application
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 

Lesson 23: Antiderivatives (Section 041 slides)

  • 1. Section 4.7 Antiderivatives V63.0121.041, Calculus I New York University November 29, 2010 Announcements Quiz 5 in recitation this week on §§4.1–4.4 . . . . . .
  • 2. . . . . . . Announcements Quiz 5 in recitation this week on §§4.1–4.4 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 2 / 35
  • 3. . . . . . . Objectives Given a ”simple“ elementary function, find a function whose derivative is that function. Remember that a function whose derivative is zero along an interval must be zero along that interval. Solve problems involving rectilinear motion. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 3 / 35
  • 4. . . . . . . Outline What is an antiderivative? Tabulating Antiderivatives Power functions Combinations Exponential functions Trigonometric functions Antiderivatives of piecewise functions Finding Antiderivatives Graphically Rectilinear motion V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 4 / 35
  • 5. . . . . . . What is an antiderivative? Definition Let f be a function. An antiderivative for f is a function F such that F′ = f. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 5 / 35
  • 6. . . . . . . Hard problem, easy check Example Find an antiderivative for f(x) = ln x. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 6 / 35
  • 7. . . . . . . Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 6 / 35
  • 8. . . . . . . Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 6 / 35
  • 9. . . . . . . Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d dx (x ln x − x) V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 6 / 35
  • 10. . . . . . . Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d dx (x ln x − x) = 1 · ln x + x · 1 x − 1 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 6 / 35
  • 11. . . . . . . Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d dx (x ln x − x) = 1 · ln x + x · 1 x − 1 = ln x V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 6 / 35
  • 12. . . . . . . Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d dx (x ln x − x) = 1 · ln x + x · 1 x − 1 = ln x V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 6 / 35
  • 13. . . . . . . Why the MVT is the MITC Most Important Theorem In Calculus! Theorem Let f′ = 0 on an interval (a, b). Then f is constant on (a, b). Proof. Pick any points x and y in (a, b) with x y. Then f is continuous on [x, y] and differentiable on (x, y). By MVT there exists a point z in (x, y) such that f(y) − f(x) y − x = f′ (z) =⇒ f(y) = f(x) + f′ (z)(y − x) But f′ (z) = 0, so f(y) = f(x). Since this is true for all x and y in (a, b), then f is constant. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 7 / 35
  • 14. . . . . . . When two functions have the same derivative Theorem Suppose f and g are two differentiable functions on (a, b) with f′ = g′ . Then f and g differ by a constant. That is, there exists a constant C such that f(x) = g(x) + C. Proof. Let h(x) = f(x) − g(x) Then h′ (x) = f′ (x) − g′ (x) = 0 on (a, b) So h(x) = C, a constant This means f(x) − g(x) = C on (a, b) V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 8 / 35
  • 15. . . . . . . Outline What is an antiderivative? Tabulating Antiderivatives Power functions Combinations Exponential functions Trigonometric functions Antiderivatives of piecewise functions Finding Antiderivatives Graphically Rectilinear motion V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 9 / 35
  • 16. . . . . . . Antiderivatives of power functions Recall that the derivative of a power function is a power function. Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . .. x . y . f(x) = x2 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 10 / 35
  • 17. . . . . . . Antiderivatives of power functions Recall that the derivative of a power function is a power function. Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . .. x . y . f(x) = x2 . f′ (x) = 2x V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 10 / 35
  • 18. . . . . . . Antiderivatives of power functions Recall that the derivative of a power function is a power function. Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . .. x . y . f(x) = x2 . f′ (x) = 2x . F(x) = ? V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 10 / 35
  • 19. . . . . . . Antiderivatives of power functions Recall that the derivative of a power function is a power function. Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . So in looking for antiderivatives of power functions, try power functions! .. x . y . f(x) = x2 . f′ (x) = 2x . F(x) = ? V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 10 / 35
  • 20. . . . . . . Example Find an antiderivative for the function f(x) = x3 . V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 11 / 35
  • 21. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 11 / 35
  • 22. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 11 / 35
  • 23. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 11 / 35
  • 24. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = 1 4 . V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 11 / 35
  • 25. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = 1 4 . So F(x) = 1 4 x4 is an antiderivative. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 11 / 35
  • 26. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = 1 4 . So F(x) = 1 4 x4 is an antiderivative. Check: d dx ( 1 4 x4 ) = 4 · 1 4 x4−1 = x3 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 11 / 35
  • 27. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = 1 4 . So F(x) = 1 4 x4 is an antiderivative. Check: d dx ( 1 4 x4 ) = 4 · 1 4 x4−1 = x3 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 11 / 35
  • 28. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = 1 4 . So F(x) = 1 4 x4 is an antiderivative. Check: d dx ( 1 4 x4 ) = 4 · 1 4 x4−1 = x3 Any others? V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 11 / 35
  • 29. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = 1 4 . So F(x) = 1 4 x4 is an antiderivative. Check: d dx ( 1 4 x4 ) = 4 · 1 4 x4−1 = x3 Any others? Yes, F(x) = 1 4 x4 + C is the most general form. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 11 / 35
  • 30. . . . . . . Extrapolating to general power functions Fact (The Power Rule for antiderivatives) If f(x) = xr , then F(x) = 1 r + 1 xr+1 is an antiderivative for f… V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 12 / 35
  • 31. . . . . . . Extrapolating to general power functions Fact (The Power Rule for antiderivatives) If f(x) = xr , then F(x) = 1 r + 1 xr+1 is an antiderivative for f as long as r ̸= −1. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 12 / 35
  • 32. . . . . . . Extrapolating to general power functions Fact (The Power Rule for antiderivatives) If f(x) = xr , then F(x) = 1 r + 1 xr+1 is an antiderivative for f as long as r ̸= −1. Fact If f(x) = x−1 = 1 x , then F(x) = ln |x| + C is an antiderivative for f. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 12 / 35
  • 33. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
  • 34. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
  • 35. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
  • 36. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
  • 37. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
  • 38. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
  • 39. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| = d dx ln(−x) V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
  • 40. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| = d dx ln(−x) = 1 −x · (−1) V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
  • 41. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| = d dx ln(−x) = 1 −x · (−1) = 1 x V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
  • 42. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| = d dx ln(−x) = 1 −x · (−1) = 1 x V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
  • 43. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| = d dx ln(−x) = 1 −x · (−1) = 1 x We prefer the antiderivative with the larger domain. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 13 / 35
  • 44. . . . . . . Graph of ln |x| .. x. y . f(x) = 1/x V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 14 / 35
  • 45. . . . . . . Graph of ln |x| .. x. y . f(x) = 1/x. F(x) = ln(x) V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 14 / 35
  • 46. . . . . . . Graph of ln |x| .. x. y . f(x) = 1/x. F(x) = ln |x| V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 14 / 35
  • 47. . . . . . . Combinations of antiderivatives Fact (Sum and Constant Multiple Rule for Antiderivatives) If F is an antiderivative of f and G is an antiderivative of g, then F + G is an antiderivative of f + g. If F is an antiderivative of f and c is a constant, then cF is an antiderivative of cf. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 15 / 35
  • 48. . . . . . . Combinations of antiderivatives Fact (Sum and Constant Multiple Rule for Antiderivatives) If F is an antiderivative of f and G is an antiderivative of g, then F + G is an antiderivative of f + g. If F is an antiderivative of f and c is a constant, then cF is an antiderivative of cf. Proof. These follow from the sum and constant multiple rule for derivatives: If F′ = f and G′ = g, then (F + G)′ = F′ + G′ = f + g Or, if F′ = f, (cF)′ = cF′ = cf V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 15 / 35
  • 49. . . . . . . Antiderivatives of Polynomials .. Example Find an antiderivative for f(x) = 16x + 5. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 16 / 35
  • 50. . . . . . . Antiderivatives of Polynomials .. Example Find an antiderivative for f(x) = 16x + 5. Solution The expression 1 2 x2 is an antiderivative for x, and x is an antiderivative for 1. So F(x) = 16 · ( 1 2 x2 ) + 5 · x + C = 8x2 + 5x + C is the antiderivative of f. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 16 / 35
  • 51. . . . . . . Antiderivatives of Polynomials .. Example Find an antiderivative for f(x) = 16x + 5. Solution The expression 1 2 x2 is an antiderivative for x, and x is an antiderivative for 1. So F(x) = 16 · ( 1 2 x2 ) + 5 · x + C = 8x2 + 5x + C is the antiderivative of f. Question Do we need two C’s or just one? V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 16 / 35
  • 52. . . . . . . Antiderivatives of Polynomials .. Example Find an antiderivative for f(x) = 16x + 5. Solution The expression 1 2 x2 is an antiderivative for x, and x is an antiderivative for 1. So F(x) = 16 · ( 1 2 x2 ) + 5 · x + C = 8x2 + 5x + C is the antiderivative of f. Question Do we need two C’s or just one? Answer Just one. A combination of two arbitrary constants is still an arbitrary constant. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 16 / 35
  • 53. . . . . . . Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 17 / 35
  • 54. . . . . . . Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . Accordingly, Fact If f(x) = ax , then F(x) = 1 ln a ax + C is the antiderivative of f. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 17 / 35
  • 55. . . . . . . Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . Accordingly, Fact If f(x) = ax , then F(x) = 1 ln a ax + C is the antiderivative of f. Proof. Check it yourself. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 17 / 35
  • 56. . . . . . . Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . Accordingly, Fact If f(x) = ax , then F(x) = 1 ln a ax + C is the antiderivative of f. Proof. Check it yourself. In particular, Fact If f(x) = ex , then F(x) = ex + C is the antiderivative of f. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 17 / 35
  • 57. . . . . . . Logarithmic functions? Remember we found F(x) = x ln x − x is an antiderivative of f(x) = ln x. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 18 / 35
  • 58. . . . . . . Logarithmic functions? Remember we found F(x) = x ln x − x is an antiderivative of f(x) = ln x. This is not obvious. See Calc II for the full story. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 18 / 35
  • 59. . . . . . . Logarithmic functions? Remember we found F(x) = x ln x − x is an antiderivative of f(x) = ln x. This is not obvious. See Calc II for the full story. However, using the fact that loga x = ln x ln a , we get: Fact If f(x) = loga(x) F(x) = 1 ln a (x ln x − x) + C = x loga x − 1 ln a x + C is the antiderivative of f(x). V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 18 / 35
  • 60. . . . . . . Trigonometric functions Fact d dx sin x = cos x d dx cos x = − sin x V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 19 / 35
  • 61. . . . . . . Trigonometric functions Fact d dx sin x = cos x d dx cos x = − sin x So to turn these around, Fact The function F(x) = − cos x + C is the antiderivative of f(x) = sin x. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 19 / 35
  • 62. . . . . . . Trigonometric functions Fact d dx sin x = cos x d dx cos x = − sin x So to turn these around, Fact The function F(x) = − cos x + C is the antiderivative of f(x) = sin x. The function F(x) = sin x + C is the antiderivative of f(x) = cos x. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 19 / 35
  • 63. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 20 / 35
  • 64. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 20 / 35
  • 65. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 20 / 35
  • 66. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). Check d dx = 1 sec x · d dx sec x V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 20 / 35
  • 67. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). Check d dx = 1 sec x · d dx sec x = 1 sec x · sec x tan x V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 20 / 35
  • 68. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). Check d dx = 1 sec x · d dx sec x = 1 sec x · sec x tan x = tan x V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 20 / 35
  • 69. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). Check d dx = 1 sec x · d dx sec x = 1 sec x · sec x tan x = tan x V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 20 / 35
  • 70. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). Check d dx = 1 sec x · d dx sec x = 1 sec x · sec x tan x = tan x More about this later. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 20 / 35
  • 71. . . . . . . Antiderivatives of piecewise functions Example Let f(x) = { x if 0 ≤ x ≤ 1; 1 − x2 if 1 x. Find the antiderivative of f with F(0) = 1. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 21 / 35
  • 72. . . . . . . Antiderivatives of piecewise functions Example Let f(x) = { x if 0 ≤ x ≤ 1; 1 − x2 if 1 x. Find the antiderivative of f with F(0) = 1. Solution We can antidifferentiate each piece: F(x) =    1 2 x2 + C1 if 0 ≤ x ≤ 1; x − 1 3 x3 + C2 if 1 x. The constants need to be chosen so that F(0) = 1 and F is continuous (at 1). V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 21 / 35
  • 73. . . . . . . F(x) =    1 2 x2 + C1 if 0 ≤ x ≤ 1; x − 1 3 x3 + C2 if 1 x. Note F(0) = 1 2 02 + C1 = C1 =⇒ C1 = 1 This means lim x→1− F(x) = 1 2 12 + 1 = 3 2 . Now lim x→1+ F(x) = 1 − 1 3 + C2 = 2 3 + C2 So for F to be continuous we need 3 2 = 2 3 + C2 =⇒ C2 = 5 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 22 / 35
  • 74. . . . . . . Outline What is an antiderivative? Tabulating Antiderivatives Power functions Combinations Exponential functions Trigonometric functions Antiderivatives of piecewise functions Finding Antiderivatives Graphically Rectilinear motion V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 23 / 35
  • 75. . . . . . . Finding Antiderivatives Graphically Problem Below is the graph of a function f. Draw the graph of an antiderivative for f. .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... y = f(x) V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 24 / 35
  • 76. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 77. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 78. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 79. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 80. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 81. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 82. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 83. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 84. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 85. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 86. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 87. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 88. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 89. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 90. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 91. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 92. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 93. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 94. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 95. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 96. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 97. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 98. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 99. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 100. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 101. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 102. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 .. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 103. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ... V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 104. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 .... V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 105. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ..... V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 106. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... ? . ? . ? . ? . ? . ? The only question left is: What are the function values? V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 25 / 35
  • 107. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
  • 108. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min . V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
  • 109. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min . V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
  • 110. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min .. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
  • 111. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min .. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
  • 112. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min ... V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
  • 113. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min ... V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
  • 114. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min .... V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
  • 115. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min .... V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
  • 116. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min ..... V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
  • 117. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min ...... V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
  • 118. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity It’s harder to tell if/when F crosses the axis; more about that later. .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min ...... V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 26 / 35
  • 119. . . . . . . Outline What is an antiderivative? Tabulating Antiderivatives Power functions Combinations Exponential functions Trigonometric functions Antiderivatives of piecewise functions Finding Antiderivatives Graphically Rectilinear motion V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 27 / 35
  • 120. . . . . . . Say what? “Rectilinear motion” just means motion along a line. Often we are given information about the velocity or acceleration of a moving particle and we want to know the equations of motion. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 28 / 35
  • 121. . . . . . . Application: Dead Reckoning V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 29 / 35
  • 122. . . . . . . Application: Dead Reckoning V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 29 / 35
  • 123. . . . . . . Problem Suppose a particle of mass m is acted upon by a constant force F. Find the position function s(t), the velocity function v(t), and the acceleration function a(t). V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 30 / 35
  • 124. . . . . . . Problem Suppose a particle of mass m is acted upon by a constant force F. Find the position function s(t), the velocity function v(t), and the acceleration function a(t). Solution By Newton’s Second Law (F = ma) a constant force induces a constant acceleration. So a(t) = a = F m . V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 30 / 35
  • 125. . . . . . . Problem Suppose a particle of mass m is acted upon by a constant force F. Find the position function s(t), the velocity function v(t), and the acceleration function a(t). Solution By Newton’s Second Law (F = ma) a constant force induces a constant acceleration. So a(t) = a = F m . Since v′ (t) = a(t), v(t) must be an antiderivative of the constant function a. So v(t) = at + C = at + v0 where v0 is the initial velocity. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 30 / 35
  • 126. . . . . . . Problem Suppose a particle of mass m is acted upon by a constant force F. Find the position function s(t), the velocity function v(t), and the acceleration function a(t). Solution By Newton’s Second Law (F = ma) a constant force induces a constant acceleration. So a(t) = a = F m . Since v′ (t) = a(t), v(t) must be an antiderivative of the constant function a. So v(t) = at + C = at + v0 where v0 is the initial velocity. Since s′ (t) = v(t), s(t) must be an antiderivative of v(t), meaning s(t) = 1 2 at2 + v0t + C = 1 2 at2 + v0t + s0 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 30 / 35
  • 127. . . . . . . An earlier Hatsumon Example Drop a ball off the roof of the Silver Center. What is its velocity when it hits the ground? V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 31 / 35
  • 128. . . . . . . An earlier Hatsumon Example Drop a ball off the roof of the Silver Center. What is its velocity when it hits the ground? Solution Assume s0 = 100 m, and v0 = 0. Approximate a = g ≈ −10. Then s(t) = 100 − 5t2 So s(t) = 0 when t = √ 20 = 2 √ 5. Then v(t) = −10t, so the velocity at impact is v(2 √ 5) = −20 √ 5 m/s. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 31 / 35
  • 129. . . . . . . Finding initial velocity from stopping distance Example The skid marks made by an automobile indicate that its brakes were fully applied for a distance of 160 ft before it came to a stop. Suppose that the car in question has a constant deceleration of 20 ft/s2 under the conditions of the skid. How fast was the car traveling when its brakes were first applied? V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 32 / 35
  • 130. . . . . . . Finding initial velocity from stopping distance Example The skid marks made by an automobile indicate that its brakes were fully applied for a distance of 160 ft before it came to a stop. Suppose that the car in question has a constant deceleration of 20 ft/s2 under the conditions of the skid. How fast was the car traveling when its brakes were first applied? Solution (Setup) While braking, the car has acceleration a(t) = −20 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 32 / 35
  • 131. . . . . . . Finding initial velocity from stopping distance Example The skid marks made by an automobile indicate that its brakes were fully applied for a distance of 160 ft before it came to a stop. Suppose that the car in question has a constant deceleration of 20 ft/s2 under the conditions of the skid. How fast was the car traveling when its brakes were first applied? Solution (Setup) While braking, the car has acceleration a(t) = −20 Measure time 0 and position 0 when the car starts braking. So s(0) = 0. The car stops at time some t1, when v(t1) = 0. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 32 / 35
  • 132. . . . . . . Finding initial velocity from stopping distance Example The skid marks made by an automobile indicate that its brakes were fully applied for a distance of 160 ft before it came to a stop. Suppose that the car in question has a constant deceleration of 20 ft/s2 under the conditions of the skid. How fast was the car traveling when its brakes were first applied? Solution (Setup) While braking, the car has acceleration a(t) = −20 Measure time 0 and position 0 when the car starts braking. So s(0) = 0. The car stops at time some t1, when v(t1) = 0. We know that when s(t1) = 160. We want to know v(0), or v0. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 32 / 35
  • 133. . . . . . . Implementing the Solution In general, s(t) = s0 + v0t + 1 2 at2 Since s0 = 0 and a = −20, we have s(t) = v0t − 10t2 v(t) = v0 − 20t for all t. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 33 / 35
  • 134. . . . . . . Implementing the Solution In general, s(t) = s0 + v0t + 1 2 at2 Since s0 = 0 and a = −20, we have s(t) = v0t − 10t2 v(t) = v0 − 20t for all t. Plugging in t = t1, 160 = v0t1 − 10t2 1 0 = v0 − 20t1 We need to solve these two equations. V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 33 / 35
  • 135. . . . . . . Solving We have v0t1 − 10t2 1 = 160 v0 − 20t1 = 0 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 34 / 35
  • 136. . . . . . . Solving We have v0t1 − 10t2 1 = 160 v0 − 20t1 = 0 The second gives t1 = v0/20, so substitute into the first: v0 · v0 20 − 10 ( v0 20 )2 = 160 or v2 0 20 − 10v2 0 400 = 160 2v2 0 − v2 0 = 160 · 40 = 6400 V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 34 / 35
  • 137. . . . . . . Solving We have v0t1 − 10t2 1 = 160 v0 − 20t1 = 0 The second gives t1 = v0/20, so substitute into the first: v0 · v0 20 − 10 ( v0 20 )2 = 160 or v2 0 20 − 10v2 0 400 = 160 2v2 0 − v2 0 = 160 · 40 = 6400 So v0 = 80 ft/s ≈ 55 mi/hr V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 34 / 35
  • 138. . . . . . . Summary Antiderivatives are a useful concept, especially in motion We can graph an antiderivative from the graph of a function We can compute antiderivatives, but not always .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f ....... F f(x) = e−x2 f′ (x) = ??? V63.0121.041, Calculus I (NYU) Section 4.7 Antiderivatives November 29, 2010 35 / 35