Essential Questions
Howdo you write polynomials in standard form?
How do you add and subtract polynomials?
Where you’ll see this:
Part-time jobs, travel, geography, modeling
Vocabulary
1. Monomial: Anexpression that has one term (a
number, variable, or a combination of both a
number and variables without any addition or
subtraction)
2. Coefficient:
3. Constant:
4. Polynomial:
5. Term:
6.
Vocabulary
1. Monomial: Anexpression that has one term (a
number, variable, or a combination of both a
number and variables without any addition or
subtraction)
2. Coefficient: The number that is with the variable
3. Constant:
4. Polynomial:
5. Term:
7.
Vocabulary
1. Monomial: Anexpression that has one term (a
number, variable, or a combination of both a
number and variables without any addition or
subtraction)
2. Coefficient: The number that is with the variable
3. Constant: A number without a variable
4. Polynomial:
5. Term:
8.
Vocabulary
1. Monomial: Anexpression that has one term (a
number, variable, or a combination of both a
number and variables without any addition or
subtraction)
2. Coefficient: The number that is with the variable
3. Constant: A number without a variable
4. Polynomial: A collection of terms that are
combined by addition or subtraction
5. Term:
9.
Vocabulary
1. Monomial: Anexpression that has one term (a
number, variable, or a combination of both a
number and variables without any addition or
subtraction)
2. Coefficient: The number that is with the variable
3. Constant: A number without a variable
4. Polynomial: A collection of terms that are
combined by addition or subtraction
5. Term: Each monomial within a polynomial
Vocabulary
6. Binomial: Apolynomial with two terms
7. Trinomial: A polynomial with three terms
8. Standard Form:
9. Like Terms:
13.
Vocabulary
6. Binomial: Apolynomial with two terms
7. Trinomial: A polynomial with three terms
8. Standard Form: When a polynomial is written from
highest to lowest degree (highest to lowest
exponent)
9. Like Terms:
14.
Vocabulary
6. Binomial: Apolynomial with two terms
7. Trinomial: A polynomial with three terms
8. Standard Form: When a polynomial is written from
highest to lowest degree (highest to lowest
exponent)
9. Like Terms: Terms that have the same variable
parts (variables and exponents)
15.
Example 1
Tellthe variable for which the polynomial is
arranged in standard form.
3 2
a. 2a + 3ab − 4b
3 2
b. 2(a + b) + 3(a + b) − 4(a + b) + 7
16.
Example 1
Tellthe variable for which the polynomial is
arranged in standard form.
3 2
a. 2a + 3ab − 4b
a
3 2
b. 2(a + b) + 3(a + b) − 4(a + b) + 7
17.
Example 1
Tellthe variable for which the polynomial is
arranged in standard form.
3 2
a. 2a + 3ab − 4b
a
3 2
b. 2(a + b) + 3(a + b) − 4(a + b) + 7
(a + b)
18.
Example 2
Add the polynomials.
2 2
a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x )
2 2 2 2
b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
19.
Example 2
Add the polynomials.
2 2
a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x )
2 2
2x − 3x + 7 − 2x − 8 + x − 7x
2 2 2 2
b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
20.
Example 2
Add the polynomials.
2 2
a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x )
2 2
2x − 3x + 7 − 2x − 8 + x − 7x
2
3x
2 2 2 2
b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
21.
Example 2
Add the polynomials.
2 2
a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x )
2 2
2x − 3x + 7 − 2x − 8 + x − 7x
2
3x −12x
2 2 2 2
b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
22.
Example 2
Add the polynomials.
2 2
a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x )
2 2
2x − 3x + 7 − 2x − 8 + x − 7x
2
3x −12x −1
2 2 2 2
b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
23.
Example 2
Add the polynomials.
2 2
a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x )
2 2
2x − 3x + 7 − 2x − 8 + x − 7x
2
3x −12x −1
2 2 2 2
b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
2 2 2 2
3x − 4 xy − x + 4 y + 2xy − y
24.
Example 2
Add the polynomials.
2 2
a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x )
2 2
2x − 3x + 7 − 2x − 8 + x − 7x
2
3x −12x −1
2 2 2 2
b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
2 2 2 2
3x − 4 xy − x + 4 y + 2xy − y
2 2
2x − 2xy + 3y
Example 3
Subtract 4x+ y from the sum of x + 3y and 8x - 2y.
( x + 3y ) + (8 x − 2y ) − (4 x + y )
27.
Example 3
Subtract 4x+ y from the sum of x + 3y and 8x - 2y.
( x + 3y ) + (8 x − 2y ) − (4 x + y )
x + 3y + 8 x − 2y − 4 x − y
28.
Example 3
Subtract 4x+ y from the sum of x + 3y and 8x - 2y.
( x + 3y ) + (8 x − 2y ) − (4 x + y )
x + 3y + 8 x − 2y − 4 x − y
5x
29.
Example 4
Simplify.
3 2 3 2
a. (6 x + 3x − 11x ) + (2x − 9 x − 5 x )
2 2 2 2
b. ( x y − 2xy + 8) − (−7x y + 2xy − 4)
30.
Example 4
Simplify.
3 2 3 2
a. (6 x + 3x − 11x ) + (2x − 9 x − 5 x )
3 2 3 2
6 x + 3x − 11x + 2x − 9 x − 5 x
2 2 2 2
b. ( x y − 2xy + 8) − (−7x y + 2xy − 4)
31.
Example 4
Simplify.
3 2 3 2
a. (6 x + 3x − 11x ) + (2x − 9 x − 5 x )
3 2 3 2
6 x + 3x − 11x + 2x − 9 x − 5 x
3 2
8 x − 6 x − 16 x
2 2 2 2
b. ( x y − 2xy + 8) − (−7x y + 2xy − 4)
32.
Example 4
Simplify.
3 2 3 2
a. (6 x + 3x − 11x ) + (2x − 9 x − 5 x )
3 2 3 2
6 x + 3x − 11x + 2x − 9 x − 5 x
3 2
8 x − 6 x − 16 x
2 2 2 2
b. ( x y − 2xy + 8) − (−7x y + 2xy − 4)
2 2 2 2
x y − 2xy + 8 + 7x y − 2xy + 4
33.
Example 4
Simplify.
3 2 3 2
a. (6 x + 3x − 11x ) + (2x − 9 x − 5 x )
3 2 3 2
6 x + 3x − 11x + 2x − 9 x − 5 x
3 2
8 x − 6 x − 16 x
2 2 2 2
b. ( x y − 2xy + 8) − (−7x y + 2xy − 4)
2 2 2 2
x y − 2xy + 8 + 7x y − 2xy + 4
2 2
8 x y − 4 xy + 12
34.
Example 4
Simplify.
2 2 2 2 2
c. ( x y + x − xy ) − (− y + y + xy + 4 x y )
35.
Example 4
Simplify.
2 2 2 2 2
c. ( x y + x − xy ) − (− y + y + xy + 4 x y )
2 2 2 2 2
x y + x − xy + y − y − xy − 4 x y
36.
Example 4
Simplify.
2 2 2 2 2
c. ( x y + x − xy ) − (− y + y + xy + 4 x y )
2 2 2 2 2
x y + x − xy + y − y − xy − 4 x y
2 2 2
−3x y + x − 2xy + y − y