The document discusses finite element methods and their applications in microelectromechanical systems (MEMS). It covers the basic formulation of finite element methods, including discretization, selection of displacement functions, derivation of element stiffness matrices, and assembly of global equations. It also discusses specific applications of finite element analysis to problems in MEMS like heat transfer analysis, thermal stress analysis, and static/modal analysis. The finite element method is well-suited for complex geometries and materials and can model irregular shapes, general loads/boundary conditions, and nonlinear behavior.