SlideShare a Scribd company logo
TO
ByBy
Dr.G.PAULRAJDr.G.PAULRAJ
Professor & HeadProfessor & Head
Department of Mechanical EngineeringDepartment of Mechanical Engineering
Vel Tech (Owned by RS Trust)Vel Tech (Owned by RS Trust)
Chennai-600 062.Chennai-600 062.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
2
UNIT-II-ONE DIMENSIONAL
PROBLEMS
UNIT II ONE-DIMENSIONAL
PROBLEMS
 One Dimensional Second Order Equations –
Discretization – Element types- Linear and Higher
order Elements – Derivation of Shape functions and
Stiffness matrices and force vectors- Assembly of
Matrices - Solution of problems from solid mechanics
and heat transfer. Longitudinal vibration frequencies
and mode shapes. Fourth Order Beam Equation –
Transverse deflections and Natural frequencies of
beams.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
3
ONE DIMENSIONAL FINITE
ELEMENT ANALYSIS
 The geometry and other parameters of bar and beam element can be
defined in terms of only one spatial co-ordinate, the element is called as
one dimensional element.
 A bar is a member which resist only axial loads.
 Where u1 & u2 are the nodal variables.
 u(x) is the nodal displacement.
 A beam can resist transverse and twisting loads.
 Where v1 & v2 are the transverse displacements
of nodal variables.
 θ1 & θ2 are the slopes (rotations) of the nodes.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
4
SHAPE FUNCTION FOR ONE-
DIMENSIONAL ELEMENT
 Consider a one-dimensional element (line segment) of length l
with two nodes, one at each end, as shown in Figure. Let the
nodes be denoted as i and j and the nodal values of the field
variable as Φi and Φj.ϕ
The variation of inside theϕ
element is assumed to be linear
as ϕ(x) = α1 + α2x …(1)
where α1 and α2 are the
unknown coefficients.
By using the nodal conditions
(x) = Φi at x = xiϕ
(x) = Φj at x = xjϕ
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
5
and Eq. (1), we obtain
Φi = α1 + α2xi
Φj = α1 + α2xj
 The solution of these equations gives
α1 = Φixj −Φjxi
l …(2)
α2 = Φj −Φi
l
 where xi and xjdenote the global coordinates of nodes i and j,
respectively. By substituting Eq. (2) into Eq. (1), we obtain
 Φ(x) = Φixj −Φjxi + Φj −Φi x ……(3)
l l
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
6
 This equation can be written, after rearrangement of terms, as
Φ(x) = Ni(x)Φi +Nj(x)Φj = [N(x)] Φ(e)
….(4)
[N(x)] = [Ni(x) Nj(x)] … (5)
Ni(x) = xj −x
l …(6)
Nj(x) = x −xi
l
and Φ(e) = Φi = vector of nodal unknowns of elements e …(7)
Φj
 Note that the superscript e is not used for Φi and Φj for simplicity.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
7
 The linear functions of x defined in Eq. (6) are called
interpolation or shape functions.
 Note that each interpolation function has a subscript to denote
the node to which it is associated.
 Furthermore, the value of Ni(x) can be seen to be 1 at node i (x =
xi) and 0 at node j (x = xj). Likewise, the value of Nj(x) will be 0
at node i and 1 at node j.
 These represent the common characteristics of interpolation
functions.
 They will be equal to 1 at one node and 0 at each of the other
nodes of the element.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
8
STIFFNESS MATRIX
 The primary characteristics of a finite element are
embodied in the element stiffness matrix.
 For a structural finite element, the stiffness matrix
contains the geometric and material behavior
information that indicates the resistance of the element
to deformation when subjected to loading.
 Such deformation may include axial, bending, shear,
and torsional effects.
 For finite elements used in nonstructural analyses, such
as fluid flow and heat transfer, the term stiffness matrix is
also used, since the matrix represents the resistance of the
element to change when subjected to external influences.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
9
STIFFNESS MATRIX …,
we know that,
 Strain, {e} = [B] {u*}
 {e}T
= [B]T
{u*}T
where,
 {e} is a strain matrix
 [B] is strain- displacement matrix
 {u*} is a degree of freedom
we know that,
 Stress, {δ} = [E] {e}
 {δ} = [D] {e}
 where [E] =[D] = Young’s modulus.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
10
 Strain energy expression is given by,

U = ∫½ {e}T
{δ} dv
v
Substitute {e}T
and {δ} values,

U = ∫½ [B]T
{u*}T
[D] {e} dv
v

= ½ {u*}T
∫[B]T
[D] {e} dv
v
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
11
 Substitute {e} values,

U = ½ {u*}T
∫[B]T
[D] [B] {u*} dv
v

U = ½ {u*}T
∫[B]T
[D] [B] dv {u*}
v

So, Stiffness matrix, [K] = ∫[B]T
[D] [B] dv
v
where,
 [B] is strain- displacement relationship matrix
 [D] Elasticity matrix or Stress-strain relationship matrix
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
12
 In 1D problem,
 Strain, e = du/dx
 Where, u = Displacement function
 [D] = [B] = E = Young’s modulus.
 In Beam problem, Strain, e = Curvature = d2
u/dx2
 [D] = [EI] = Flexural rigidity
 Properties of stiffness Matrix:
1. It is symmetric.
2. The sum of elements in any column is equal to zero.
3. It is an unstable element. So, the determinants is equal to zero.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
13
STIFFNESS MATRIX FOR
1-D LINEAR BAR ELEMENT
 Consider a 1-D bar element with nodes 1 and 2 as shown in figure. Let
u1 and u2 be the nodal displacement parameters or otherwise known as
degrees of freedom.
 We know that,
Stiffness matrix, [K] = [B]T
[D] [B] dv
v
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
14
1 2
l
u1 u2
x
 In 1-D Bar element,
 Displacement function u = N1u1 + N2u2
Where , N1 = l-x/L and N2= x/L
We know that, Strain displacement matrix, [B] = dN1/dx dN2/dx
= -1/L 1/L
Substitute [B], [B]T
and [D] values in stiffness matrix equation[Limits is 0 to l]
L
[K] = -1/L x E x -1/L 1/L dv
1/L
0
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
15
l
1/L2
-1/L2
[K] = E dv
-1/L2
1/L2
0
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
16
l
1/L2
-1/L2
[K] = E A dx [ dv= A dx]
-1/L2
1/L2
0
l
1/L2
-1/L2
1/L2
-1/L2
L 1 -1
[K] = E A dx = AE [x] = AE/L
-1/L2
1/L2
-1/L2
1/L2
0 -1 1
0
 The properties of stiffness matrix are satisfied.
1. It is symmetric.
2. The sum of elements in any column is equal to zero.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
17
FINITE ELEMENT EQUATION
FOR 1-D BAR ELEMENT
 We know that, General force equation is,
[k] {u} = {F} ----------- (1)
 where [k] is stiffness matrix
 {u} is displacement vector and
 {F} is force vector in the coordinate directions
 The element kij of stiffness matrix maybe defined as the force at
coordinate i due to unit displacement in coordinate direction j.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
18
 For 1-D bar element, stiffness matrix [k] is given by,
 For two noded bar element,
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
19
1 -1
[K] = AE/L
-1 1
F1
{F} = &
F2
u1
{u} = , Substitute [K] {F} {u}
values
u2 in equ. (1)
1 -1 u1
{F}=AE/L This is a finite element equation for 1D 2-noded bar element
-1 1 u2
P1: A two noded bar element is shown in figure. The nodal displacement are
u1=5mm and u2= 8mm. Calculate the displacement at x= l/4, l/3 and l/2.
Solution:
Displacement function for 2-noded bar element is given by,
u = N1u1 + N2u2
Where, N1 = l-x/L and N2 = x/L => u =[ l-x/L] u1 + [x/L]u2
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
20
1 2
L
u1= 5mm u2=8mm
x
 Substitute x= l/4, u1 = 5 and u2 = 8 in the above equation,
 u = 5.75 mm at x=l/4
 Substitute x= l/3, u1 = 5 and u2 = 8 in the above equation,
 u = 6 mm at x=l/3
 Substitute x= l/2, u1 = 5 and u2 = 8 in the above equation,
 u = 6.5 mm at x=l/2
 Result: u = 5.75 mm at x=l/4, u = 6 mm at x=l/3 & u = 6.5 mm at x=l/2
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
21
P2: A one dimensional bar is shown in figure. Calculate the following:
(i) Shape function N1 and N2 at point P.
(ii) If u1=3mm and u2=-5mm, calculate the displacement u at ponit P.
 We know that,
Actual length of the bar, L=x2-x1=36-20=16mm
The distance between point 1 and point P is, x= 24-20=4mm
Displacement function for two noded bar element is given by,
u = N1u1+ N2u2
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
22
X1
2
L
X1= 20mm
u1= 5mm
X2=36mm
u2=-5mm
P
X=24mm
 Where, N1 = l- x/L and N2 = x/L
N1 = 16- 4/16 = 0.75mm
N2 = 4/6 = 0.25mm
 Substitute N1, N2, u1 and u2 values in the above equation,
u = N1u1+N2u2
= (0.75)(3)+0.25(-5)
u = 1mm
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
23
THE QUADRATIC BAR
ELEMENT
Determination of Shape Function:
 The Three noded quadratic bar element is shown in figure.
 The displacement at any point within the element is now interpolated
from the three nodal displacement using the shape functions as follows:
 u(x) = N1(x)u1 + N2(x)u2+ N3(x)u3 ---------------- (1)
 The shape functions Ni vary quadratically with in the element.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
24
X=0 X=lX=l/2
1
→u1
23
X
→u3
→u2
 Let u(x) be given by the complete quadratic polynomial
 u(x) = a0 + a1x + a2x2
-------------- (2)
 We know that u(0) =u1, u(l) = u2 and u(l/2) = u3,. Hence, from the above
equation,
 u1 = a0, u2 = a0 + a1l + a2l2
and u3 = a0 + a1(l/2) + a2(l/2)2
 Solving for ai, we obtain
a0 = u1
a1 = (4u3 – u2 – 3u1)/l
a2 = (2u1 + 2u2 + 4u3)/l2
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
25
 Thus we have
u(x) = u1 +[ (4u3 – u2 – 3u1 ) / l] x +[ (2u1 + 2u2 – 4u3 ) / l2
]x2
------------(3)
Rearranging the terms, we get
u(x) = u1( 1 – 3x/l + 2x2
/l2
) + u2(-x/l + 2x2
/l2
) + u3(4x/l – 4x2
/l2
) -----(4)
Comparing equations (1) and (4)
N1 = 1 – 3x/l + 2x2
/l2
,
N2 = -x/l + 2x2
/l2
,
N3 = 4x/l – 4x2
/l2
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
26
STIFFNESS MATRIX FOR
QUADRATIC BAR ELEMENT
 Given the shape functions, we get the strain- displacement relation
matrix [B] as
 e = du/dx = d/dx [N] {u}
 Where [B] = [dN1/ dx dN2/dx dN3/dx]
 = [2/l2
(2x – 3 l/2) 2/l2
(2x – l/2) -4/l2
(2x - l)]
 We know that the stiffness matrix of the element
 Stiffness matrix, [K] = [B]T
[B] EA dx
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
27
1
2/l2
(2x - 3l/2)
=
2/l2
(2x - l/2) [2/l2
(2x - 3l/2) 2/l2
(2x - l/2) -4/l2
(2x - l)] EA dx
0
-4/l2
(2x - l)
On evaluating all the integrals, we obtain the element stiffness matrix as
7 1 -8
[k] = AE/3l 1 7 -8
-8 -8 16
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
28
 A steel bar of length 800mm is subjected to an axial load of 3KN as
shown in figure. Find the elongation of the bar, neglecting
self weight. Take E = 2x 105
N/mm2
, A = 300mm2
.
 Solution:
 We can divide the bar into two elements as shown in
Figure.
 Now the bar has 2elements with 3 nodes.
 Displacement at
node 1 = u1
node 2 = u2
node 3 = u3
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
29
3 x 103
N
800mm
400mm
400mm1
3
1
2
1
2
3 x 103
N
800mm
400mm
400mm1
u3
u1
u2
1
2
 For 1D two noded bar element, the finite element equation is,
 For element 1: (node 1, 2)
 Finite element equation is,
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
30
F1 1 -1 u1
=AE/L
F2
-1 1 u2
1 -1 u1 F1
A1E/L1 =
-1 1 u2 F2
400mm
u2
u1
1
------------ (1)
 For element 2 (Nodes 2,3)
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
31
1 -1 u1 F1
300x2x105
/400 =
-1 1 u2 F2
1 -1 u1 F1
150x103
=
-1 1 u2 F2
3 x 103
KN
400mm
u3
u2
2
1 -1 u2 F2
A2E/L2 =
-1 1 u3 F3
---------------- (2)
Assemble the finite element equations (1) and (2).
-------- (3)
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
32
1 -1 u2 F2
150x103
=
-1 1 u3 F3
1 -1 0 u1 F1
150x103
-1 2 -1 u2 = F2
0 -1 1 u3 F3
 Applying boundary conditions:
 u1 = 0
 F3 = 3x103
N
 Substitute u1, F1,F2 and F3 values in equation (3)
 Here u1=0. So, neglect first row and first column of [K] matrix. Hence
the final reduced equation is,
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
33
1 -1 0 0 0
150x103
-1 2 -1 u2 = 0
0 -1 1 u3 3x103
2 -1 u2 0
150x103
=
-1 1 u3 3x103
 150 x 103
(2u2 – u3) = 0 ----------- (4)
 150 x 103
(-u2 + u3) 3 x 103
-----------(5)
 Solving, 150 x 103
(u2) = 3 x 103
u2 = 0.02mm
Substitute u2 value in equation (4),
u3 = 0.04mm
Result:
1. Displacement at node 1 , u1 = 0
2. Displacement at node 2 , u2 = 0.02 mm
3. Displacement at node 3 , u3 = 0.04 mm
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
34
 Consider a taper steel plate of uniform thickness, t = 25 mm as shown in
figure. The Young’s modulus of the plate, E = 2 X 105
N/mm2
and weight
density, ρ = 0.82 x 10-4
N/mm3. In addition to its self-weight, the plate is
subjected to a point load p = 100N at its mid point. Calculate the
following by modeling the plate with
two finite elements:
(i) Global force vector {F}.
(ii) Global stiffness matrix [K].
(iii) Displacement in each element.
(iv) Stresses in each element.
(v) Reaction force at the support.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
35
300 mm
600 mm
75 mm
p
150 mm
x
 In this problem, the area of the element is varying at each c-s. If we
consider this area variation, the problem will be tedious. So the given
taper bar is considered as stepped bar as shown in figure.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
36
300 mm
600 mm
W3 = 75 mm
p
W1 = 150 mm
x
W2
3
2
1
W1 = 150 mm
300 mm
300 mm
p
75 mm
1
2
 Solution:
 Area at node 1, A1 = Width X Thickness = W1 X t1 = 150 X 25 = 3750 mm2
 Area at node 2, A2 = Width X Thickness = W2 X t2 = [(W1 + W2)/2] X t2
A2 = 2812.5 mm2
 Area at node 3, A3 = Width X Thickness = W3 X t3= 75 X 25 = 1875 mm2
 Average area of element (1):
 A1 = (Area of node 1 + Area of node 2) /2 = 3281.25 mm2
 Average area of element (2):
 A2 = (Area of node 2 + Area of node 3) /2 = 2343.75 mm2
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
37
 The steel plate is subjected to self-weigth.So, we have to findout the
body force acting at nodal points 1,2 and 3.
1
 We know that, Body force vector, {F} = (ρ A L) /2
1
F1 1
 For element (1) : Force vector = (ρ1 A1 L1) /2
F2 1 1
= (0.82 X 10-4 X 3281.25 X 300)/2 X
F1 40.359 1
= --------- (1)
F2 40.359
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
38
F2 1
 For element (2) : Force vector = (ρ2 A2 L2) /2
F3 1 1
= (0.82 X 10-4 X 2343.75 X 300)/2 X
F2 28.828 1
= --------- (2)
F3 28.828
Assembling the force vector i.e. assemble the equation (1) and (2)
F1 40.359
F2 = 69.187
F3 28.828
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
39
 A point load of 100N is acting at node 2 as shown in figure. So, add
100N in F2 vector.
F1 40.359
Global Force Vector, F2 = 169.187
F3 28.828
Finite element equation for 1D- plate element is given by
F1 1 -1 u1
= A E /L
F2 -1 1 u2
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
40
 For element 1: (node 1, 2)
 Finite element equation is,
1 2
10.937 -10.937 1 u1 F1
2 X 105
= ------- (4)
-10.937 10.937 2 u2 F2
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
41
1 -1 u1 F1
A1E/L1 =
-1 1 u2 F2
300mm
u2
u1
1
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
42
 For element 2: (node 2, 3)
 Finite element equation is,
2 3
7.8125 - 7.8125 2 u2 F2
2 X 105
= ------- (5)
- 7.8125 7.8125 3 u3 F3
1 -1 u2 F2
A2E/L2 =
-1 1 u3 F3
300mm
u3
u2
2
p
 Assemble the finite element equations (4) and (5)
 Apply the B.Cs i.e., at node 1, Displacement u1 = 0. Substitute u1, F1, F2
and F3 value in equ. (6)
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
43
10.937 -10.937 0 u1 F1
2x105
-10.937 18.749 -7.8125 u2 = F2 ------- (6)
0 -7.8125 7.8125 u3 F3
10.937 -10.937 0 0 40.359
2x105
-10.937 18.749 -7.8125 u2 = 169.187
0 -7.8125 7.8125 u3 28.828
 In the above equation, u1 = 0. So, neglect first row and first column of
[K] matrix. The reduced equation is,
2x105
(18.749u2 - 7.8125 u3) = 169.187 ------------- (7)
2x105
(-7.8125u2+7.8125u3) = 28.828 ------------- (8)
Solving, 2x105
x (10.936)u2 = 198.015
u2 = 9.053 x 10-5
mm
 Substitute u2 value in equ. (7),
u3 = 10.898 x 10-5
mm
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
44
2x105
18.749 -7.8125 u2 = 169.187
-7.8125 7.8125 u3 28.828
 Stresses :
 Stress, σ1 = E ε12 = E (u2-u1)/ L1 = 0.060 N/mm2
 Stress, σ2 = E ε23 = E (u3-u2)/ L1 = 0.0123 N/mm2
 Reaction force:
 We know that, {R} = [K]{u} – {F}
 2x105
(-10.937 x 9.053 x 10-5
) = 40.359
R1 = -238.379 N04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
45
10.937 -10.937 0 0 40.359
{R} =2x105
-10.937 18.749 -7.8125 u2 - 169.187
0 -7.8125 7.8125 u3 28.828
 In figure, a load P = 60 X 103
N is applied as shown. Determine the
displacement field, stress and support reactions in the body.
Take E = 20 X 103
N/mm2
.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
46
Wall
P
1.2mm
150mm
150mm
250mm2
 Solution:
 In this problem, we should first determine whether contact occurs
between the bar and the wall. To do this, assume that the wall does not
exit. The deformation at node is given by,
 δ = PL/AE = (60 X 103
) x 150 /(250 x 20 X 103
) = 1.8 mm
 The gap between the wall and node 3 is 1.2 mm. So, that contact occurs
between the bar and the wall.
 Displacement at point 3 ,(u3) = 1.2 mm. From this result, we see that
contact does not occur.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
47
1.2mm
P
150mm
150mm
Wall
u3u2
u1
 The problem has to be resolved, since the B.Cs are now different. The
displacement at u3 is specified to be 1.2 mm. Consider the 2 element
finite element model in figure. The B.Cs are u1= 0 and u3 = 1.2mm.
 The structural stiffness matrix [K1
] and [K2
] are:
1 -1 1 -1
 [k12
] = AE/L =(250 x 20 x 103
) /150
-1 1 -1 1
 The global unreduced stiffness matrix is ,
1.667 -1.667 0
 [K] = 20 x 103
-1.667 3.333 -1.667
0 -1.667 1.667
The finite element equation can be written,
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
48
3P
150mm
150mm
250mm2
1
2
1 2
1.667 -1.667 0
 [K] = 20 x 103
-1.667 3.333 -1.667
0 -1.667 1.667
Retaining 2 equation yields,
20x103
(3.33u2 -1.67 x 1.2) = 60 x 103
=> u2 =1.5 mm
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
49
1.667 -1.667 0 0 0
20x103
-1.667 3.333 -1.667 u2 = 60 x 103
0 -1.667 1.667 1.2 0
P
150mm
u2
u1 1
150mm
u3
u2 2
1.2
mm
 Stresses:
For element 1:
 Stress, σ1 = E ε12 = E (u2-u1)/ L1 = 2000 N/mm2
For element 2:
 Stress, σ2 = E ε23 = E (u3-u2)/ L1 = -400 N/mm2
 Reaction force:
We know that, {R} = [K]{u} – {F}
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
50
R1 1.667 -1.667 0 0 0
R2 =20x103
-1.667 3.333 -1.667 1.5 - 60 x 103
R3 0 -1.667 1.667 1.2 0
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
51
R1 -50010 0 => R1 = -50010 N
R2 = 59982 - 60 X 103
=> R2 = 0
R3 -10002 0 => R3 = -10002 N
Verification : R1 + R2 + R3 = -50010 + 0 -10002 = -60012 N =60 X103
N
(Applied force)
SPRING ELEMENT
 Consider a system of springs connected in series as shown in Figure.
The analysis of the system (to find the nodal displacements under a
prescribed set of loads) can be conducted using the finite element
method.
 For this, the equilibrium relations of a typical spring element are to be
derived first.
 Let the stiffnesses of the springs be denoted k1, k2, …, kn. Let Fi and Fj be
the forces applied at nodes i and j, and ui and uj be the displacements of
nodes i and j, respectively.
 The relations between the nodal forces and nodal displacements of a
typical spring element e can be derived using the relation:
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
52
 Force = Spring stiffness × Net deformation of the spring
 Thus, the forces at nodes i and j can be expressed as
Fi = ke ui −uj -------- (1)
 (where ui is assumed to be larger than uj so that the compressive force Fi
leads to a decrease in the length of the spring), and
Fj = ke uj −ui -------- (2)
 (where uj is assumed to be larger than ui so that the tensile force Fj leads
to an increase in the length of the spring). Equations (1) and (2) can be
expressed in matrix form as04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
53
1 −1 ui Fi
 ke = = -------- (3)
−1 1 uj Fj
From Eq. (3), the characteristic (stiffness) matrix of the element can be
identified as
i j
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
54
1 -1 i
[K] = k
-1 1 j l
K
Fi
i j
Fj
 where the degree of freedom numbers corresponding to the rows and
columns of the stiffness matrix [K] are also indicated. Equation (3) can
be expressed as
[K] u= F ------------ (4)
 where u and F denote the vectors of nodal displacements and nodal
forces, respectively.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
55
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
56
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
57
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
58
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
59
BEAM ELEMENT
Selection of Nodal D.O.F
 A beam is a straight bar element that is primarily subjected to transverse
loads.
 The deformed shape of a beam is described by the transverse
displacement(v) and slope (rotation-θ) of the beam is shown figure.
Typical Beam Section and
its deformation
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
60
M
X
Z
 Hence, the transverse displacement and rotation at each end of the beam
element are treated as the unknown degrees of freedom.
 For a beam element of length L lying in the xz plane, as shown in
Figure, the four degrees of freedom in the local (xz) coordinate system
are indicated as vi, θi, vj, and θj.
 According to Euler- Bernoulli theory of beam bending, the entire c-s has
the same transverse deflection v as the neutral axis. The Euler- Bernoulli
beam element is shown in figure.
The Euler- Bernoulli beam element
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
61
x=Lx=0
vj
vi
θi θj
 Hence the deflection are small and we assume that the rotation of each
section is the same as the slope of deflection curve at that point. i.e.,
(dv/dx)
 Therefore, the axial deformation of any point P away from the neutral
axis (due to bending alone) is given by uP = -(z)(dv/dx).
 Thus, if v(x) is determine, then the entire state of deformation of the
body is completely determined.
 Abeam element is a simple line element, representing the neutral axis of
the beam.
 To ensure the continuity of the deformation at any point ( i.e., on the
neutral axis), to ensure that v and dv/dx are continuous.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
62
 Taking two nodal D.O.F viz., v and θ (= dv/dx).
 These nodal D.O.F permits to readily assign prescribed essential B.Cs
i.e., v= 0= dv/dx at fixed end.
 A prescribed value of moment load can readily taken into account with
the rotational D.O.F θ.
 At all nodes, the following sign conversions are used:
(i) Moments are +ve in the CCW direction.
(ii) Rotations are positive in the CCW direction.
(iii) Forces are +ve in the +ve z direction.
(iv) Displacements are +ve in the +ve z direction
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
63
SHAPE FUNCTION OF BEAM
ELEMENT
 The displacement field v(x) assumed for the beam element should be
such that it takes on the values of deflection and the slope at either end
as given by the nodal values vi, θi, vj, θj. Let v(x) be given by
 v(x) = c0 + c1x + c2x2
+ c3x3
------- (1)
 Differentiating w.r.t x, we have
 dv/dx = c1 + 2c2x + 3c3x2
---------- (2)
 At x= 0 and L , we have
 vi = c0, θi = c1, vj = c0 + c1L + c2L2
+ c3L3
, θj = c1 + 2c2L + 3c3L2
----- (3)
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
64
 We can solve for the coefficients c0, c1, c2, c3 in terms of the nodal D.O.F.
vi, θi, vj, θj and substitute in equation (1) we get,
v(x) = N1vi + N2 θi + N3vj + N4 θj ---------- (4)
 Where the shape function N are given by,
 N1 = 1 – 3x2
/L2
+ 2X3
/L3
, N2 = x – 2x2
/L + x3
/L2
 N3 = 3x2
/L2
-2x3
/L3
, N4 = -x2
/L + x3
/L2
vi
θi
 Rewrite equation , v(x) = [N] {δ} = [N1 N2 N3 N4] vj ------------ (5)
θj
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
65
STIFFNESS MATRIX FOR BEAM
ELEMENT
 The strain at any point in the beam is given by
 { ε} = εx = du/dx = d/dx [-z (dv/dx)] = -z (d2
v/dx2
)
 From equation (5) we have
 εx = -z [d2
N1/dx2
d2
N2/dx2
d2
N3/dx2
d2
N4/dx2
]{δ}
= -z [((-6/L2
) + (12x/L3
)) ((-4/L) + (6x/L2
)) ((6/L2
)- (12x/L3
)) ((-2/L) + (6x/L2
))]{δ}
Thus the strain displacement relation matrix [B] is given by
[B] = -z [((12x/L3
) - (6/L2
)) ((6x/L) – (4/L2
)) ((6/L2
) - (12x/L3
)) ((6x/L2
) – (2/L))]
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
66
 We can obtain the element stiffness matrix as

[k] = ∫[B]T
[B] E dv
v
L (12x/L3
) - (6/L2
)
= ∫ ∫(-z) (6x/L) – (4/L2
) x (E)(-z) [((12x/L3
) - (6/L2
)) ((6x/L) – (4/L2
))
A 0 (6/L2
) - (12x/L3
) ((6/L2
) - (12x/L3
)) ((6x/L2
) – (2/L))] (dA) dx
(6x/L2
) – (2/L)
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
67

Noting that ∫z2
dA = I, the second moment of area of the C-S and
A
 carrying out the integration w.r.t x, we get
12 6L -12 6L
6L 4L2
-6L 2L2
[k] = EI/L3
-12 -6L 12 -6L
6L 2L2
-6L 4L2
 The element nodal force vectors are now obtained for specific cases of
loading
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
68
P1: A beam, fixed at one end and supported by a roller at the other end, has
a 20KN concentrated load applied at the centre of the span, as shown in
figure. Calculate the deflection under the load and construct the shear
force and bending moment diagrams for the beam.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
69
20KN
500 cm
E= 20 X 106
N/cm2
I = 2500 cm
500 cm
 Solution:
 Let the beam is divided into 2 elements having nodes 1,2,3.
 Let v1, θ1, F1, M1- Vertical deflection, Slope, Shear force and Bending
moment at node 1.
 v2, θ2, F2, M2- Vertical deflection, Slope, Shear force and Bending
moment at node 2.
 v3, θ3, F3, M3- Vertical deflection, Slope, Shear force and Bending
moment at node 3.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
70
E= 20 X 106
N/cm2
I = 2500 cm
θ1 M1
v1, F1 v2, F2
θ2 M2
v3,F3
θ3 M3
1 2
321
 (a) Determination of nodal deflections:
Element (1):
 It has nodal displacements v1, θ1 ,v2, θ2 at nodes 1 and 2.
 The element stiffness matrix for element (1) is given by
12 6L -12 6L
6L 4L2
-6L 2L2
[k1] =E1I1/L1
3
-12 -6L 12 -6L
6L 2L2
-6L 4L2
 Now E1I1/L1
3
= (20 x 106
x 2500) / 5003
= 400 N/cm
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
71
v1 θ1 v2 θ2
12 3000 -12 3000 v1
3000 106
-3000 5x105
θ1
[k1] =400 -12 -3000 12 -3000 v2
3000 5x105
-3000 106
θ2
Element (2):
v2 θ2 v3 θ3
12 3000 -12 3000 v2
3000 106
-3000 5x105
θ2
[k2] =400 -12 -3000 12 -3000 v3
3000 5x105
-3000 106
θ3
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
72
 The global stiffness matrix can be written as,
v1 θ1 v2 θ2 v3 θ3
12 3000 -12 3000 0 0 v1
3000 106
-3000 5x105
0 0 θ1
[k2] =400 -12 -3000 24 0 -12 3000 v2
3000 5x105
0 2 x106
-3000 5x105
θ2
0 0 -12 -3000 12 -3000 v3
0 0 -3000 5x105
-3000 106
θ3
The finite element equation is given by
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
73
 [k] {u} = {F}
12 3000 -12 3000 0 0 v1 F1
3000 106
-3000 5x105
0 0 θ1 M1
i.e., 400 -12 -3000 24 0 -12 3000 v2 = F2 ----- (1)
3000 5x105
0 2 x106
-3000 5x105
θ2 M2
0 0 -12 -3000 12 -3000 v3 F3
0 0 -3000 5x105
-3000 106
θ3 M3
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
74
 The nodal conditions are,
 v1 = 0, θ1 = 0, v3 = 0, F2 = -20000 N, M2 = 0, M3 = 0. Applying the nodal
conditions in the above F.E. equation (1), we get,
12 3000 -12 3000 0 0 0 F1
3000 106
-3000 5x105
0 0 0 M1
i.e., 400 -12 -3000 24 0 -12 3000 v2 = -20000
3000 5x105
0 2 x106
-3000 5x105
θ2 0
0 0 -12 -3000 12 -3000 0 F3
0 0 -3000 5x105
-3000 106
θ3 M3
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
75
 Since v1 = 0, θ1 = 0, v3 = 0, neglect 1st
, 2nd
, 5th
rows and columns in the
global stiffness matrix. From the remaining terms, the F.E. equation can
be written as
24 0 3000 v2- 20000
400 0 2 x106
5x105
θ2 = 0
3000 5x105
106
θ3 0
 θ2 = -0.003125 rad, θ3 = 0.0125 rad and v2 = -3.646 cm
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
76
 (b) Determination of shear force and bending moment:
 The shear force at node 1 is given by
 F1 = 400 (-12v2 + 3000 θ2 ) = 13750 N
 Bending moment at node 1 is
 M1 = 400 (-3000 v2 + 5 x 105
θ2) = 3750200 N-cm
 The shear force at node 3 is
 F3 = 400 (-12v2 - 3000 θ2 - 3000 θ3) = 6250 N
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
77
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
78
13750
F1 F2
F3 Shear Force Diagram
3750200 N-
cm
0
0
-6250
+ + +
- - -
+ +
+
 For the beam and loading shown in figure, determine (1) the slopes at 2
and 3 and (2) the vertical deflection at the midpoint of the distributed
load.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
79
12KN/m
1 m
E= 200 GPa
I = 4 x 106
mm4
1 m
1 2
 Solution:
 Element (1):
 Let v1, θ1, F1, M1- Vertical deflection, Slope, Shear force and Bending
moment at node 1.
 v2, θ2, F2, M2- Vertical deflection, Slope, Shear force and Bending
moment at node 2.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
80
1 m
1
v1 F1
θ2 M2
v2 F2
θ1 M1
 It has nodal displacements v1, θ1 ,v2, θ2 at nodes 1 and 2.
 The element stiffness matrix for element (1) is given by
 Now E1I1/L1
3
= (200 x 109
x 4 x 10-6
) / 13
= 800 x 103
N/m
v1 θ1 v2 θ2
12 6L -12 6L v1
[k1] =800 x 103
6L 4L2
-6L 2L2
θ1 --------- (1)
-12 -6L 12 -6L v2
6L 2L2
-6L 4L2
θ2
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
81
Element (2):
 It has nodal displacements v1, θ1 ,v2, θ2 at nodes 1 and 2.
 The element stiffness matrix for element (1) is given by
 Now E2I2/L2
3
= (200 x 109
x 4 x 10-6
) / 13
= 800 x 103
N/m
v2 θ2 v3 θ3
12 6L -12 6L v2
[k2] =800 x 103
6L 4L2
-6L 2L2
θ2 --- (2)
-12 -6L 12 -6L v3
6L 2L2
-6L 4L2
θ3
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
82
12KN/m
1 m
2
θ2 M2 θ3 M3
v2, F2 v3,F3
32
 The global stiffness matrix can be written as,
v1 θ1 v2 θ2 v3 θ3
12 6 -12 6 0 0 v1
6 4 -6 2 0 0 θ1
[K] = 800 x103
-12 -6 24 0 -12 6 v2 ------- (3)
6 2 0 8 -6 2 θ2
0 0 -12 -6 12 -6 v3
0 0 -6 2 -6 4 θ3
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
83
 The finite element equation is given by
[k] {u} = {F}
12 6 -12 6 0 0 v1 F1
6 4 -6 2 0 0 θ1 M1
800 x103
-12 -6 24 0 -12 6 v2 = F2 ---(4)
6 2 0 8 -6 2 θ2 M2
0 0 -12 -6 12 -6 v3 F3
0 0 -6 2 -6 4 θ3 M3
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
84
 The nodal conditions are,
 For uniformly distributed load
 F2 = -wL/2 ; M2 = -wL2
/12 ;
 F3 = -wL/2 ; M3 = wL2
/12 [w=12 x 103
N/m]
 F2 = -6000 N ; M2 = -1000 N-m ;
 F3 = -6000 N ; M3 = 1000 N-m
 v1=0, θ1 =0, v2=0,v3 =0, F1=0,F2 =-6000 N, M2=-1000 N-m, F3=-6000 N
;M3=1000 N-m
 Applying the nodal conditions in the above F.E. equation (4), we get,
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
85
12 6 -12 6 0 0 0 0
6 4 -6 2 0 0 0 0
800 x103
-12 -6 24 0 -12 6 0 = -6000 ---(4)
6 2 0 8 -6 2 θ2 -1000
0 0 -12 -6 12 -6 0 -6000
0 0 -6 2 -6 4 θ3 1000
 In the above equation v1, θ1 ,v2, v3 =0 ,so delete 1st
, 2nd
, 3rd
, and 5th
row and
column. Hence the equation reduces to
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
86
8 2 θ2 -1000
800 x103
=
2 4 θ3 1000
Slope or rotation at 2, θ2 = -2.679 x 10-4
rad
Slope or rotation at 3, θ3 = 4.464x 10-4
rad
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
87
 The vertical deflection at the midpoint of the distributed load.
 Consider the element (2) and its loading arrangements as shown in
figure.
 For any beam element the vertical deflection can be obtained by using
the relation,
 v(x) = N1v1 + N2 θ1 + N3v2 + N4 θ2
 Where the shape function N are given by,
 N1 = 1 – 3x2
/L2
+ 2X3
/L3
, N2 = x – 2x2
/L + x3
/L2
 N3 = 3x2
/L2
-2x3
/L3
, N4 = -x2
/L + x3
/L2
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
88
12KN/m
1 m
2
θ2 M2 θ3 M3
v2, F2 v3,F3
21
 Also in order to simplify the analysis, consider the element (2) as the
separate element and its nodes 1 and 2.
 v1 = 0, θ1 = -2.679 x 10-4
rad, v2 = 0, θ2 = 4.464x 10-4
rad
 Now at x= 0.5m (i.e., at mid point of element (2))
 N1v1 = 0, N2 θ1 = [0.5 – (2(0.5)2
/1) + ((0.5)3
/12
)] (-2.67 x 10-4
)
 = 3.338 x 10-5
 N3v2 =0 , N4 θ2 = [(– (0.5)2
/1) + ((0.5)3
/12
)] (4.46x 10-4
)
 = 5.575 x 10-5
 v = 0-3.338 x 10-5
+ 0 – 5.575 x 10-5
= -8.913 x 10-5
m = -0.08913 mm
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
89
 i.e., Displacement at the midpoint is directing downwards ass shown in
figure.
v = -0.08913 mm
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
90
2
FRAME ELEMENT
 The bar element can permit only axial deformation and the beam
element can permit only transverse deflection.
 By combining the bar and the beam elements, we obtain the “frame
element” which enables us to model typical problems of framed
structures which in general involve both types of deformation.
 A typical planar frame element is shown in figure, and the
corresponding element equations are
[k] {δ} = {f}
Plane frame element
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
91
ujui
x=Lx=0
vj
vi
θi θj
 Where
 {δ} = {ui, vi, θi, uj, vj, θj}
ui uj
----------- (1)
vi θi vj θj
12EI/L3 6EI/L2 -12EI/L3 6EI/L2 vi
6EI/L2 4EI/L -6EI/L2 2EI/L θi --------(2)
[kbeam] = -12EI/L3 6EI/L2 12EI/L3 -6EI/L2 vj
6EI/L2 2EI/L -6EI/L2 4EI/L θj
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
92
AE/L - AE/L ui
[kbar] =
- AE/L AE/L uj
 and the element stiffness matrix for frame element (using equs. 1 &2) is
ui vi θi uj vj θj
AE/L 0 0 -AE/L 0 0 ui
0 12EI/L3
6EI/L2
0 -12EI/L3
6EI/L2
vi
[k] = 0 6EI/L2
4EI/L 0 -6EI/L2
2EI/L θi
-AE/L 0 0 AE/L 0 0 uj
0 -12EI/L3
-6EI/L2
0 12EI/L3
-6EI/L2
vj
0 6EI/L2
-2EI/L 0 -6EI/L2
4EI/L θj
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
93
 The beam elements also have different orientations. Figure shows the
inclined frame element.
 It have two displacement and a rotational deformation for each node.
 The nodal displacement vector is given by
{δ} = {ui, vi, θi, uj, vj, θj}
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
94
ui
y
x i
j
uj
vj
θi
θj
ujy
ujx
uiy
uix
Fi sin θθi
Fi cos θ
Fi
Fj sin θθj
Fjcos θ
Fj
vi
vj
 For beam element in its own local coordinate frame, we have the force
deflection relations, viz
 The tranformation matrix would be
cos θ sin θ
[T] =
-sin θ cos θ
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
95
1 -1 u1 Fi
AE/L =
-1 1 u2 Fj
ui = uix cos θ + uiy sin θ
uj = ujx cos θ + ujy sin θ
 P1: The framed structure made of steel shown in figure. To calculate the
deflection using the frame element.
Structure details
FE model
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
96
20 mm dia.
Steel rod
4 m
3 m
Steel I-beam
A=2000mm2
I=106
mm4
10KN
Steel I-beam
A=2000mm2
I=106
mm4
20 mm dia.
Steel rod
10KN
Y
y2
X
x2
θ
y1
x1
3
21 4
1
2
 Element 1:
 L = 3m =3000mm, A = 2000mm2, E = 200,000 N/mm2, I = 106
mm4. The
element stiffness matrix in its coordinate frame is given in the form
ui vi θi uj vj θj
AE/L 0 0 -AE/L 0 0 ui
0 12EI/L3
6EI/L2
0 -12EI/L3
6EI/L2
vi
[k] = 0 6EI/L2
4EI/L 0 -6EI/L2
2EI/L θi
-AE/L 0 0 AE/L 0 0 uj
0 -12EI/L3
-6EI/L2
0 12EI/L3
-6EI/L2
vj
0 6EI/L2
-2EI/L 0 -6EI/L2
4EI/L θj
-------- (1)
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
97
ui vi θi uj vj θj
0.133x106
0 0 -0.133x106
0 0 ui
0 0.889x102
0.133x106
0 -0.889x102
0.133x106
vi
[k1
] = 0 0.133x106
0.267x109
0 - 0.133x106
0.133x106
θi
- 0.133x106
0 0 0.133x106
0 0 uj
0 - 0.889x102
-0.133x106
0 0.889x102
-0.133x106
vj
0 0.133x106
0.133x106
0 - 0.133x106
0.267x109
θj
-------- (2)
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
98
 The local coordinate frame of element 1 is identical to the global frame
and hence no transformation is required
 Element 2: L=5000 mm, A=314.16 mm2
, E = 200,000 N/mm2, I =
7,854mm4
. The element stiffness matrix in its coordinate frame is given
in the form
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
99
ui vi θi uj vj θj
0.126x105
0 0 - 0.126x105
0 0 ui
0 0.151 0.377x10 3
0 -0.151 0.337x103
vi
[k2
] = 0 0.377x10 3
0.126x105
0 -0.377x103
0.628x106
θi
- 0.126x105
0 0 0.126x105
0 0 uj
0 - 0.151 -0.377x103
0 0.151 - 0.377x103
vj
0 0.337x103
0.628x106
0 - 0.377x103
0.126x107
θj
-------- (3)
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
100
 The local coordinate frame is inclined w.r.t global reference frame and
hence we need to transform the element stiffness matrix into global
frame. For any orientation θ, the transformation matrix related local and
global d.o.f. can be readily shown to be given by
cos θ sin θ 0 0 0 0
-sin θ cos θ 0 0 0 0
[T] = 0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 -sin θ cos θ 0
0 0 0 0 0 1
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
101
 Thus the element stiffness matrix in the global frame is written in the form
[K2
] = [T]T
[k2
] [T]
0.6 -0.8 0 0 0 0
0.8 0.6 0 0 0 0
[K2
] = 0 0 1 0 0 0
0 0 0 0.6 -0.8 0
0 0 0 0.8 0.6 0
0 0 0 0 0 1
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
102
0.6 0.8 0 0 0 0
-0.8 0.6 0 0 0 0
0 0 1 0 0 0
0 0 0 0.6 0.8 0
0 0 0 -0.8 0.6 0
0 0 0 0 0 1
0.126x105
0 0 - 0.126x105
0 0
0 0.151 0.377x10 3
0 -0.151 0.377x103
0 0.377x10 3
0.126x105
0 -0.377x103
0.628x106
- 0.126x105
0 0 0.126x105
0 0
0 - 0.151 -0.377x103
0 0.151 - 0.377x103
0 0.377x103
0.628x106
0 - 0.377x103
0.126x107
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
103
0.126x105
0 0 - 0.126x105
0 0
0 0.151 0.377x10 3
0 -0.151 0.377x103
0 0.377x10 3
0.126x105
0 -0.377x103
0.628x106
- 0.126x105
0 0 0.126x105
0 0
0 - 0.151 -0.377x103
0 0.151 - 0.377x103
0 0.377x103
0.628x106
0 - 0.377x103
0.126x107
0.6 0.8 0 0 0 0
-0.8 0.6 0 0 0 0
0 0 1 0 0 0
0 0 0 0.6 0.8 0
0 0 0 -0.8 0.6 0
0 0 0 0 0 1
0.452x104
0.603x104
-0.302x103
-0.452x104
-0.603x104
-0.302x103
0.603x104
0.804x104
0.226x10 3
-0.603x104
-0.804x104
0.226x10 3
-0.302x103
0.226x103
0.126x105
0.302x103
-0.226x103
0.628x106
-0.452x104
-0.603x104
0.302x103
0.452x104
0.603x104
0.302x103
-0.603x104
-0.804x104
-0.226x103
0.603x104
0.804x104
-0.226x103
0.302x103
0.226x10 3
0.628x106
0.302x103
-0.226x103
0.126x107
u1 v1 θ1 u2 v2 θ2
0.133x106
0 0 -0.133x106
0 0 u1
0 0.889x102
0.133x106
0 -0.889x102
0.133x106
v1
[k1
] =0 0.133x106
0.267x109
0 - 0.133x106
0.133x106
θ1
-0.133x106
0 0 0.133x106
0 0 u2
0 - 0.889x102
-0.133x106
0 0.889x102
-0.133x106
v2
0 0.133x106
0.133x106
0 - 0.133x106
0.267x109
θ2
u2 v2 θ2 u3 v3 θ3
0.452x104
0.603x104
-0.302x103
-0.452x104
-0.603x104
-0.302x103
u2
0.603x104
0.804x104
0.226x10 3
-0.603x104
-0.804x104
0.226x10 3
v2
[K2
] = -0.302x103
0.226x103
0.126x105
0.302x103
-0.226x103
0.628x106
θ2
-0.452x104
-0.603x104
0.302x103
0.452x104
0.603x104
0.302x103
u3
-0.603x104
-0.804x104
-0.226x103
0.603x104
0.804x104
-0.226x103
v3
0.302x103
0.226x10 3
0.628x106
0.302x103
-0.226x103
0.126x107
θ3
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
104
Result:
 u2 = -0.12mm; v2= 2.564 mm
 θ2 = 0.0013 rad θ3 = θ4 = 3.26 x 10-4
rad
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
105
ONE-DIMENSIONAL HEAT
TRANSFER
 The GDE for the steady state one-dimensional conduction heat transfer
with convective heat loss from lateral surfaces is given by
k d2
T /dx2
+ q = [P/Ac] h (T - T∞) --------- (1)
Where
 k = Co-efficient of thermal conductivity of the material,
 T = temperature,
 q = internal heat source /unit volume,
 Ac= the C-S area,
 h = convective heat transfer co-efficient, and
 T∞ = ambient temperature.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
106
 The weighted residual statement can be written as
L
∫ W [k (d2
T /dx2
) + q – (P/Ac) h (T - T∞) ] dx = 0 --------- (2)
0
 By performing integration by parts, the weak form of the DE can be obtained
as
L L L
∫ W [k (d2
T /dx2
)+ ∫Wq dx –∫W(P/Ac) h (T - T∞) ] dx = 0
0 0 0
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
107
L

∫ W d[k (dT /dx)]
0 u d v
L L L L
W k(dT/dx) -∫[k (dW/dx dT/dx)dx + ∫ Wq dx - ∫W(P/Ac) h (T - T∞)] dx= 0
0 0 0
0
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
108
∫ u dv = uv - ∫ v du
 The weak form, for a typical mesh of n finite elements, can be written as,
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
109
L L
∫k (dW/dx) (dT/dx)dx + ∫W(P/Ac) h (T) dx
0 L L 0 L
= ∫Wq dx +∫W(P/Ac) h (T∞) dx + W k (dT/dx)
0 0 0
n L L
Σ ∫[k (dW/dx) ( dT/dx) dx + ∫W(P/Ac)hT dx
k=1 0 n L 0 L
= Σ ∫W [q + (P/Ac ) hT∞ ] dx + Wk(dT/dx) --------- (3)
k=1 0 0
PROCEDURE FOR DEVELOPING THE
1-D HEAT TRANSFER BAR ELEMENT
 Figure shows the typical heat transfer element, with its nodes and nodal
d.o.f.
 Equation for 1D bar element heat transfer nodal temperature:
 T(x) = 1- (x/L) T1 + x/L T2 -------- (4)
 dT/ dx = (T2 – T1)/L -------- (5)
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
110
Node 2Node 1
x=Lx=0
T2T1
 W1 = 1- (x/L), dW1/dx = -1/L
-------- (6)
 W2 = (x/L), dW2/dx = 1/L
 Now compute the elemental level contribution to Equ. (3)
 LHS first term (Equ. (3)). Similar to 1D bar finite element, k replaces AE
and T replaces u. Thus we have
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
111
1 -1 T1
k/L
-1 1 T2
 LHS Second term (Equ. (3)). With W1,
L
∫ 1- (x/L) (P/Ac) h (1- (x/L) ) T1 + (x/L)T2 dx
0
L L
= (Ph/Ac) ∫[ 1- (x/L) ]2
dx T1 + ∫(x/L) (1- (x/L) ) T2 dx
0 0
= ((PhL)/(6Ac)) [2T1 + T2]
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
112
 With W2,
L
∫ (x/L) (P/Ac) h (1- (x/L) ) T1 + (x/L)T2 dx = ((PhL)/(6Ac)) [T1 + 2T2]
0
We can now write the second term on the LHS in matrix notation as
2 1 T1
(PhL)/(6Ac)
1 2 T2
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
113
 RHS First term. Similar to the RHS first term of the bar element equation
replacing q0 by q0 + (PhT∞)/(Ac) , we can write
L/2
q0 + (PhT∞)/(Ac)
L/2
RHS Second term. Similar to RHS second term of the bar element
-Q0
QL
 Where Q0, QL represent the heat flux at the ends of the element (nodes).
Thus the element level equations can be written as
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
114
 LHS = Element conduction matrix
 RHS First term = Nodal heat flux
 RHS Second vector = Net heat flux at nodes
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
115
1 -1 2 1 T1 L/2 -Q0
k/L +(PhL)/(6Ac) = q0 + (PhT∞)/(Ac) +
-1 1 1 2 T2 L/2 QL
 P1 : A 1 mm dia., 50mm long aluminium pin-fin as shown in figure,
used to enhance the heat transfer from a surface wall maintained at
3000
C. Use k = 200 W/m/0
C for ,aluminium, h = 20 W/m2
C , T∞ = 300
C.
Calculate the temperature distribution between in the fin.
A Pin- Fin.
04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
116
h T∞
Tw
Wall
L=50 mm
 With two equal elements, L1 = L2 =0.025m. Assembling the two
elemental level equations , we get the
1 -1 0 2 1 0 T1
200/0.025 -1 2 -1 + ((π)(0.001)(20) (0.025))/((6)(π) (0.0005)2
) 1 4 1 T2
0 -1 1 0 1 2 T3
0.0125 QWall
= ((π)(0.001)(20))/((π) (0.0005)2
) (30) 0.025 + 0
0.0125 Qtip
From the B.Cs , T1 = 3000
C, Qtip = 0.
Substituting and solving the equations, we get
T1 = 226.1850
C, T3 = 203.5480
C04/03/19 Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
117
1
2
3
21
L1 L2
SOLUTION OF EIGENVALUE
PROBLEMS
 The general form of G.E for un-damped free vibration of the structure is
given by
 [k]nxn {ui}nx1 = ω2
i [m]nxn{ui}nx1, i= 1, 2, 3.., n ---(1)
 Where, [k] = stiffness matrices
[m] = mass matrices
ωi = Natural frequencies
{ui} = Mode shape
 Then equ (1) can be rewrite as
 [m]-1
[k] {ui} = ω2
i {ui}
 [A] {ui} = λi {ui}
 Where [A] = [m] λ-1
[k] and λi = ω2
i
Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
04/03/19 118
 [A] {u} = λ {u} is known as Standard form of eigen value problem.
 [k] {u} = λ [m]{u} is known as non-standard form of eigen value
problem.
 The determinant | k – λm | = 0 is called as the characteristic equation.
 {k – λm } {u} = 0 is called Eigen vector.
Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
04/03/19 119
 P1: Find the natural frequencies of longitudinal vibration of the
unconstrained stepped bar shown in figure.
 Solution:
 The dynamic equation of motion
for the un-damped free vibration
of whose system is given by
 [ [K] – [M] ω2
] (u) = 0 ------(1)
Where
[K] = Global stiffness matrix
[M] = Global mass matrix
ω = Natural frequency
{u} = Displacement vector
Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
u3
A(1) = 2A
A(1) = A
Element 1 Element 2
u1 u2
x
1
2
3
l(1) = L/2 l(2) = L/2
Stepped bar with axial degree of freedom
04/03/19 120
 For two element stepped bar, the equation of motion(1) can be derived
as follows:
 For element (1): (Between nodes 1&2)
1 -1
 Element stiffness matrix [k1] = (A1E1)/l1
-1 1
1 -1 1 -1
= (2A E)/(L/2) = (4A E)/(L) ------(2)
-1 1 -1 1
2 1
Element stiffness matrix [m1] = (ρ1 A1 l1)/6
1 2
(Assumingconsistent mass matrix)Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
04/03/19 121
2 1 2 1
= (ρ.2A. L/2)/6 = (ρAL)/6 ---(3)
1 2 1 2
For element (2): (Between nodes 2&3)
1 -1
 Element stiffness matrix [k2] = (A2E2)/l2
-1 1
1 -1 1 -1
= (A E)/(L/2) = (2A E)/(L) ------(4)
-1 1 -1 1
2 1
Element stiffness matrix [m2] = (ρ2A2 l2)/6
1 2
Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
04/03/19 122
2 1 2 1
= (ρ.A. L/2)/6 =(ρAL)/12 ------(5)
1 2 1 2
By combining the equas.(2) & (4), we get global stiffness matrix as
2 -2 0
[K] = (2AE)/L -2 3 -1
0 -1 1
Similarly by combining the equas.(3) & (5), we get global mass matrix as
4 2 0 u1
[M]= (ρAL)/12 2 6 1 and {u} = u2
0 1 2 u3
Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
04/03/19 123
 Now , by substituting the values of above matrices in equation (1) we get
2 -2 0 4 2 0 u1
(2AE)/L -2 3 -1 - (ρAL)/12 2 6 1 ω2
u2 = 0 --(6)
0 -1 1 0 1 2 u3
 We know that, for getting the non-zero solution of circular frequency ω
for {u}, the determinant of the coefficient matrix [ [K] – [M] ω2
] should be
zero.
 i.e., | [K] – [M] ω2
| = 0
Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
04/03/19 124
2 -2 0 4 2 0
i.e., (2AE)/L -2 3 -1 - (ρAL)/12 2 6 1 ω2
= 0
0 -1 1 0 1 2
(or) 2 -2 0 4 2 0
-2 3 -1 -(ρL2
ω2
)/24E 2 6 1 = 0 ------(7)
0 -1 1 0 1 2
Let λ = (ρL2
ω2
)/24E
Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
04/03/19 125
 Then, the equation (7) becomes,
(2-4λ) (-2-2λ) 0
(-2-2λ) (3 -6λ) (-1- λ ) = 0 ----(8)
0 (-1-λ) (1-2 λ)
i.e., (2-4λ) [(3 -6λ) (1-2 λ) - (-1-λ)(-1-λ)] - (-2-2λ) [(-2-2λ) (1-2 λ)-0] +0 = 0
i.e., -36 λ3
+ 90λ2
+ -36 λ = 0
i.e., 18λ(1-2λ) (λ-2) = 0
(or) λ(1-2λ) (λ-2) = 0
In the above equation either λ=0 or (1-2λ)=0 or (λ-2) = 0
When λ = 0 we get (ρL2
ω2
)/24E= 0 => ω2
= 0 (or) ω=0
i.e., the first natural frequency ω1 = 0
Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
04/03/19 126
 When (1-2λ)=0, we get 1- ( 2 (ρL2
ω2
)/24E)= 0
 i.e., ω2
=12E/ ρL2
=> ω = 3.46( E/(ρL2
))1/2
 The second natural frequency ω2 = 3.46( E/(ρL2
))1/2
 When (λ-2)=0, we get (ρL2
ω2
)/24E) - 2= 0
 i.e., ω2
=48E/ ρL2
=> ω = 6.93( E/(ρL2
))1/2
 The third natural frequency ω3 = 6.93( E/(ρL2
))1/2
 That is the natural frequencies of unconstrained stepped bar are,
 ω1 = 0
 ω2 = 3.46( E/(ρL2
))1/2
rad/sec
 ω3= 6.93( E/(ρL2
))1/2
rad/sec
Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
04/03/19 127
 P2: Find the mode shapes (i.e., eigenvectors) for the natural
frequencies of longitudinal vibration of the unconstrained stepped
bar shown in figure.
 Solution:
 The natural frequencies of the
unconstrained stepped bar as
described in the above problem are :
 ω1 = 0
 ω2 = 3.46( E/(ρL2
))1/2
rad/sec
 ω3= 6.93( E/(ρL2
))1/2
rad/sec
 The natural frequencies follow some well defined deformation patterns
called mode shapes. It is observed that the first frequency ω1 = 0
corresponds to rigid body mode, whereas the second and third
frequencies (ω2 , ω3) correspond to elastic deformation modes.
Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
u3
A(1) = 2A
A(1) = A
Element 1 Element 2
u1 u2
x
1
2
3
l(1) = L/2 l(2) = L/2
Stepped bar with axial degree of freedom
04/03/19 128
 To find the mode shape corresponding to natural frequencies ωi, we
must solve the equation[ [K] – [M] ω2
] (u) = 0.
 The equation (6) of the above problem is given by
2 -2 0 4 2 0 u1
(2AE)/L -2 3 -1 -(ρAL)/12 2 6 1 ω2
u2 = 0 ------ I
0 -1 1 0 1 2 u3
 By selecting λ = (ρL2
ω2
)/24E the above equation can be simplified as
(2-4λ) (-2-2λ) 0 u1
(-2-2λ) (3 -6λ) (-1- λ ) u2 = 0 ---- II
0 (-1-λ) (1-2 λ) u3
Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
04/03/19 129
 By equating the determinant of coefficient matrix for {u} to zero, we get
 λ(1-2λ) (λ-2) = 0 which implies λ = 0 (or) λ = 0.5 (or) λ = 2.
 i.e., the eigen values are
 λ1 0
λ2 = 0.5 writing in the increasing order.
λ3 2
 To find 1st
mode shape:
 Let λ = 0
 Now the equation II implies
2u1 – 2u2 = 0 ---(i)
-2u1 + 3u2 – u3 = 0 ---(ii)
-u2 + u3 = 0 ---(iii)
Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
04/03/19 130
 Equa. (i) => u1 = u2 and Equa (iii) u2 = u3
 Hence u1 = u2 = u3
 For ω1 = 0 (or) λ = 0, corresponding to rigid body
 u1 = u2 = u3 = 1
 That is , 1st
mode shape is
u1 1
Um1 = u2 = 1 u1
u3 1
 To find 2nd
mode shape:
 Let λ = 0.5
 Now the equation II implies
– 3u2 = 0 ---(iv)
-3u1–1.3u3 = 0 ---(v)
-1.5u2 = 0 ---(vi)Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
04/03/19 131
 Equa(iv) => u2 = 0 and Equa(v) => 3u1 = -1.5u3 (or) 2u1 = -u3
 That is , 2nd
mode shape is
u1 1 1
Um2 = u2 = 0 = 0 u1
u3 -2u1 -2
 To find 3rd
mode shape:
 Let λ = 2
 The equation II implies
-6u1– 6u2 = 0 ---(vii)
-6u1-9u2–3u3 = 0 ---(viii)
- 3u2 -3u3= 0 ---(ix)
Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
04/03/19 132
 Equa(vii) => u1= -u2 and Equa(ix) => u2 = -u3
 That is , 3rd
mode shape is
u1 u1 1
Um3 = u2 = -u1 = -1 u1
u3 u1 1
The three mode shapes corresponding to λ = 0, λ = 0.5 and λ = 2
(i.e.,corresponding to ω1 , ω2 and ω3) are shown in figure.
Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
04/03/19 133
Types of mode-shapes
(Eigenvectors)
1st
mode shape
2nd
mode shape
Dr.G.PAULRAJ,
Professor&Head(Mech.),Avadi,
VTRS,Chennai.
u3u1
u21
2
3
L/2 L/2
x
1 1 1
u1 u2 u3
0 L/2 L
x
u1
u2
u3
0
L0
1
-2
x
u1
u2
u3
0 0
1 1
-1
3rd
mode shape
04/03/19 134

More Related Content

What's hot

ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
ASHOK KUMAR RAJENDRAN
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANK
ASHOK KUMAR RAJENDRAN
 
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOKME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
ASHOK KUMAR RAJENDRAN
 
INTRODUCTION TO FINITE ELEMENT ANALYSIS
INTRODUCTION TO FINITE ELEMENT ANALYSISINTRODUCTION TO FINITE ELEMENT ANALYSIS
INTRODUCTION TO FINITE ELEMENT ANALYSISAchyuth Peri
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
Tarun Gehlot
 
Axis symmetric
Axis symmetricAxis symmetric
Axis symmetric
Gowsick Subramaniam
 
Rayleigh Ritz Method
Rayleigh Ritz MethodRayleigh Ritz Method
Rayleigh Ritz Method
Sakthivel Murugan
 
Finite Element Methods
Finite Element  MethodsFinite Element  Methods
Finite Element Methods
Dr.Vikas Deulgaonkar
 
Finite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresFinite Element Analysis of Truss Structures
Finite Element Analysis of Truss Structures
Mahdi Damghani
 
General steps of the finite element method
General steps of the finite element methodGeneral steps of the finite element method
General steps of the finite element method
mahesh gaikwad
 
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - I NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - I  NOTESME6503 - DESIGN OF MACHINE ELEMENTS UNIT - I  NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - I NOTES
ASHOK KUMAR RAJENDRAN
 
2D Finite Element Analysis.pptx
2D Finite Element Analysis.pptx2D Finite Element Analysis.pptx
2D Finite Element Analysis.pptx
DrDineshDhande
 
1 static failure theories ductile r1
1 static failure theories ductile r11 static failure theories ductile r1
1 static failure theories ductile r1
Himanshu Keshri
 
two degree of freddom system
two degree of freddom systemtwo degree of freddom system
two degree of freddom system
Yash Patel
 
Finite Element Analysis Lecture Notes Anna University 2013 Regulation
Finite Element Analysis Lecture Notes Anna University 2013 Regulation Finite Element Analysis Lecture Notes Anna University 2013 Regulation
Finite Element Analysis Lecture Notes Anna University 2013 Regulation
NAVEEN UTHANDI
 
Finite element method
Finite element methodFinite element method
Finite element method
Mevada Maulik
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular
rahul183
 
Truss Analysis using Finite Element method ppt
Truss Analysis using Finite Element method pptTruss Analysis using Finite Element method ppt
Truss Analysis using Finite Element method ppt
anujajape
 
single degree of freedom systems forced vibrations
single degree of freedom systems forced vibrations single degree of freedom systems forced vibrations
single degree of freedom systems forced vibrations
KESHAV
 
Introduction to finite element method(fem)
Introduction to finite element method(fem)Introduction to finite element method(fem)
Introduction to finite element method(fem)
Sreekanth G
 

What's hot (20)

ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANK
 
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOKME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
 
INTRODUCTION TO FINITE ELEMENT ANALYSIS
INTRODUCTION TO FINITE ELEMENT ANALYSISINTRODUCTION TO FINITE ELEMENT ANALYSIS
INTRODUCTION TO FINITE ELEMENT ANALYSIS
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
 
Axis symmetric
Axis symmetricAxis symmetric
Axis symmetric
 
Rayleigh Ritz Method
Rayleigh Ritz MethodRayleigh Ritz Method
Rayleigh Ritz Method
 
Finite Element Methods
Finite Element  MethodsFinite Element  Methods
Finite Element Methods
 
Finite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresFinite Element Analysis of Truss Structures
Finite Element Analysis of Truss Structures
 
General steps of the finite element method
General steps of the finite element methodGeneral steps of the finite element method
General steps of the finite element method
 
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - I NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - I  NOTESME6503 - DESIGN OF MACHINE ELEMENTS UNIT - I  NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - I NOTES
 
2D Finite Element Analysis.pptx
2D Finite Element Analysis.pptx2D Finite Element Analysis.pptx
2D Finite Element Analysis.pptx
 
1 static failure theories ductile r1
1 static failure theories ductile r11 static failure theories ductile r1
1 static failure theories ductile r1
 
two degree of freddom system
two degree of freddom systemtwo degree of freddom system
two degree of freddom system
 
Finite Element Analysis Lecture Notes Anna University 2013 Regulation
Finite Element Analysis Lecture Notes Anna University 2013 Regulation Finite Element Analysis Lecture Notes Anna University 2013 Regulation
Finite Element Analysis Lecture Notes Anna University 2013 Regulation
 
Finite element method
Finite element methodFinite element method
Finite element method
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular
 
Truss Analysis using Finite Element method ppt
Truss Analysis using Finite Element method pptTruss Analysis using Finite Element method ppt
Truss Analysis using Finite Element method ppt
 
single degree of freedom systems forced vibrations
single degree of freedom systems forced vibrations single degree of freedom systems forced vibrations
single degree of freedom systems forced vibrations
 
Introduction to finite element method(fem)
Introduction to finite element method(fem)Introduction to finite element method(fem)
Introduction to finite element method(fem)
 

Similar to Finite Element Analysis - UNIT-2

Static and Dynamic Reanalysis of Tapered Beam
Static and Dynamic Reanalysis of Tapered BeamStatic and Dynamic Reanalysis of Tapered Beam
Static and Dynamic Reanalysis of Tapered Beam
IJERA Editor
 
finite_element_analysis_formulas.pdf
finite_element_analysis_formulas.pdffinite_element_analysis_formulas.pdf
finite_element_analysis_formulas.pdf
ssuser5aba25
 
Fe33940945
Fe33940945Fe33940945
Fe33940945
IJERA Editor
 
Fe33940945
Fe33940945Fe33940945
Fe33940945
IJERA Editor
 
Free vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using femFree vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using fem
Osama Mohammed Elmardi Suleiman
 
Stability
StabilityStability
Stability of piles
Stability of pilesStability of piles
Stability of piles
SUDIPTA CHAKRABORTY
 
EH1 - Reduced-order modelling for vibration energy harvesting
EH1 - Reduced-order modelling for vibration energy harvestingEH1 - Reduced-order modelling for vibration energy harvesting
EH1 - Reduced-order modelling for vibration energy harvesting
University of Glasgow
 
Beam.pdf
Beam.pdfBeam.pdf
Beam.pdf
ssusere1ee8b
 
Advanced Structural Analysis.ppt
Advanced Structural Analysis.pptAdvanced Structural Analysis.ppt
Advanced Structural Analysis.ppt
SudiptaKolay2
 
FEM 7 Beams and Plates.ppt
FEM 7 Beams and Plates.pptFEM 7 Beams and Plates.ppt
FEM 7 Beams and Plates.ppt
Praveen Kumar
 
1.3428190.pdf
1.3428190.pdf1.3428190.pdf
1.3428190.pdf
SabinAdhikari25
 
nbody_iitk.pdf
nbody_iitk.pdfnbody_iitk.pdf
nbody_iitk.pdf
Jayanti Prasad Ph.D.
 
A fusion of soft expert set and matrix models
A fusion of soft expert set and matrix modelsA fusion of soft expert set and matrix models
A fusion of soft expert set and matrix models
eSAT Journals
 
A fusion of soft expert set and matrix models
A fusion of soft expert set and matrix modelsA fusion of soft expert set and matrix models
A fusion of soft expert set and matrix models
eSAT Publishing House
 
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
ijrap
 
Conformal field theories and three point functions
Conformal field theories and three point functionsConformal field theories and three point functions
Conformal field theories and three point functions
Subham Dutta Chowdhury
 
IJSRED-V2I3P46
IJSRED-V2I3P46IJSRED-V2I3P46
IJSRED-V2I3P46
IJSRED
 
FEA 2 marks unit 1 to 5
FEA 2 marks unit 1 to 5FEA 2 marks unit 1 to 5
FEA 2 marks unit 1 to 5
gokulfea
 
Dr NV SRINIVASULU-Tpjrc ijaerd paper
Dr NV SRINIVASULU-Tpjrc ijaerd paperDr NV SRINIVASULU-Tpjrc ijaerd paper
Dr NV SRINIVASULU-Tpjrc ijaerd paper
SRINIVASULU N V
 

Similar to Finite Element Analysis - UNIT-2 (20)

Static and Dynamic Reanalysis of Tapered Beam
Static and Dynamic Reanalysis of Tapered BeamStatic and Dynamic Reanalysis of Tapered Beam
Static and Dynamic Reanalysis of Tapered Beam
 
finite_element_analysis_formulas.pdf
finite_element_analysis_formulas.pdffinite_element_analysis_formulas.pdf
finite_element_analysis_formulas.pdf
 
Fe33940945
Fe33940945Fe33940945
Fe33940945
 
Fe33940945
Fe33940945Fe33940945
Fe33940945
 
Free vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using femFree vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using fem
 
Stability
StabilityStability
Stability
 
Stability of piles
Stability of pilesStability of piles
Stability of piles
 
EH1 - Reduced-order modelling for vibration energy harvesting
EH1 - Reduced-order modelling for vibration energy harvestingEH1 - Reduced-order modelling for vibration energy harvesting
EH1 - Reduced-order modelling for vibration energy harvesting
 
Beam.pdf
Beam.pdfBeam.pdf
Beam.pdf
 
Advanced Structural Analysis.ppt
Advanced Structural Analysis.pptAdvanced Structural Analysis.ppt
Advanced Structural Analysis.ppt
 
FEM 7 Beams and Plates.ppt
FEM 7 Beams and Plates.pptFEM 7 Beams and Plates.ppt
FEM 7 Beams and Plates.ppt
 
1.3428190.pdf
1.3428190.pdf1.3428190.pdf
1.3428190.pdf
 
nbody_iitk.pdf
nbody_iitk.pdfnbody_iitk.pdf
nbody_iitk.pdf
 
A fusion of soft expert set and matrix models
A fusion of soft expert set and matrix modelsA fusion of soft expert set and matrix models
A fusion of soft expert set and matrix models
 
A fusion of soft expert set and matrix models
A fusion of soft expert set and matrix modelsA fusion of soft expert set and matrix models
A fusion of soft expert set and matrix models
 
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
 
Conformal field theories and three point functions
Conformal field theories and three point functionsConformal field theories and three point functions
Conformal field theories and three point functions
 
IJSRED-V2I3P46
IJSRED-V2I3P46IJSRED-V2I3P46
IJSRED-V2I3P46
 
FEA 2 marks unit 1 to 5
FEA 2 marks unit 1 to 5FEA 2 marks unit 1 to 5
FEA 2 marks unit 1 to 5
 
Dr NV SRINIVASULU-Tpjrc ijaerd paper
Dr NV SRINIVASULU-Tpjrc ijaerd paperDr NV SRINIVASULU-Tpjrc ijaerd paper
Dr NV SRINIVASULU-Tpjrc ijaerd paper
 

Recently uploaded

MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
Kamal Acharya
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
Kamal Acharya
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
DuvanRamosGarzon1
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
abh.arya
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 

Recently uploaded (20)

MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 

Finite Element Analysis - UNIT-2

  • 1. TO ByBy Dr.G.PAULRAJDr.G.PAULRAJ Professor & HeadProfessor & Head Department of Mechanical EngineeringDepartment of Mechanical Engineering Vel Tech (Owned by RS Trust)Vel Tech (Owned by RS Trust) Chennai-600 062.Chennai-600 062.
  • 3. UNIT II ONE-DIMENSIONAL PROBLEMS  One Dimensional Second Order Equations – Discretization – Element types- Linear and Higher order Elements – Derivation of Shape functions and Stiffness matrices and force vectors- Assembly of Matrices - Solution of problems from solid mechanics and heat transfer. Longitudinal vibration frequencies and mode shapes. Fourth Order Beam Equation – Transverse deflections and Natural frequencies of beams. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 3
  • 4. ONE DIMENSIONAL FINITE ELEMENT ANALYSIS  The geometry and other parameters of bar and beam element can be defined in terms of only one spatial co-ordinate, the element is called as one dimensional element.  A bar is a member which resist only axial loads.  Where u1 & u2 are the nodal variables.  u(x) is the nodal displacement.  A beam can resist transverse and twisting loads.  Where v1 & v2 are the transverse displacements of nodal variables.  θ1 & θ2 are the slopes (rotations) of the nodes. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 4
  • 5. SHAPE FUNCTION FOR ONE- DIMENSIONAL ELEMENT  Consider a one-dimensional element (line segment) of length l with two nodes, one at each end, as shown in Figure. Let the nodes be denoted as i and j and the nodal values of the field variable as Φi and Φj.ϕ The variation of inside theϕ element is assumed to be linear as ϕ(x) = α1 + α2x …(1) where α1 and α2 are the unknown coefficients. By using the nodal conditions (x) = Φi at x = xiϕ (x) = Φj at x = xjϕ 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 5
  • 6. and Eq. (1), we obtain Φi = α1 + α2xi Φj = α1 + α2xj  The solution of these equations gives α1 = Φixj −Φjxi l …(2) α2 = Φj −Φi l  where xi and xjdenote the global coordinates of nodes i and j, respectively. By substituting Eq. (2) into Eq. (1), we obtain  Φ(x) = Φixj −Φjxi + Φj −Φi x ……(3) l l 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 6
  • 7.  This equation can be written, after rearrangement of terms, as Φ(x) = Ni(x)Φi +Nj(x)Φj = [N(x)] Φ(e) ….(4) [N(x)] = [Ni(x) Nj(x)] … (5) Ni(x) = xj −x l …(6) Nj(x) = x −xi l and Φ(e) = Φi = vector of nodal unknowns of elements e …(7) Φj  Note that the superscript e is not used for Φi and Φj for simplicity. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 7
  • 8.  The linear functions of x defined in Eq. (6) are called interpolation or shape functions.  Note that each interpolation function has a subscript to denote the node to which it is associated.  Furthermore, the value of Ni(x) can be seen to be 1 at node i (x = xi) and 0 at node j (x = xj). Likewise, the value of Nj(x) will be 0 at node i and 1 at node j.  These represent the common characteristics of interpolation functions.  They will be equal to 1 at one node and 0 at each of the other nodes of the element. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 8
  • 9. STIFFNESS MATRIX  The primary characteristics of a finite element are embodied in the element stiffness matrix.  For a structural finite element, the stiffness matrix contains the geometric and material behavior information that indicates the resistance of the element to deformation when subjected to loading.  Such deformation may include axial, bending, shear, and torsional effects.  For finite elements used in nonstructural analyses, such as fluid flow and heat transfer, the term stiffness matrix is also used, since the matrix represents the resistance of the element to change when subjected to external influences. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 9
  • 10. STIFFNESS MATRIX …, we know that,  Strain, {e} = [B] {u*}  {e}T = [B]T {u*}T where,  {e} is a strain matrix  [B] is strain- displacement matrix  {u*} is a degree of freedom we know that,  Stress, {δ} = [E] {e}  {δ} = [D] {e}  where [E] =[D] = Young’s modulus. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 10
  • 11.  Strain energy expression is given by,  U = ∫½ {e}T {δ} dv v Substitute {e}T and {δ} values,  U = ∫½ [B]T {u*}T [D] {e} dv v  = ½ {u*}T ∫[B]T [D] {e} dv v 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 11
  • 12.  Substitute {e} values,  U = ½ {u*}T ∫[B]T [D] [B] {u*} dv v  U = ½ {u*}T ∫[B]T [D] [B] dv {u*} v  So, Stiffness matrix, [K] = ∫[B]T [D] [B] dv v where,  [B] is strain- displacement relationship matrix  [D] Elasticity matrix or Stress-strain relationship matrix 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 12
  • 13.  In 1D problem,  Strain, e = du/dx  Where, u = Displacement function  [D] = [B] = E = Young’s modulus.  In Beam problem, Strain, e = Curvature = d2 u/dx2  [D] = [EI] = Flexural rigidity  Properties of stiffness Matrix: 1. It is symmetric. 2. The sum of elements in any column is equal to zero. 3. It is an unstable element. So, the determinants is equal to zero. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 13
  • 14. STIFFNESS MATRIX FOR 1-D LINEAR BAR ELEMENT  Consider a 1-D bar element with nodes 1 and 2 as shown in figure. Let u1 and u2 be the nodal displacement parameters or otherwise known as degrees of freedom.  We know that, Stiffness matrix, [K] = [B]T [D] [B] dv v 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 14 1 2 l u1 u2 x
  • 15.  In 1-D Bar element,  Displacement function u = N1u1 + N2u2 Where , N1 = l-x/L and N2= x/L We know that, Strain displacement matrix, [B] = dN1/dx dN2/dx = -1/L 1/L Substitute [B], [B]T and [D] values in stiffness matrix equation[Limits is 0 to l] L [K] = -1/L x E x -1/L 1/L dv 1/L 0 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 15
  • 16. l 1/L2 -1/L2 [K] = E dv -1/L2 1/L2 0 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 16 l 1/L2 -1/L2 [K] = E A dx [ dv= A dx] -1/L2 1/L2 0 l 1/L2 -1/L2 1/L2 -1/L2 L 1 -1 [K] = E A dx = AE [x] = AE/L -1/L2 1/L2 -1/L2 1/L2 0 -1 1 0
  • 17.  The properties of stiffness matrix are satisfied. 1. It is symmetric. 2. The sum of elements in any column is equal to zero. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 17
  • 18. FINITE ELEMENT EQUATION FOR 1-D BAR ELEMENT  We know that, General force equation is, [k] {u} = {F} ----------- (1)  where [k] is stiffness matrix  {u} is displacement vector and  {F} is force vector in the coordinate directions  The element kij of stiffness matrix maybe defined as the force at coordinate i due to unit displacement in coordinate direction j. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 18
  • 19.  For 1-D bar element, stiffness matrix [k] is given by,  For two noded bar element, 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 19 1 -1 [K] = AE/L -1 1 F1 {F} = & F2 u1 {u} = , Substitute [K] {F} {u} values u2 in equ. (1) 1 -1 u1 {F}=AE/L This is a finite element equation for 1D 2-noded bar element -1 1 u2
  • 20. P1: A two noded bar element is shown in figure. The nodal displacement are u1=5mm and u2= 8mm. Calculate the displacement at x= l/4, l/3 and l/2. Solution: Displacement function for 2-noded bar element is given by, u = N1u1 + N2u2 Where, N1 = l-x/L and N2 = x/L => u =[ l-x/L] u1 + [x/L]u2 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 20 1 2 L u1= 5mm u2=8mm x
  • 21.  Substitute x= l/4, u1 = 5 and u2 = 8 in the above equation,  u = 5.75 mm at x=l/4  Substitute x= l/3, u1 = 5 and u2 = 8 in the above equation,  u = 6 mm at x=l/3  Substitute x= l/2, u1 = 5 and u2 = 8 in the above equation,  u = 6.5 mm at x=l/2  Result: u = 5.75 mm at x=l/4, u = 6 mm at x=l/3 & u = 6.5 mm at x=l/2 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 21
  • 22. P2: A one dimensional bar is shown in figure. Calculate the following: (i) Shape function N1 and N2 at point P. (ii) If u1=3mm and u2=-5mm, calculate the displacement u at ponit P.  We know that, Actual length of the bar, L=x2-x1=36-20=16mm The distance between point 1 and point P is, x= 24-20=4mm Displacement function for two noded bar element is given by, u = N1u1+ N2u2 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 22 X1 2 L X1= 20mm u1= 5mm X2=36mm u2=-5mm P X=24mm
  • 23.  Where, N1 = l- x/L and N2 = x/L N1 = 16- 4/16 = 0.75mm N2 = 4/6 = 0.25mm  Substitute N1, N2, u1 and u2 values in the above equation, u = N1u1+N2u2 = (0.75)(3)+0.25(-5) u = 1mm 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 23
  • 24. THE QUADRATIC BAR ELEMENT Determination of Shape Function:  The Three noded quadratic bar element is shown in figure.  The displacement at any point within the element is now interpolated from the three nodal displacement using the shape functions as follows:  u(x) = N1(x)u1 + N2(x)u2+ N3(x)u3 ---------------- (1)  The shape functions Ni vary quadratically with in the element. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 24 X=0 X=lX=l/2 1 →u1 23 X →u3 →u2
  • 25.  Let u(x) be given by the complete quadratic polynomial  u(x) = a0 + a1x + a2x2 -------------- (2)  We know that u(0) =u1, u(l) = u2 and u(l/2) = u3,. Hence, from the above equation,  u1 = a0, u2 = a0 + a1l + a2l2 and u3 = a0 + a1(l/2) + a2(l/2)2  Solving for ai, we obtain a0 = u1 a1 = (4u3 – u2 – 3u1)/l a2 = (2u1 + 2u2 + 4u3)/l2 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 25
  • 26.  Thus we have u(x) = u1 +[ (4u3 – u2 – 3u1 ) / l] x +[ (2u1 + 2u2 – 4u3 ) / l2 ]x2 ------------(3) Rearranging the terms, we get u(x) = u1( 1 – 3x/l + 2x2 /l2 ) + u2(-x/l + 2x2 /l2 ) + u3(4x/l – 4x2 /l2 ) -----(4) Comparing equations (1) and (4) N1 = 1 – 3x/l + 2x2 /l2 , N2 = -x/l + 2x2 /l2 , N3 = 4x/l – 4x2 /l2 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 26
  • 27. STIFFNESS MATRIX FOR QUADRATIC BAR ELEMENT  Given the shape functions, we get the strain- displacement relation matrix [B] as  e = du/dx = d/dx [N] {u}  Where [B] = [dN1/ dx dN2/dx dN3/dx]  = [2/l2 (2x – 3 l/2) 2/l2 (2x – l/2) -4/l2 (2x - l)]  We know that the stiffness matrix of the element  Stiffness matrix, [K] = [B]T [B] EA dx 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 27
  • 28. 1 2/l2 (2x - 3l/2) = 2/l2 (2x - l/2) [2/l2 (2x - 3l/2) 2/l2 (2x - l/2) -4/l2 (2x - l)] EA dx 0 -4/l2 (2x - l) On evaluating all the integrals, we obtain the element stiffness matrix as 7 1 -8 [k] = AE/3l 1 7 -8 -8 -8 16 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 28
  • 29.  A steel bar of length 800mm is subjected to an axial load of 3KN as shown in figure. Find the elongation of the bar, neglecting self weight. Take E = 2x 105 N/mm2 , A = 300mm2 .  Solution:  We can divide the bar into two elements as shown in Figure.  Now the bar has 2elements with 3 nodes.  Displacement at node 1 = u1 node 2 = u2 node 3 = u3 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 29 3 x 103 N 800mm 400mm 400mm1 3 1 2 1 2 3 x 103 N 800mm 400mm 400mm1 u3 u1 u2 1 2
  • 30.  For 1D two noded bar element, the finite element equation is,  For element 1: (node 1, 2)  Finite element equation is, 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 30 F1 1 -1 u1 =AE/L F2 -1 1 u2 1 -1 u1 F1 A1E/L1 = -1 1 u2 F2 400mm u2 u1 1
  • 31. ------------ (1)  For element 2 (Nodes 2,3) 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 31 1 -1 u1 F1 300x2x105 /400 = -1 1 u2 F2 1 -1 u1 F1 150x103 = -1 1 u2 F2 3 x 103 KN 400mm u3 u2 2 1 -1 u2 F2 A2E/L2 = -1 1 u3 F3
  • 32. ---------------- (2) Assemble the finite element equations (1) and (2). -------- (3) 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 32 1 -1 u2 F2 150x103 = -1 1 u3 F3 1 -1 0 u1 F1 150x103 -1 2 -1 u2 = F2 0 -1 1 u3 F3
  • 33.  Applying boundary conditions:  u1 = 0  F3 = 3x103 N  Substitute u1, F1,F2 and F3 values in equation (3)  Here u1=0. So, neglect first row and first column of [K] matrix. Hence the final reduced equation is, 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 33 1 -1 0 0 0 150x103 -1 2 -1 u2 = 0 0 -1 1 u3 3x103 2 -1 u2 0 150x103 = -1 1 u3 3x103
  • 34.  150 x 103 (2u2 – u3) = 0 ----------- (4)  150 x 103 (-u2 + u3) 3 x 103 -----------(5)  Solving, 150 x 103 (u2) = 3 x 103 u2 = 0.02mm Substitute u2 value in equation (4), u3 = 0.04mm Result: 1. Displacement at node 1 , u1 = 0 2. Displacement at node 2 , u2 = 0.02 mm 3. Displacement at node 3 , u3 = 0.04 mm 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 34
  • 35.  Consider a taper steel plate of uniform thickness, t = 25 mm as shown in figure. The Young’s modulus of the plate, E = 2 X 105 N/mm2 and weight density, ρ = 0.82 x 10-4 N/mm3. In addition to its self-weight, the plate is subjected to a point load p = 100N at its mid point. Calculate the following by modeling the plate with two finite elements: (i) Global force vector {F}. (ii) Global stiffness matrix [K]. (iii) Displacement in each element. (iv) Stresses in each element. (v) Reaction force at the support. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 35 300 mm 600 mm 75 mm p 150 mm x
  • 36.  In this problem, the area of the element is varying at each c-s. If we consider this area variation, the problem will be tedious. So the given taper bar is considered as stepped bar as shown in figure. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 36 300 mm 600 mm W3 = 75 mm p W1 = 150 mm x W2 3 2 1 W1 = 150 mm 300 mm 300 mm p 75 mm 1 2
  • 37.  Solution:  Area at node 1, A1 = Width X Thickness = W1 X t1 = 150 X 25 = 3750 mm2  Area at node 2, A2 = Width X Thickness = W2 X t2 = [(W1 + W2)/2] X t2 A2 = 2812.5 mm2  Area at node 3, A3 = Width X Thickness = W3 X t3= 75 X 25 = 1875 mm2  Average area of element (1):  A1 = (Area of node 1 + Area of node 2) /2 = 3281.25 mm2  Average area of element (2):  A2 = (Area of node 2 + Area of node 3) /2 = 2343.75 mm2 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 37
  • 38.  The steel plate is subjected to self-weigth.So, we have to findout the body force acting at nodal points 1,2 and 3. 1  We know that, Body force vector, {F} = (ρ A L) /2 1 F1 1  For element (1) : Force vector = (ρ1 A1 L1) /2 F2 1 1 = (0.82 X 10-4 X 3281.25 X 300)/2 X F1 40.359 1 = --------- (1) F2 40.359 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 38
  • 39. F2 1  For element (2) : Force vector = (ρ2 A2 L2) /2 F3 1 1 = (0.82 X 10-4 X 2343.75 X 300)/2 X F2 28.828 1 = --------- (2) F3 28.828 Assembling the force vector i.e. assemble the equation (1) and (2) F1 40.359 F2 = 69.187 F3 28.828 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 39
  • 40.  A point load of 100N is acting at node 2 as shown in figure. So, add 100N in F2 vector. F1 40.359 Global Force Vector, F2 = 169.187 F3 28.828 Finite element equation for 1D- plate element is given by F1 1 -1 u1 = A E /L F2 -1 1 u2 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 40
  • 41.  For element 1: (node 1, 2)  Finite element equation is, 1 2 10.937 -10.937 1 u1 F1 2 X 105 = ------- (4) -10.937 10.937 2 u2 F2 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 41 1 -1 u1 F1 A1E/L1 = -1 1 u2 F2 300mm u2 u1 1
  • 42. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 42  For element 2: (node 2, 3)  Finite element equation is, 2 3 7.8125 - 7.8125 2 u2 F2 2 X 105 = ------- (5) - 7.8125 7.8125 3 u3 F3 1 -1 u2 F2 A2E/L2 = -1 1 u3 F3 300mm u3 u2 2 p
  • 43.  Assemble the finite element equations (4) and (5)  Apply the B.Cs i.e., at node 1, Displacement u1 = 0. Substitute u1, F1, F2 and F3 value in equ. (6) 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 43 10.937 -10.937 0 u1 F1 2x105 -10.937 18.749 -7.8125 u2 = F2 ------- (6) 0 -7.8125 7.8125 u3 F3 10.937 -10.937 0 0 40.359 2x105 -10.937 18.749 -7.8125 u2 = 169.187 0 -7.8125 7.8125 u3 28.828
  • 44.  In the above equation, u1 = 0. So, neglect first row and first column of [K] matrix. The reduced equation is, 2x105 (18.749u2 - 7.8125 u3) = 169.187 ------------- (7) 2x105 (-7.8125u2+7.8125u3) = 28.828 ------------- (8) Solving, 2x105 x (10.936)u2 = 198.015 u2 = 9.053 x 10-5 mm  Substitute u2 value in equ. (7), u3 = 10.898 x 10-5 mm 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 44 2x105 18.749 -7.8125 u2 = 169.187 -7.8125 7.8125 u3 28.828
  • 45.  Stresses :  Stress, σ1 = E ε12 = E (u2-u1)/ L1 = 0.060 N/mm2  Stress, σ2 = E ε23 = E (u3-u2)/ L1 = 0.0123 N/mm2  Reaction force:  We know that, {R} = [K]{u} – {F}  2x105 (-10.937 x 9.053 x 10-5 ) = 40.359 R1 = -238.379 N04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 45 10.937 -10.937 0 0 40.359 {R} =2x105 -10.937 18.749 -7.8125 u2 - 169.187 0 -7.8125 7.8125 u3 28.828
  • 46.  In figure, a load P = 60 X 103 N is applied as shown. Determine the displacement field, stress and support reactions in the body. Take E = 20 X 103 N/mm2 . 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 46 Wall P 1.2mm 150mm 150mm 250mm2
  • 47.  Solution:  In this problem, we should first determine whether contact occurs between the bar and the wall. To do this, assume that the wall does not exit. The deformation at node is given by,  δ = PL/AE = (60 X 103 ) x 150 /(250 x 20 X 103 ) = 1.8 mm  The gap between the wall and node 3 is 1.2 mm. So, that contact occurs between the bar and the wall.  Displacement at point 3 ,(u3) = 1.2 mm. From this result, we see that contact does not occur. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 47 1.2mm P 150mm 150mm Wall u3u2 u1
  • 48.  The problem has to be resolved, since the B.Cs are now different. The displacement at u3 is specified to be 1.2 mm. Consider the 2 element finite element model in figure. The B.Cs are u1= 0 and u3 = 1.2mm.  The structural stiffness matrix [K1 ] and [K2 ] are: 1 -1 1 -1  [k12 ] = AE/L =(250 x 20 x 103 ) /150 -1 1 -1 1  The global unreduced stiffness matrix is , 1.667 -1.667 0  [K] = 20 x 103 -1.667 3.333 -1.667 0 -1.667 1.667 The finite element equation can be written, 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 48 3P 150mm 150mm 250mm2 1 2 1 2
  • 49. 1.667 -1.667 0  [K] = 20 x 103 -1.667 3.333 -1.667 0 -1.667 1.667 Retaining 2 equation yields, 20x103 (3.33u2 -1.67 x 1.2) = 60 x 103 => u2 =1.5 mm 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 49 1.667 -1.667 0 0 0 20x103 -1.667 3.333 -1.667 u2 = 60 x 103 0 -1.667 1.667 1.2 0 P 150mm u2 u1 1 150mm u3 u2 2 1.2 mm
  • 50.  Stresses: For element 1:  Stress, σ1 = E ε12 = E (u2-u1)/ L1 = 2000 N/mm2 For element 2:  Stress, σ2 = E ε23 = E (u3-u2)/ L1 = -400 N/mm2  Reaction force: We know that, {R} = [K]{u} – {F} 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 50 R1 1.667 -1.667 0 0 0 R2 =20x103 -1.667 3.333 -1.667 1.5 - 60 x 103 R3 0 -1.667 1.667 1.2 0
  • 51. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 51 R1 -50010 0 => R1 = -50010 N R2 = 59982 - 60 X 103 => R2 = 0 R3 -10002 0 => R3 = -10002 N Verification : R1 + R2 + R3 = -50010 + 0 -10002 = -60012 N =60 X103 N (Applied force)
  • 52. SPRING ELEMENT  Consider a system of springs connected in series as shown in Figure. The analysis of the system (to find the nodal displacements under a prescribed set of loads) can be conducted using the finite element method.  For this, the equilibrium relations of a typical spring element are to be derived first.  Let the stiffnesses of the springs be denoted k1, k2, …, kn. Let Fi and Fj be the forces applied at nodes i and j, and ui and uj be the displacements of nodes i and j, respectively.  The relations between the nodal forces and nodal displacements of a typical spring element e can be derived using the relation: 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 52
  • 53.  Force = Spring stiffness × Net deformation of the spring  Thus, the forces at nodes i and j can be expressed as Fi = ke ui −uj -------- (1)  (where ui is assumed to be larger than uj so that the compressive force Fi leads to a decrease in the length of the spring), and Fj = ke uj −ui -------- (2)  (where uj is assumed to be larger than ui so that the tensile force Fj leads to an increase in the length of the spring). Equations (1) and (2) can be expressed in matrix form as04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 53
  • 54. 1 −1 ui Fi  ke = = -------- (3) −1 1 uj Fj From Eq. (3), the characteristic (stiffness) matrix of the element can be identified as i j 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 54 1 -1 i [K] = k -1 1 j l K Fi i j Fj
  • 55.  where the degree of freedom numbers corresponding to the rows and columns of the stiffness matrix [K] are also indicated. Equation (3) can be expressed as [K] u= F ------------ (4)  where u and F denote the vectors of nodal displacements and nodal forces, respectively. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 55
  • 60. BEAM ELEMENT Selection of Nodal D.O.F  A beam is a straight bar element that is primarily subjected to transverse loads.  The deformed shape of a beam is described by the transverse displacement(v) and slope (rotation-θ) of the beam is shown figure. Typical Beam Section and its deformation 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 60 M X Z
  • 61.  Hence, the transverse displacement and rotation at each end of the beam element are treated as the unknown degrees of freedom.  For a beam element of length L lying in the xz plane, as shown in Figure, the four degrees of freedom in the local (xz) coordinate system are indicated as vi, θi, vj, and θj.  According to Euler- Bernoulli theory of beam bending, the entire c-s has the same transverse deflection v as the neutral axis. The Euler- Bernoulli beam element is shown in figure. The Euler- Bernoulli beam element 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 61 x=Lx=0 vj vi θi θj
  • 62.  Hence the deflection are small and we assume that the rotation of each section is the same as the slope of deflection curve at that point. i.e., (dv/dx)  Therefore, the axial deformation of any point P away from the neutral axis (due to bending alone) is given by uP = -(z)(dv/dx).  Thus, if v(x) is determine, then the entire state of deformation of the body is completely determined.  Abeam element is a simple line element, representing the neutral axis of the beam.  To ensure the continuity of the deformation at any point ( i.e., on the neutral axis), to ensure that v and dv/dx are continuous. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 62
  • 63.  Taking two nodal D.O.F viz., v and θ (= dv/dx).  These nodal D.O.F permits to readily assign prescribed essential B.Cs i.e., v= 0= dv/dx at fixed end.  A prescribed value of moment load can readily taken into account with the rotational D.O.F θ.  At all nodes, the following sign conversions are used: (i) Moments are +ve in the CCW direction. (ii) Rotations are positive in the CCW direction. (iii) Forces are +ve in the +ve z direction. (iv) Displacements are +ve in the +ve z direction 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 63
  • 64. SHAPE FUNCTION OF BEAM ELEMENT  The displacement field v(x) assumed for the beam element should be such that it takes on the values of deflection and the slope at either end as given by the nodal values vi, θi, vj, θj. Let v(x) be given by  v(x) = c0 + c1x + c2x2 + c3x3 ------- (1)  Differentiating w.r.t x, we have  dv/dx = c1 + 2c2x + 3c3x2 ---------- (2)  At x= 0 and L , we have  vi = c0, θi = c1, vj = c0 + c1L + c2L2 + c3L3 , θj = c1 + 2c2L + 3c3L2 ----- (3) 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 64
  • 65.  We can solve for the coefficients c0, c1, c2, c3 in terms of the nodal D.O.F. vi, θi, vj, θj and substitute in equation (1) we get, v(x) = N1vi + N2 θi + N3vj + N4 θj ---------- (4)  Where the shape function N are given by,  N1 = 1 – 3x2 /L2 + 2X3 /L3 , N2 = x – 2x2 /L + x3 /L2  N3 = 3x2 /L2 -2x3 /L3 , N4 = -x2 /L + x3 /L2 vi θi  Rewrite equation , v(x) = [N] {δ} = [N1 N2 N3 N4] vj ------------ (5) θj 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 65
  • 66. STIFFNESS MATRIX FOR BEAM ELEMENT  The strain at any point in the beam is given by  { ε} = εx = du/dx = d/dx [-z (dv/dx)] = -z (d2 v/dx2 )  From equation (5) we have  εx = -z [d2 N1/dx2 d2 N2/dx2 d2 N3/dx2 d2 N4/dx2 ]{δ} = -z [((-6/L2 ) + (12x/L3 )) ((-4/L) + (6x/L2 )) ((6/L2 )- (12x/L3 )) ((-2/L) + (6x/L2 ))]{δ} Thus the strain displacement relation matrix [B] is given by [B] = -z [((12x/L3 ) - (6/L2 )) ((6x/L) – (4/L2 )) ((6/L2 ) - (12x/L3 )) ((6x/L2 ) – (2/L))] 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 66
  • 67.  We can obtain the element stiffness matrix as  [k] = ∫[B]T [B] E dv v L (12x/L3 ) - (6/L2 ) = ∫ ∫(-z) (6x/L) – (4/L2 ) x (E)(-z) [((12x/L3 ) - (6/L2 )) ((6x/L) – (4/L2 )) A 0 (6/L2 ) - (12x/L3 ) ((6/L2 ) - (12x/L3 )) ((6x/L2 ) – (2/L))] (dA) dx (6x/L2 ) – (2/L) 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 67
  • 68.  Noting that ∫z2 dA = I, the second moment of area of the C-S and A  carrying out the integration w.r.t x, we get 12 6L -12 6L 6L 4L2 -6L 2L2 [k] = EI/L3 -12 -6L 12 -6L 6L 2L2 -6L 4L2  The element nodal force vectors are now obtained for specific cases of loading 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 68
  • 69. P1: A beam, fixed at one end and supported by a roller at the other end, has a 20KN concentrated load applied at the centre of the span, as shown in figure. Calculate the deflection under the load and construct the shear force and bending moment diagrams for the beam. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 69 20KN 500 cm E= 20 X 106 N/cm2 I = 2500 cm 500 cm
  • 70.  Solution:  Let the beam is divided into 2 elements having nodes 1,2,3.  Let v1, θ1, F1, M1- Vertical deflection, Slope, Shear force and Bending moment at node 1.  v2, θ2, F2, M2- Vertical deflection, Slope, Shear force and Bending moment at node 2.  v3, θ3, F3, M3- Vertical deflection, Slope, Shear force and Bending moment at node 3. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 70 E= 20 X 106 N/cm2 I = 2500 cm θ1 M1 v1, F1 v2, F2 θ2 M2 v3,F3 θ3 M3 1 2 321
  • 71.  (a) Determination of nodal deflections: Element (1):  It has nodal displacements v1, θ1 ,v2, θ2 at nodes 1 and 2.  The element stiffness matrix for element (1) is given by 12 6L -12 6L 6L 4L2 -6L 2L2 [k1] =E1I1/L1 3 -12 -6L 12 -6L 6L 2L2 -6L 4L2  Now E1I1/L1 3 = (20 x 106 x 2500) / 5003 = 400 N/cm 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 71
  • 72. v1 θ1 v2 θ2 12 3000 -12 3000 v1 3000 106 -3000 5x105 θ1 [k1] =400 -12 -3000 12 -3000 v2 3000 5x105 -3000 106 θ2 Element (2): v2 θ2 v3 θ3 12 3000 -12 3000 v2 3000 106 -3000 5x105 θ2 [k2] =400 -12 -3000 12 -3000 v3 3000 5x105 -3000 106 θ3 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 72
  • 73.  The global stiffness matrix can be written as, v1 θ1 v2 θ2 v3 θ3 12 3000 -12 3000 0 0 v1 3000 106 -3000 5x105 0 0 θ1 [k2] =400 -12 -3000 24 0 -12 3000 v2 3000 5x105 0 2 x106 -3000 5x105 θ2 0 0 -12 -3000 12 -3000 v3 0 0 -3000 5x105 -3000 106 θ3 The finite element equation is given by 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 73
  • 74.  [k] {u} = {F} 12 3000 -12 3000 0 0 v1 F1 3000 106 -3000 5x105 0 0 θ1 M1 i.e., 400 -12 -3000 24 0 -12 3000 v2 = F2 ----- (1) 3000 5x105 0 2 x106 -3000 5x105 θ2 M2 0 0 -12 -3000 12 -3000 v3 F3 0 0 -3000 5x105 -3000 106 θ3 M3 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 74
  • 75.  The nodal conditions are,  v1 = 0, θ1 = 0, v3 = 0, F2 = -20000 N, M2 = 0, M3 = 0. Applying the nodal conditions in the above F.E. equation (1), we get, 12 3000 -12 3000 0 0 0 F1 3000 106 -3000 5x105 0 0 0 M1 i.e., 400 -12 -3000 24 0 -12 3000 v2 = -20000 3000 5x105 0 2 x106 -3000 5x105 θ2 0 0 0 -12 -3000 12 -3000 0 F3 0 0 -3000 5x105 -3000 106 θ3 M3 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 75
  • 76.  Since v1 = 0, θ1 = 0, v3 = 0, neglect 1st , 2nd , 5th rows and columns in the global stiffness matrix. From the remaining terms, the F.E. equation can be written as 24 0 3000 v2- 20000 400 0 2 x106 5x105 θ2 = 0 3000 5x105 106 θ3 0  θ2 = -0.003125 rad, θ3 = 0.0125 rad and v2 = -3.646 cm 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 76
  • 77.  (b) Determination of shear force and bending moment:  The shear force at node 1 is given by  F1 = 400 (-12v2 + 3000 θ2 ) = 13750 N  Bending moment at node 1 is  M1 = 400 (-3000 v2 + 5 x 105 θ2) = 3750200 N-cm  The shear force at node 3 is  F3 = 400 (-12v2 - 3000 θ2 - 3000 θ3) = 6250 N 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 77
  • 78. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 78 13750 F1 F2 F3 Shear Force Diagram 3750200 N- cm 0 0 -6250 + + + - - - + + +
  • 79.  For the beam and loading shown in figure, determine (1) the slopes at 2 and 3 and (2) the vertical deflection at the midpoint of the distributed load. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 79 12KN/m 1 m E= 200 GPa I = 4 x 106 mm4 1 m 1 2
  • 80.  Solution:  Element (1):  Let v1, θ1, F1, M1- Vertical deflection, Slope, Shear force and Bending moment at node 1.  v2, θ2, F2, M2- Vertical deflection, Slope, Shear force and Bending moment at node 2. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 80 1 m 1 v1 F1 θ2 M2 v2 F2 θ1 M1
  • 81.  It has nodal displacements v1, θ1 ,v2, θ2 at nodes 1 and 2.  The element stiffness matrix for element (1) is given by  Now E1I1/L1 3 = (200 x 109 x 4 x 10-6 ) / 13 = 800 x 103 N/m v1 θ1 v2 θ2 12 6L -12 6L v1 [k1] =800 x 103 6L 4L2 -6L 2L2 θ1 --------- (1) -12 -6L 12 -6L v2 6L 2L2 -6L 4L2 θ2 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 81
  • 82. Element (2):  It has nodal displacements v1, θ1 ,v2, θ2 at nodes 1 and 2.  The element stiffness matrix for element (1) is given by  Now E2I2/L2 3 = (200 x 109 x 4 x 10-6 ) / 13 = 800 x 103 N/m v2 θ2 v3 θ3 12 6L -12 6L v2 [k2] =800 x 103 6L 4L2 -6L 2L2 θ2 --- (2) -12 -6L 12 -6L v3 6L 2L2 -6L 4L2 θ3 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 82 12KN/m 1 m 2 θ2 M2 θ3 M3 v2, F2 v3,F3 32
  • 83.  The global stiffness matrix can be written as, v1 θ1 v2 θ2 v3 θ3 12 6 -12 6 0 0 v1 6 4 -6 2 0 0 θ1 [K] = 800 x103 -12 -6 24 0 -12 6 v2 ------- (3) 6 2 0 8 -6 2 θ2 0 0 -12 -6 12 -6 v3 0 0 -6 2 -6 4 θ3 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 83
  • 84.  The finite element equation is given by [k] {u} = {F} 12 6 -12 6 0 0 v1 F1 6 4 -6 2 0 0 θ1 M1 800 x103 -12 -6 24 0 -12 6 v2 = F2 ---(4) 6 2 0 8 -6 2 θ2 M2 0 0 -12 -6 12 -6 v3 F3 0 0 -6 2 -6 4 θ3 M3 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 84
  • 85.  The nodal conditions are,  For uniformly distributed load  F2 = -wL/2 ; M2 = -wL2 /12 ;  F3 = -wL/2 ; M3 = wL2 /12 [w=12 x 103 N/m]  F2 = -6000 N ; M2 = -1000 N-m ;  F3 = -6000 N ; M3 = 1000 N-m  v1=0, θ1 =0, v2=0,v3 =0, F1=0,F2 =-6000 N, M2=-1000 N-m, F3=-6000 N ;M3=1000 N-m  Applying the nodal conditions in the above F.E. equation (4), we get, 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 85
  • 86. 12 6 -12 6 0 0 0 0 6 4 -6 2 0 0 0 0 800 x103 -12 -6 24 0 -12 6 0 = -6000 ---(4) 6 2 0 8 -6 2 θ2 -1000 0 0 -12 -6 12 -6 0 -6000 0 0 -6 2 -6 4 θ3 1000  In the above equation v1, θ1 ,v2, v3 =0 ,so delete 1st , 2nd , 3rd , and 5th row and column. Hence the equation reduces to 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 86
  • 87. 8 2 θ2 -1000 800 x103 = 2 4 θ3 1000 Slope or rotation at 2, θ2 = -2.679 x 10-4 rad Slope or rotation at 3, θ3 = 4.464x 10-4 rad 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 87
  • 88.  The vertical deflection at the midpoint of the distributed load.  Consider the element (2) and its loading arrangements as shown in figure.  For any beam element the vertical deflection can be obtained by using the relation,  v(x) = N1v1 + N2 θ1 + N3v2 + N4 θ2  Where the shape function N are given by,  N1 = 1 – 3x2 /L2 + 2X3 /L3 , N2 = x – 2x2 /L + x3 /L2  N3 = 3x2 /L2 -2x3 /L3 , N4 = -x2 /L + x3 /L2 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 88 12KN/m 1 m 2 θ2 M2 θ3 M3 v2, F2 v3,F3 21
  • 89.  Also in order to simplify the analysis, consider the element (2) as the separate element and its nodes 1 and 2.  v1 = 0, θ1 = -2.679 x 10-4 rad, v2 = 0, θ2 = 4.464x 10-4 rad  Now at x= 0.5m (i.e., at mid point of element (2))  N1v1 = 0, N2 θ1 = [0.5 – (2(0.5)2 /1) + ((0.5)3 /12 )] (-2.67 x 10-4 )  = 3.338 x 10-5  N3v2 =0 , N4 θ2 = [(– (0.5)2 /1) + ((0.5)3 /12 )] (4.46x 10-4 )  = 5.575 x 10-5  v = 0-3.338 x 10-5 + 0 – 5.575 x 10-5 = -8.913 x 10-5 m = -0.08913 mm 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 89
  • 90.  i.e., Displacement at the midpoint is directing downwards ass shown in figure. v = -0.08913 mm 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 90 2
  • 91. FRAME ELEMENT  The bar element can permit only axial deformation and the beam element can permit only transverse deflection.  By combining the bar and the beam elements, we obtain the “frame element” which enables us to model typical problems of framed structures which in general involve both types of deformation.  A typical planar frame element is shown in figure, and the corresponding element equations are [k] {δ} = {f} Plane frame element 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 91 ujui x=Lx=0 vj vi θi θj
  • 92.  Where  {δ} = {ui, vi, θi, uj, vj, θj} ui uj ----------- (1) vi θi vj θj 12EI/L3 6EI/L2 -12EI/L3 6EI/L2 vi 6EI/L2 4EI/L -6EI/L2 2EI/L θi --------(2) [kbeam] = -12EI/L3 6EI/L2 12EI/L3 -6EI/L2 vj 6EI/L2 2EI/L -6EI/L2 4EI/L θj 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 92 AE/L - AE/L ui [kbar] = - AE/L AE/L uj
  • 93.  and the element stiffness matrix for frame element (using equs. 1 &2) is ui vi θi uj vj θj AE/L 0 0 -AE/L 0 0 ui 0 12EI/L3 6EI/L2 0 -12EI/L3 6EI/L2 vi [k] = 0 6EI/L2 4EI/L 0 -6EI/L2 2EI/L θi -AE/L 0 0 AE/L 0 0 uj 0 -12EI/L3 -6EI/L2 0 12EI/L3 -6EI/L2 vj 0 6EI/L2 -2EI/L 0 -6EI/L2 4EI/L θj 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 93
  • 94.  The beam elements also have different orientations. Figure shows the inclined frame element.  It have two displacement and a rotational deformation for each node.  The nodal displacement vector is given by {δ} = {ui, vi, θi, uj, vj, θj} 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 94 ui y x i j uj vj θi θj ujy ujx uiy uix Fi sin θθi Fi cos θ Fi Fj sin θθj Fjcos θ Fj vi vj
  • 95.  For beam element in its own local coordinate frame, we have the force deflection relations, viz  The tranformation matrix would be cos θ sin θ [T] = -sin θ cos θ 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 95 1 -1 u1 Fi AE/L = -1 1 u2 Fj ui = uix cos θ + uiy sin θ uj = ujx cos θ + ujy sin θ
  • 96.  P1: The framed structure made of steel shown in figure. To calculate the deflection using the frame element. Structure details FE model 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 96 20 mm dia. Steel rod 4 m 3 m Steel I-beam A=2000mm2 I=106 mm4 10KN Steel I-beam A=2000mm2 I=106 mm4 20 mm dia. Steel rod 10KN Y y2 X x2 θ y1 x1 3 21 4 1 2
  • 97.  Element 1:  L = 3m =3000mm, A = 2000mm2, E = 200,000 N/mm2, I = 106 mm4. The element stiffness matrix in its coordinate frame is given in the form ui vi θi uj vj θj AE/L 0 0 -AE/L 0 0 ui 0 12EI/L3 6EI/L2 0 -12EI/L3 6EI/L2 vi [k] = 0 6EI/L2 4EI/L 0 -6EI/L2 2EI/L θi -AE/L 0 0 AE/L 0 0 uj 0 -12EI/L3 -6EI/L2 0 12EI/L3 -6EI/L2 vj 0 6EI/L2 -2EI/L 0 -6EI/L2 4EI/L θj -------- (1) 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 97
  • 98. ui vi θi uj vj θj 0.133x106 0 0 -0.133x106 0 0 ui 0 0.889x102 0.133x106 0 -0.889x102 0.133x106 vi [k1 ] = 0 0.133x106 0.267x109 0 - 0.133x106 0.133x106 θi - 0.133x106 0 0 0.133x106 0 0 uj 0 - 0.889x102 -0.133x106 0 0.889x102 -0.133x106 vj 0 0.133x106 0.133x106 0 - 0.133x106 0.267x109 θj -------- (2) 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 98
  • 99.  The local coordinate frame of element 1 is identical to the global frame and hence no transformation is required  Element 2: L=5000 mm, A=314.16 mm2 , E = 200,000 N/mm2, I = 7,854mm4 . The element stiffness matrix in its coordinate frame is given in the form 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 99
  • 100. ui vi θi uj vj θj 0.126x105 0 0 - 0.126x105 0 0 ui 0 0.151 0.377x10 3 0 -0.151 0.337x103 vi [k2 ] = 0 0.377x10 3 0.126x105 0 -0.377x103 0.628x106 θi - 0.126x105 0 0 0.126x105 0 0 uj 0 - 0.151 -0.377x103 0 0.151 - 0.377x103 vj 0 0.337x103 0.628x106 0 - 0.377x103 0.126x107 θj -------- (3) 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 100
  • 101.  The local coordinate frame is inclined w.r.t global reference frame and hence we need to transform the element stiffness matrix into global frame. For any orientation θ, the transformation matrix related local and global d.o.f. can be readily shown to be given by cos θ sin θ 0 0 0 0 -sin θ cos θ 0 0 0 0 [T] = 0 0 1 0 0 0 0 0 0 cos θ sin θ 0 0 0 0 -sin θ cos θ 0 0 0 0 0 0 1 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 101
  • 102.  Thus the element stiffness matrix in the global frame is written in the form [K2 ] = [T]T [k2 ] [T] 0.6 -0.8 0 0 0 0 0.8 0.6 0 0 0 0 [K2 ] = 0 0 1 0 0 0 0 0 0 0.6 -0.8 0 0 0 0 0.8 0.6 0 0 0 0 0 0 1 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 102 0.6 0.8 0 0 0 0 -0.8 0.6 0 0 0 0 0 0 1 0 0 0 0 0 0 0.6 0.8 0 0 0 0 -0.8 0.6 0 0 0 0 0 0 1 0.126x105 0 0 - 0.126x105 0 0 0 0.151 0.377x10 3 0 -0.151 0.377x103 0 0.377x10 3 0.126x105 0 -0.377x103 0.628x106 - 0.126x105 0 0 0.126x105 0 0 0 - 0.151 -0.377x103 0 0.151 - 0.377x103 0 0.377x103 0.628x106 0 - 0.377x103 0.126x107
  • 103. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 103 0.126x105 0 0 - 0.126x105 0 0 0 0.151 0.377x10 3 0 -0.151 0.377x103 0 0.377x10 3 0.126x105 0 -0.377x103 0.628x106 - 0.126x105 0 0 0.126x105 0 0 0 - 0.151 -0.377x103 0 0.151 - 0.377x103 0 0.377x103 0.628x106 0 - 0.377x103 0.126x107 0.6 0.8 0 0 0 0 -0.8 0.6 0 0 0 0 0 0 1 0 0 0 0 0 0 0.6 0.8 0 0 0 0 -0.8 0.6 0 0 0 0 0 0 1 0.452x104 0.603x104 -0.302x103 -0.452x104 -0.603x104 -0.302x103 0.603x104 0.804x104 0.226x10 3 -0.603x104 -0.804x104 0.226x10 3 -0.302x103 0.226x103 0.126x105 0.302x103 -0.226x103 0.628x106 -0.452x104 -0.603x104 0.302x103 0.452x104 0.603x104 0.302x103 -0.603x104 -0.804x104 -0.226x103 0.603x104 0.804x104 -0.226x103 0.302x103 0.226x10 3 0.628x106 0.302x103 -0.226x103 0.126x107
  • 104. u1 v1 θ1 u2 v2 θ2 0.133x106 0 0 -0.133x106 0 0 u1 0 0.889x102 0.133x106 0 -0.889x102 0.133x106 v1 [k1 ] =0 0.133x106 0.267x109 0 - 0.133x106 0.133x106 θ1 -0.133x106 0 0 0.133x106 0 0 u2 0 - 0.889x102 -0.133x106 0 0.889x102 -0.133x106 v2 0 0.133x106 0.133x106 0 - 0.133x106 0.267x109 θ2 u2 v2 θ2 u3 v3 θ3 0.452x104 0.603x104 -0.302x103 -0.452x104 -0.603x104 -0.302x103 u2 0.603x104 0.804x104 0.226x10 3 -0.603x104 -0.804x104 0.226x10 3 v2 [K2 ] = -0.302x103 0.226x103 0.126x105 0.302x103 -0.226x103 0.628x106 θ2 -0.452x104 -0.603x104 0.302x103 0.452x104 0.603x104 0.302x103 u3 -0.603x104 -0.804x104 -0.226x103 0.603x104 0.804x104 -0.226x103 v3 0.302x103 0.226x10 3 0.628x106 0.302x103 -0.226x103 0.126x107 θ3 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 104
  • 105. Result:  u2 = -0.12mm; v2= 2.564 mm  θ2 = 0.0013 rad θ3 = θ4 = 3.26 x 10-4 rad 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 105
  • 106. ONE-DIMENSIONAL HEAT TRANSFER  The GDE for the steady state one-dimensional conduction heat transfer with convective heat loss from lateral surfaces is given by k d2 T /dx2 + q = [P/Ac] h (T - T∞) --------- (1) Where  k = Co-efficient of thermal conductivity of the material,  T = temperature,  q = internal heat source /unit volume,  Ac= the C-S area,  h = convective heat transfer co-efficient, and  T∞ = ambient temperature. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 106
  • 107.  The weighted residual statement can be written as L ∫ W [k (d2 T /dx2 ) + q – (P/Ac) h (T - T∞) ] dx = 0 --------- (2) 0  By performing integration by parts, the weak form of the DE can be obtained as L L L ∫ W [k (d2 T /dx2 )+ ∫Wq dx –∫W(P/Ac) h (T - T∞) ] dx = 0 0 0 0 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 107
  • 108. L  ∫ W d[k (dT /dx)] 0 u d v L L L L W k(dT/dx) -∫[k (dW/dx dT/dx)dx + ∫ Wq dx - ∫W(P/Ac) h (T - T∞)] dx= 0 0 0 0 0 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 108 ∫ u dv = uv - ∫ v du
  • 109.  The weak form, for a typical mesh of n finite elements, can be written as, 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 109 L L ∫k (dW/dx) (dT/dx)dx + ∫W(P/Ac) h (T) dx 0 L L 0 L = ∫Wq dx +∫W(P/Ac) h (T∞) dx + W k (dT/dx) 0 0 0 n L L Σ ∫[k (dW/dx) ( dT/dx) dx + ∫W(P/Ac)hT dx k=1 0 n L 0 L = Σ ∫W [q + (P/Ac ) hT∞ ] dx + Wk(dT/dx) --------- (3) k=1 0 0
  • 110. PROCEDURE FOR DEVELOPING THE 1-D HEAT TRANSFER BAR ELEMENT  Figure shows the typical heat transfer element, with its nodes and nodal d.o.f.  Equation for 1D bar element heat transfer nodal temperature:  T(x) = 1- (x/L) T1 + x/L T2 -------- (4)  dT/ dx = (T2 – T1)/L -------- (5) 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 110 Node 2Node 1 x=Lx=0 T2T1
  • 111.  W1 = 1- (x/L), dW1/dx = -1/L -------- (6)  W2 = (x/L), dW2/dx = 1/L  Now compute the elemental level contribution to Equ. (3)  LHS first term (Equ. (3)). Similar to 1D bar finite element, k replaces AE and T replaces u. Thus we have 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 111 1 -1 T1 k/L -1 1 T2
  • 112.  LHS Second term (Equ. (3)). With W1, L ∫ 1- (x/L) (P/Ac) h (1- (x/L) ) T1 + (x/L)T2 dx 0 L L = (Ph/Ac) ∫[ 1- (x/L) ]2 dx T1 + ∫(x/L) (1- (x/L) ) T2 dx 0 0 = ((PhL)/(6Ac)) [2T1 + T2] 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 112
  • 113.  With W2, L ∫ (x/L) (P/Ac) h (1- (x/L) ) T1 + (x/L)T2 dx = ((PhL)/(6Ac)) [T1 + 2T2] 0 We can now write the second term on the LHS in matrix notation as 2 1 T1 (PhL)/(6Ac) 1 2 T2 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 113
  • 114.  RHS First term. Similar to the RHS first term of the bar element equation replacing q0 by q0 + (PhT∞)/(Ac) , we can write L/2 q0 + (PhT∞)/(Ac) L/2 RHS Second term. Similar to RHS second term of the bar element -Q0 QL  Where Q0, QL represent the heat flux at the ends of the element (nodes). Thus the element level equations can be written as 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 114
  • 115.  LHS = Element conduction matrix  RHS First term = Nodal heat flux  RHS Second vector = Net heat flux at nodes 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 115 1 -1 2 1 T1 L/2 -Q0 k/L +(PhL)/(6Ac) = q0 + (PhT∞)/(Ac) + -1 1 1 2 T2 L/2 QL
  • 116.  P1 : A 1 mm dia., 50mm long aluminium pin-fin as shown in figure, used to enhance the heat transfer from a surface wall maintained at 3000 C. Use k = 200 W/m/0 C for ,aluminium, h = 20 W/m2 C , T∞ = 300 C. Calculate the temperature distribution between in the fin. A Pin- Fin. 04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 116 h T∞ Tw Wall L=50 mm
  • 117.  With two equal elements, L1 = L2 =0.025m. Assembling the two elemental level equations , we get the 1 -1 0 2 1 0 T1 200/0.025 -1 2 -1 + ((π)(0.001)(20) (0.025))/((6)(π) (0.0005)2 ) 1 4 1 T2 0 -1 1 0 1 2 T3 0.0125 QWall = ((π)(0.001)(20))/((π) (0.0005)2 ) (30) 0.025 + 0 0.0125 Qtip From the B.Cs , T1 = 3000 C, Qtip = 0. Substituting and solving the equations, we get T1 = 226.1850 C, T3 = 203.5480 C04/03/19 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 117 1 2 3 21 L1 L2
  • 118. SOLUTION OF EIGENVALUE PROBLEMS  The general form of G.E for un-damped free vibration of the structure is given by  [k]nxn {ui}nx1 = ω2 i [m]nxn{ui}nx1, i= 1, 2, 3.., n ---(1)  Where, [k] = stiffness matrices [m] = mass matrices ωi = Natural frequencies {ui} = Mode shape  Then equ (1) can be rewrite as  [m]-1 [k] {ui} = ω2 i {ui}  [A] {ui} = λi {ui}  Where [A] = [m] λ-1 [k] and λi = ω2 i Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 04/03/19 118
  • 119.  [A] {u} = λ {u} is known as Standard form of eigen value problem.  [k] {u} = λ [m]{u} is known as non-standard form of eigen value problem.  The determinant | k – λm | = 0 is called as the characteristic equation.  {k – λm } {u} = 0 is called Eigen vector. Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 04/03/19 119
  • 120.  P1: Find the natural frequencies of longitudinal vibration of the unconstrained stepped bar shown in figure.  Solution:  The dynamic equation of motion for the un-damped free vibration of whose system is given by  [ [K] – [M] ω2 ] (u) = 0 ------(1) Where [K] = Global stiffness matrix [M] = Global mass matrix ω = Natural frequency {u} = Displacement vector Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. u3 A(1) = 2A A(1) = A Element 1 Element 2 u1 u2 x 1 2 3 l(1) = L/2 l(2) = L/2 Stepped bar with axial degree of freedom 04/03/19 120
  • 121.  For two element stepped bar, the equation of motion(1) can be derived as follows:  For element (1): (Between nodes 1&2) 1 -1  Element stiffness matrix [k1] = (A1E1)/l1 -1 1 1 -1 1 -1 = (2A E)/(L/2) = (4A E)/(L) ------(2) -1 1 -1 1 2 1 Element stiffness matrix [m1] = (ρ1 A1 l1)/6 1 2 (Assumingconsistent mass matrix)Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 04/03/19 121
  • 122. 2 1 2 1 = (ρ.2A. L/2)/6 = (ρAL)/6 ---(3) 1 2 1 2 For element (2): (Between nodes 2&3) 1 -1  Element stiffness matrix [k2] = (A2E2)/l2 -1 1 1 -1 1 -1 = (A E)/(L/2) = (2A E)/(L) ------(4) -1 1 -1 1 2 1 Element stiffness matrix [m2] = (ρ2A2 l2)/6 1 2 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 04/03/19 122
  • 123. 2 1 2 1 = (ρ.A. L/2)/6 =(ρAL)/12 ------(5) 1 2 1 2 By combining the equas.(2) & (4), we get global stiffness matrix as 2 -2 0 [K] = (2AE)/L -2 3 -1 0 -1 1 Similarly by combining the equas.(3) & (5), we get global mass matrix as 4 2 0 u1 [M]= (ρAL)/12 2 6 1 and {u} = u2 0 1 2 u3 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 04/03/19 123
  • 124.  Now , by substituting the values of above matrices in equation (1) we get 2 -2 0 4 2 0 u1 (2AE)/L -2 3 -1 - (ρAL)/12 2 6 1 ω2 u2 = 0 --(6) 0 -1 1 0 1 2 u3  We know that, for getting the non-zero solution of circular frequency ω for {u}, the determinant of the coefficient matrix [ [K] – [M] ω2 ] should be zero.  i.e., | [K] – [M] ω2 | = 0 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 04/03/19 124
  • 125. 2 -2 0 4 2 0 i.e., (2AE)/L -2 3 -1 - (ρAL)/12 2 6 1 ω2 = 0 0 -1 1 0 1 2 (or) 2 -2 0 4 2 0 -2 3 -1 -(ρL2 ω2 )/24E 2 6 1 = 0 ------(7) 0 -1 1 0 1 2 Let λ = (ρL2 ω2 )/24E Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 04/03/19 125
  • 126.  Then, the equation (7) becomes, (2-4λ) (-2-2λ) 0 (-2-2λ) (3 -6λ) (-1- λ ) = 0 ----(8) 0 (-1-λ) (1-2 λ) i.e., (2-4λ) [(3 -6λ) (1-2 λ) - (-1-λ)(-1-λ)] - (-2-2λ) [(-2-2λ) (1-2 λ)-0] +0 = 0 i.e., -36 λ3 + 90λ2 + -36 λ = 0 i.e., 18λ(1-2λ) (λ-2) = 0 (or) λ(1-2λ) (λ-2) = 0 In the above equation either λ=0 or (1-2λ)=0 or (λ-2) = 0 When λ = 0 we get (ρL2 ω2 )/24E= 0 => ω2 = 0 (or) ω=0 i.e., the first natural frequency ω1 = 0 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 04/03/19 126
  • 127.  When (1-2λ)=0, we get 1- ( 2 (ρL2 ω2 )/24E)= 0  i.e., ω2 =12E/ ρL2 => ω = 3.46( E/(ρL2 ))1/2  The second natural frequency ω2 = 3.46( E/(ρL2 ))1/2  When (λ-2)=0, we get (ρL2 ω2 )/24E) - 2= 0  i.e., ω2 =48E/ ρL2 => ω = 6.93( E/(ρL2 ))1/2  The third natural frequency ω3 = 6.93( E/(ρL2 ))1/2  That is the natural frequencies of unconstrained stepped bar are,  ω1 = 0  ω2 = 3.46( E/(ρL2 ))1/2 rad/sec  ω3= 6.93( E/(ρL2 ))1/2 rad/sec Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 04/03/19 127
  • 128.  P2: Find the mode shapes (i.e., eigenvectors) for the natural frequencies of longitudinal vibration of the unconstrained stepped bar shown in figure.  Solution:  The natural frequencies of the unconstrained stepped bar as described in the above problem are :  ω1 = 0  ω2 = 3.46( E/(ρL2 ))1/2 rad/sec  ω3= 6.93( E/(ρL2 ))1/2 rad/sec  The natural frequencies follow some well defined deformation patterns called mode shapes. It is observed that the first frequency ω1 = 0 corresponds to rigid body mode, whereas the second and third frequencies (ω2 , ω3) correspond to elastic deformation modes. Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. u3 A(1) = 2A A(1) = A Element 1 Element 2 u1 u2 x 1 2 3 l(1) = L/2 l(2) = L/2 Stepped bar with axial degree of freedom 04/03/19 128
  • 129.  To find the mode shape corresponding to natural frequencies ωi, we must solve the equation[ [K] – [M] ω2 ] (u) = 0.  The equation (6) of the above problem is given by 2 -2 0 4 2 0 u1 (2AE)/L -2 3 -1 -(ρAL)/12 2 6 1 ω2 u2 = 0 ------ I 0 -1 1 0 1 2 u3  By selecting λ = (ρL2 ω2 )/24E the above equation can be simplified as (2-4λ) (-2-2λ) 0 u1 (-2-2λ) (3 -6λ) (-1- λ ) u2 = 0 ---- II 0 (-1-λ) (1-2 λ) u3 Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 04/03/19 129
  • 130.  By equating the determinant of coefficient matrix for {u} to zero, we get  λ(1-2λ) (λ-2) = 0 which implies λ = 0 (or) λ = 0.5 (or) λ = 2.  i.e., the eigen values are  λ1 0 λ2 = 0.5 writing in the increasing order. λ3 2  To find 1st mode shape:  Let λ = 0  Now the equation II implies 2u1 – 2u2 = 0 ---(i) -2u1 + 3u2 – u3 = 0 ---(ii) -u2 + u3 = 0 ---(iii) Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 04/03/19 130
  • 131.  Equa. (i) => u1 = u2 and Equa (iii) u2 = u3  Hence u1 = u2 = u3  For ω1 = 0 (or) λ = 0, corresponding to rigid body  u1 = u2 = u3 = 1  That is , 1st mode shape is u1 1 Um1 = u2 = 1 u1 u3 1  To find 2nd mode shape:  Let λ = 0.5  Now the equation II implies – 3u2 = 0 ---(iv) -3u1–1.3u3 = 0 ---(v) -1.5u2 = 0 ---(vi)Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 04/03/19 131
  • 132.  Equa(iv) => u2 = 0 and Equa(v) => 3u1 = -1.5u3 (or) 2u1 = -u3  That is , 2nd mode shape is u1 1 1 Um2 = u2 = 0 = 0 u1 u3 -2u1 -2  To find 3rd mode shape:  Let λ = 2  The equation II implies -6u1– 6u2 = 0 ---(vii) -6u1-9u2–3u3 = 0 ---(viii) - 3u2 -3u3= 0 ---(ix) Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 04/03/19 132
  • 133.  Equa(vii) => u1= -u2 and Equa(ix) => u2 = -u3  That is , 3rd mode shape is u1 u1 1 Um3 = u2 = -u1 = -1 u1 u3 u1 1 The three mode shapes corresponding to λ = 0, λ = 0.5 and λ = 2 (i.e.,corresponding to ω1 , ω2 and ω3) are shown in figure. Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. 04/03/19 133
  • 134. Types of mode-shapes (Eigenvectors) 1st mode shape 2nd mode shape Dr.G.PAULRAJ, Professor&Head(Mech.),Avadi, VTRS,Chennai. u3u1 u21 2 3 L/2 L/2 x 1 1 1 u1 u2 u3 0 L/2 L x u1 u2 u3 0 L0 1 -2 x u1 u2 u3 0 0 1 1 -1 3rd mode shape 04/03/19 134